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This paper provides all the p-inequivalent projective irreducible unitary corepresentations of all
the magnetic point groups of infinite order with full use of their isomorphisms.
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In a series of papers'~> (referred to as I-V) we have de-
veloped a theory of representation of point groups in a uni-
fied manner regarding the corresponding double point
groups as subgroups of the SU(2) group ( = G,). In particu-
lar, in the last of these, we have constructed the general ex-
pressions of the projective irreducible unitary corepresenta-
tions (counirreps) of the magnetic (or antiunitary or
Shubnikov) point groups of finite order. The present work is
its extension to the magnetic point groups of infinite order
denoted as H*_ . Here H _ is the halving subgroup whichisa
double point group of infinite order and z is a unitary opera-
tor which defines the augmenting antiunitary operator
a = 0z together with the time inversion operator 8. By defin-
ition, H ?_ is a mixed continuous group and thus construc-
tion of its representation group H % requires algebraic mani-
pulations which are different from those used in V.
However, we still have the advantage that the representation
group of a double point group is much simpler in structure
than that of the corresponding single point group,” since the
parameter space of the SU(2) group is simply connected
while that of the SO(3) group is doubly connected. In fact, all
proper double point groups continuous or otherwise have
only one class of factor systems.”

In the present paper we shall first discuss the method of
constructing the representation groups H % of the magnetic
point groups H ?_ through a typical example of a grey group

using the approach which is used for constructing the repre-
sentation group of an ordinary continuous group whose pa-
rameter space is simply connected.® Then, the representa-
tion groups H % will be constructed for a characteristic set of
atotal of eight H %_; any one of the remaining H % is isomor-
phic to one of them. Then, the vector counirreps of H %, will
provide all the p-inequivalent projective counirreps of the
characteristic set of HZ_ .

We shall now discuss how to construct the representa-
tion group of a typical example of the grey group H¢ . Itis
assumed that the halving subgroup H , = {x} is a contin-
uous symmetry group whose parameter space is simply con-
nected. The antiunitary operator a is the time inversion oper-
ator itself; e being the identity operator. The grey group H ¢
may be characterized by H _ and the defining relations for
a( = 0) as follows,

He :xeH_, & =e, (1)
where 2 is the 277 rotation. In constructing H ¢/ we shall limit
the discussion for the finite-dimensional representations.

Let D be a n-dimensional general projective corepresen-
tation of H ¢, . Then

ax=xa, a’=e,

D (x)D (y) = expliB (x, y)1D (xy), (2)
D (x)D (a) = exp[i£ (x)1D (a)D (x)*, 3)
D(a)D(a)* = 7D (e), 4

TABLE I. The representation groups of the antiunitary and unitary point groups (of infinite order).*

1.C(=C_) x,

2.C%:xeC_,xa=ax, a*=7¢, T =e,

3.C¥:xeC_, xax=a, a*=71¢, T =e,

4.C:xeC,, xi=ix, P=e

5.C%: x,ieC,,, xa=ax, la=(al, *=1%, =7 =e¢,
6. C¥.: x,ieC_, xax=a, ia=_{ai, a*=7¢, {I=r=e¢,
7.D, (=D,):xeC,, y=(0)f=8

8. D%: x,yeD,, xa=ax, pa=nay, a* =78, 7' =17 =e¢,
9. D" x,yeD_, xi=ix, yi=vyiy, P=e, P =e¢,

10. D=,;: D', (), xa=ax, ya=7nay, la=Cal, =12, 7' =L =1 =e¢,
1. G!(=G,}): x,

12. G¢: x€G,, xa=ax, a* =76,

13. G, x€G,, xi=ix, P=e,

14. G x,ie Gy, xa=ax, ia={ai, a*=71¢, (=T =e.

* Note: For the notations, see Table I of Paper V.
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for allx and y € H_ . Here * denotes the complex conjugate,
B (x, y)and £ (x) are real continuous functions of the elements
over the entire parameter space of the group and are called
the local exponents.® For uniqueness we take the standard
factor system such that D (e} = 1 and fix the local exponents
uniquely by

Bxe)=PBle,y)=£e)=0, Vx,yeH,. (5

It is a simple matter now to map off the local exponents
completely by a gauge transformation. Let the determinant
of the unitary matrix D (x) be

det D (x) = exp{id(x)], VxeH_, (6)
where J{x) is a real continuous function of x and §(e) = 0.

Taking the determinants of both sides of both equations (2)
and (3) we obtain

TABLE II. The projective counirreps (unirreps) of the antiunitary {unitary) point groups (of infinite order).*

1L C_ (K% KO M,: m=m® m°=0, £}, + 1,.., + o0,

2. C%(K)

K, SiMy), SM,,,M_,), m=m*=1}1,.., 0,
3. C* (K)

K, SM,), m=m°,
4. C_(KY

K M2, m=m°,
5. CLiK,t=1{§})
K,SMGE), SME,M=,), m=m*
K, SM}I, M-, ) m=m
6. C.iK,t={{))
K, SIMZ), m=m°,

K, SM}, M7), m=m,
7. D_ (K% K° A, A, E,

8. D (K, 1= [7])
K, S(d), S{4,), S(E,; 15 0,), m=m*,
K, 5S4, 4,), S(E,,E,;0,1,), m=m*
9. D_,(K%s={y]):
K, A, AF, ELX, m=m*,
K3, D,=D(4,,A4,), D} >*=D(E,; +0,), m=m"*,
10. D5 ,(K,,s={y} t={m )
K, SAFE), S43), SIEZ; 1, 0,), m=m?*
K, SAt, A7), S(A;7,457), SIES,E; 1,,0,), m=m*,
K, SAF,AF), SEEEX,EX;0,,1,), m=m?*,
Ky SAFE,AF), SESE,;
Ky, S(Dg; 1), SD D%, 0,), m=m*,
K, S(Dy;0,), SDE%1,0,), m=m*,
K, S(D,;0.), SIDD %0, 1), m=m*,
K,y S(D,, Dy;0,), S(DEY,D X0, 1), m=m*,
11. G,{K9
K° DY, j=0,41,.,,

m=m*,

ms

;0,, 1), m=m?*,

12. GEK):

K, S(DU; N, N2 =(—1)/="8(n, —m), n,m=j,j— l,.., —j,
13. G(K):

K, DU, j=0,41,.,,

4. GuK, t=1{L})
K,, S(D‘ﬁi,N“’),
Kz» S'(D“H',Dm_; N“’).

»Notes: (1) For the notations see Table IT of Paper V. (2) m®, m* are integers of half-integers definedby m® =0, +1, + 1,..., + w0, m* =4 1, 4,...,0. (3) For

D of (11) and (12) see Eq. (3.10) of Ref. 4.
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8(x) + 8(y) = nf (x, y) + Sxp), o

25(x) = n& (x).
Then, the gauge transformation
D'(x) = exp[ — i6(x)/n]D (x) (8)

leads to the required result
D'(x)D(y) =D’(xy), D'(x)D(a)=D(a)D'(x)*. (9)
To determine the phase factor 7 in (4), we take the equi-

valent transformations of both sides of (4) with respect to
D (a). Then we have

7 =1 (10)
Now we regard 7 as a second-order element which com-

mutes with all the elements of H ¢, and arrive at the repre-
sentation group H ¢’ which may be defined by

P =e, (11)

where 7 is in the center of H ¢/ . In an analogous manner one
can construct all the representation groups H?' given in
Table I.

There exists a total of 14 magnetic point groups H?, of
infinite order. On account of their isomorphisms, however, it
is only necessary to construct the representation groups of a
characteristic set of the magnetic point groups which may be
chosen to be

ce, C¥,

2 —
xeH_, xa=ax, a =r7e,

e u e e
Cooi’ i’ Dw’ Dooi’

G5, G5
(12)

(for the notations see IV). Any one of the remaining H?_ is
isomorphic to one of these as follows>:
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i u
C' ~C¢, C’ ~C¥,
C' ~C¢ ~D' ~D°,

e GinG: (13)
through the one-to-one correspondence 6i<>6 and T, —c}.
The representation groups H ! of the above set (12) are given
in Table I together with the representation of groups H ’_ of
their halving subgroups H  for convenience of presentation.
Then, from their vector counirreps we have obtained the
general expressions of all p-inequivalent projective counir-
reps of the corresponding magnetic point groups in terms of
the unirreps of the proper point groups given in the previous
work L. These are presented in Table II together with the
projective unirreps of the halving unitary groups H _ . Thus
Table II provides all the projective counirreps (unirreps) of
any antiunitary (unitary) group of infinite order directly or
through isomorphisms. It is noted that these results given in
Table II can be obtained by the limiting procedure from
those of H * of finite order. It is also noted that in general a
class of the factor systems K and its dual K’ are always p-
inequivalent without exception for H 2, . This is not in gen-
eral true for the magnetic groups of finite order.’

'S. K. Kim, J. Math. Phys. 22, 2101 (1981).

28. K. Kim, J. Math. Phys. 24, 411 (1983).

38. K. Kim, J. Math. Phys. 24, 414 (1983).

“S. K. Kim, J. Math. Phys. 24, 419 (1983).

5S. K. Kim, J. Math. Phys. 25, 189 (1984).

SM. Hamermesh, Group Theory and Its Application to Physical Problems
(Addison-Wesley, Reading, MA, 1964), p. 469.
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The signature S of a finite-dimensional representation of SU( p,g) is the difference between the
number of positive and negative signs in the bilinear invariant in its diagonal form. An expression
for §'is derived starting from the Weyl character formula for U( p,q) representations.

PACS numbers: 02.20. + b

I. INTRODUCTION

Noncompact simple Lie groups/algebras are today well
established among mathematical tools of theoretical phys-
ics. Originally they found their way into physics through the
special relativity theory and since then their interest to phys-
icists had its ups and downs, but it is beyond doubt that, in
general, their applications have been growing in variety and
frequency. Although most of the representations which are
being used are either the lowest-dimensional defining repre-
sentations or, on the contrary, the infinite-dimensional uni-
tary ones, it appears to be only a matter of time until nontri-
vial information about other finite-dimensional (nonunitary)
representations will be needed. One of the very first ques-
tions to be answered about many of them is what is the signa-
ture, i.e., the number of positive and negative signs in the
bilinear invariant in its diagonal form. Equivalently, one
may ask what is the maximal number of linearly independent
“spacelike, timelike, or lightlike” vectors in that representa-
tion space. It turns out that the answer is nowhere to be
found except for the lowest cases which are obvious and Ref.
1, which deals with representations of SU{ p,q), p + ¢<4.

The purpose of this paper is to provide the answer for
SU( p,q) with any value of p + ¢, and to set up a general
method which can be applied to representations of other
groups.

The method of Ref. 1 makes use of known generating
functions and therefore cannot easily be extended to higher p
and g. Here we evaluate Weyl’s U( p,g) character formula for
the element of the U( p,g) group whose character is the signa-
ture. The present approach could be used to derive character
formulas for other elements of SU( p + ¢) of finite order.

The signature S; of an irreducible representation A of
SU{ p.q) of dimension N, is the difference between the num-
berp, of positive signs and the number g, of negative signsin
the bilinear invariant ( x,y) taken in diagonal form, i.e.,

k) =x"M,y, M, =I,0(—1,),

where I, is the # X » identity matrix. Thus S, = Tr M. For
the defining representation A = (1,0,...,0), p, = p, and

g, = ¢ so that § = Tr M = p — ¢q. The matrix M is an ele-
ment of U( p,q) and also of U( p + ¢). The signature S, is the
character of the element M in the representation A of

U( p,q); we thereby fix the phase of S, . Therefore our task

* Supported in part by the Natural Science and Engineering Research
Council of Canada and by the Ministére de 'Education du Québec.
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here is to evaluate the character of the element M, for the
representation A. For that purpose we use Weyl’s character
formula for an element of the group U( p,g) which is a diag-
onal { p + g) X { p + ¢) matrix with the variables fixed such
that p of its elements are + 1 and q are — 1. Any finite
representation A of U( p,q) contains a unique representation
A of SU( p,q) and the character of M is the signature S, .

The signature S; of a representation A of dimension N,
of the group U( p,q) has some obvious properties. Let p, and
q, denote the number of positive and negative signs in the
bilinear invariant of 1. Then we have

Pr =8Ny +84), g =3N, —S) (1)
For the direct sum and product A, @ 4,, 4, ® 4, we have

Paror, =Pa, T Pa, Pier, =PaPa, 91,44,

9,04, =94, 92,5 Gi,e4, =Pa,94, T 91,P4,» (2)

Siea, =S, +8u, Siea, =38:,5,,

An irreducible representation A of SU( p + g) is ordin-
arily labeled by the p 4+ ¢ — 1 nonnegative integers

A, =2k Va,a,), n=12,..p+g—1, {3}
where A denotes the highest weight of the representation and

a; are the simple roots of U( p,g). For our purpose it is con-
venient to use an equivalent set of p + ¢ integers,

p+q—1 ) '
lj: z /{«k+p+q—_], ]=1’2"“)P+q—1;
k=j
Lyq =0 @)

In Sec. II the general formula for S, is presented. It
turns out to be a product of two expressions. The first con-
tains only trivial factors while the second is a sum of pro-
ducts of two determinants depending separately on the even-
and odd-valued labels /; of the representation and otherwise
only on the difference p — g. The cases p — g < 5 are worked
out in detail. We assume that p>q. If ¢ > p, interchange p and
¢ in the formula for S, and multiply by ( — 1)>"*~,
The signature formula is derived in Sec. 111

Il. THE SIGNATURE FORMULA

Consider an irreducible representation of U( p,g) la-
beled by the integers /, . In Eq.(4) they are in decreasing order
L >1>>1,, , =0 Letsbethenumberofodd/, andz the
number of even /. Then s + ¢ = p + q. It is convenient to
number the /, so the odd ones are /{ > ... >/ and the even
onesare/{ >...>1/¢.
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The chief result of this paper is that the signature S, is zero whenever s > p (and # < g) or £ > p (and 5 < ¢) and otherwise is

given by

S - € — l)s(p- 1)+ (1/2)g( g — ”(Hl<n<m<s (1°
A

- lo ))(Hl<n<m<t (l: - lfn))Fp—q,s—q(Io’Ie)

(3)

24P~ q)(np— 1 nl)(nq— 1

An intuitive reason for the vanishing of S, with the above
inequalities is that when one of them is satisfied all choices of
the s (or ¢ ) determinant vanish when a Laplace expansion is
made in the first s and last f columns; €, in (5)is + 1accord-
ing to whether the permutation from /,,...,/ to

pt+q
13,.,0315,.,1;isevenorodd. F, . ,(/)is given by the
formula

Fp—q,s—q(lo’le)z z ( -
B)

X IPBi —3 +j(lo)| IPyi

l)zkﬂk_“/z)(s‘ as+g—1)

—t+ 7).
(6)
Here (B;) stands for s — ¢ integers 8, > ... > B, _, chosen
from the set p — 1,p — 2,...,q and (y;) stands for the remain-
ing ¢t — g integers from the set, also numbered in decreasing
order. The sum 2, is over the (p — g)!//(s — g)!( — g)!
choices of the integers (3;). The factor |ps _,, ;(/)| is the
(s — g) X (s — g) determinant whose ij element is exhibited;
P, .+ ;(°)] is a similar (¢ — g} X (¢ — g) determinant. The
nth degree symmetric function p, (/,,...,/;) is defined by

s

[TU-2)""=

i=1

z Pl n>0,

p.(1)=0, n<O. (7)

For the following trivial special cases the function (6} is
unity:

Fp—q,O(l)sz—q,p—q(I)zl (8)

J

— o5} + o3PS —ps)+((p

S — (

i<j<k<r

Fo,()=(p5) —pips — p3(piDs

= 3 Pl + S UPUP +2

JH#i#k i<j

j<k

+(swp+ 3

i<j

S Isds 4 (Lo,

i<j

lil. DERIVATION OF THE SIGNATURE FORMULA

The signature of any finite irreducible representation A
of U( p,g) is given in terms of the character y, () by

Sy =yl —1,.., = 1), (13)

where the first p 7’s have been set equal to 1, the last ¢ to
— 1. For the character y, (7) Weyl gives the formulas

Xalm) = Em/Eom) = by _p_ou (), (14)
where

&) =In", (15)
2129 J. Math. Phys,, Vol. 25, No. 7, July 1984

m)
f

The form of the function (6) depends only on p — ¢ and
s — gq. Therefore we evaluate it explicitly for a few low values
of p — g, namely, p — g < 5. In order that F #0 one must
have 0 <5 — ¢ <p — ¢. Furthermore a symmetry relation
(25) below allows us to cut the range of s — g values by half.
Whenp —g¢=0o0r1,thens — ¢ =0o0rp — g and Fis given
by (8). Consequently the nontrivial cases we list below have
2<p—q<5and 0<s — g <i{p — g). In order to simplify
the notation we use p and pj for py(!°) and p4(! ¥), respec-
tively; in the summations in (9)—(12) distinct dummies 7,...
never take the same values when the variables /,,/,,... are
raised to different powers, and satisfy inequalities { <j <...
when the variables /,,/,,... are raised to the same power. Thus

istjaer
317} means 2,171} while 3 1}/ means X, _, /1.

it it i<jtitye
Ful)=p -5, =3 1= 315, o)
Fy (1) =(p5V —p5 —pip5 + 5
=3 15— (S11)(S15) + Se+ S 115 10
i<j i J i<j
Fo ()= @1 + 03 — 20505 — P55 — p5) + pops — P8
-3y 151;12_(21,?)(21 )
i<j<k i i<j
(e 3 o) (300) - o
i<j i i
=Sty —- 3 s, (11)
i i<j<k
P — P35 — (PP — P3PS + (P5) — pips
SUESWR+2 3 Ll )
i i#j icj<k
(12)
I
&olm) = |77i1j' = |7ﬁ+q_j|
= (7: —m;)- (16)
I<i<j<p+gq

In Egs. (14) — (16) |4, | denotes the (p + g) X ( p + g) deter-
minant whose ij element is 4. We see, by (13) and (14) that
[p,,,_p —g+j (L1, —1,.., — 1) is an explicit expression for
the signature. However, the expression (2.1) is far simpler to
evaluate. This section is devoted to its derivation.

We start with &, ()/&,(n) and set

J. Patera and R. T. Sharp 2129



& .
e, 1<igp,
7; =[ c ) (17)
—e', p+Iigp+q.

Then, according to (13) and (14),

S, = lim &, /&, (18)
£—0

Keeping only lowest degree terms when £;—0 we find, using
(16) and (17),

§02( _ 1)(1/2}p( iy (

D)

1<i<j<p
(I g-a) (19)
P+ I<i<jsp+q
With the substitution {17) we get
eI,G.- e11§.-
§}. - 6,{ _ eljgi ez}g{ ’ (20)

the vertical line separates the first s columns from the last ¢
columns while the horizontal line divides the first p rows
from the last g. Now repeat the following operation p — 1
times, giving / in succession the values 1,2,...,p — 1: subtract
the /th row from each row & for which i + 1<k<p and bring
outside a factor (§, — £;)/i from the k th row. Then repeat
the following operation ¢ — 1 times, giving / the values
P+ 1p+2,..,p+ q— l:subtract the ith row from each row
k for which / + 1<k<p + ¢ and bring outside a factor

(6x — &:)/li — p) from the k th row. The result is

£ e, (H - ;,-))(H I G- g,-))
p_ll'! B q_lﬂ. _ll 1;—1 Il;i_l J
X(H ) (H ) [ —1ime—t]gi-p-0]

i=1 i=1
(21)

where we have kept only the leading terms for small &;. Di-
viding £;, Eq. (21), by &,, Eq. (19), we find

S, =€;(— 1) - Ny —re (pI—I]i!) - (ql:lli!) B
i=1 =1
WENTEN
|_1;—p—1 l l}*p_ll'

X (22)

Now make a Laplace expansion of the determinant in
(22) by its first s columns. In the first s columns the first ¢
rows are the negatives of the last g. Therefore in the Laplace
expansion one must take one from each of the g pairs in the s
determinant and the other in the ¢ determinant. It follows
that s and ¢ must lie between p and g: p>s>q and p>t>q;
otherwise S, vanishes. There are 2¢ ways of choosing one of
each of the ¢ pairs and it may be shown straightforwardly
that each choice contributes equally. We therefore make a
conventional choice, the first ¢ rows in the s-determinant,
the last g rows in the r-determinant, and multiply by 29 We
find

2130 J. Math. Phys., Vol. 25, No. 7, July 1984

i—1 i— 1
| Lt s
R
— zq( _ I)S(p— 1)+ (1/2)glg — 1) + (1/2)p(p — 1)

X( H (; — lj)) ( H (4 — lj))
I<i<j<s S+ Iicjcs 4+ ¢
X3~ e sy e ).

(23)

Inserting (23) into (22) yields the desired result, Eq. (4).
We conclude this section by noting the symmetry rela-
tion satisfied by F, ,(/°,/ ), namely

Foody=(=1)""F,,_ (1) (24)

Equation (24) follows straightforwardly from the definition
(5).

IV. EXAMPLES AND REMARKS

First we evaluate the signature for the groups SU(1,1),
SU(2,1), SU(2,2), and SU(3,1). Table I summarizes the re-
sults. Asin Sec. II, the odd valued / ’s are labeled / {,/,...1 %in
decreasing order and theeven!’sare!/$,/¢,...,/ { indecreasing
order. In the conventional labeling the /’s are /;,1,,...,, , , in
decreasing order. €, is + 1 according to whether the permu-
tation from /,,1,,...,1, , , to 19,15,...,12,15,15,..,1; is even or
odd.

SU(L,1). Inthiscasep = ¢ =s =t = 1 for S, #0. Then,

TABLEI Thesignatures S, of irreducible representations A = (4,), (4,,4,),
and (4,, 4,, 43) of, respectively SU(1,1), SU(2,1), and SU(3,1), SU(2,2}. Sym-
bol e (0) in the column A; denotes an even (odd) 4,.

Parity of
Group 4, A, Ay S

SU(L,1)e - - 1
o - - 0
SU(2,1)e e YA+ 4, +2)
[4 o - 0
0 e A4, + 1)
e 0 - A, +1)
SU(2,2)e e e WA+ A+ 24+ A5+ 2)

e 0 e =Y+ A + A +45+3)
o e o —YA +1A,+1)
otherwise 0
SU(3,1)e e e WA+ Az + 2, + A5 + 2, + 45+ 2)
e e o =M+ 1A+, +2)0A, + A4, + 2,4+ 3)
0 e e JA + Dk + A + 20 oA, + 45+ 3)
e o e A+ A, — A4, + 4, + 45+ 3)
e o e A+ D, + DA 4, +2)
o e o —MA+ DA+ DA, +24,+4,+4)
e [4 [ Ao + 1ids + DA, + 4,4+ 2)
[4 [ [ 0

J. Patera and R. T. Sharp 2130



according to (5) and (8), S; = Fypo = 1.

SU(2,1). In this case p = 2,g = 1, so we must have
s=2,t=1lors= 1t = 2forS; #0. According to(5)one has

Sy =de (= 1¥Ux —1I7),
where I * — [ * is the difference of the odd !’s (* = o) for
s =2, or of the even I’s (* = e) for t = 2.

SU(2,2). Here p = g = 2, so we must have s = ¢ = 2 for
nonzero S, . According to (5),

Sy = —y =135 —13) (26)

SU(3,1). Here p = 3,4 = 1, so there are two distinct
cases corresponding to S; #0. (i) s = ¢t = 2, and (ii)
s=3,t=1o0rs=1,t=3. From {5) we have

@) Si=elly =137 —I5)F;, (),

n<m, (25)

(27)
(i) S;=e(r—I20F-100T-13),

where * = o or e according to whether s = 3 or ¢ = 3, respec-
tively. Substitution of the representation labels 4,,...,4, of (3)
and (4) into (25)-(27) gives the expressions for §; summar-
ized in Table L.

The problem solved in this paper could be viewed as a
special case of the evaluation characters of elements of finite
order of SU(n). Indeed, if ¢ is even the U( p + ¢g) element M,
whose characters we evaluate, is also an element of
SU(p + q). If g is odd and p even M&SU( p + ¢q) because
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det M = — 1; we consider an SU{ p + ¢) element
M'= —M,SU(p+ q). Then

S;' =tr MA — (trM/,I)( _ 1)2,-1;+(1/2}n(n+ 1} (28)
in any irreducible representation A. Without loss of genera-
lity we could have here redefined the bilinear invariant
(x,p}— — (x,p) so that then S; = tr M ;. If p and q are both
odd, M is in one-to-one correspondence with SU{ p + g) ele-
ment M " = M exp(27i/( p + q)). Then

SA =1tr M,{
={tr M,’{)exp( — ZWi[Zli + -%— nin + 1)])/”’

n=p+gq. (29)

An identification of SU(n) elements M and M " in a general
standard notation for elements of finite order is found in Sec.
9.2 of Ref. 2.

It is possible to evaluate characters of other elements of
finite order in SU(n) by a generalization of the methods of
this paper.

'J. Patera and R. T. Sharp, Kinam 4, 93-98 (1982).
R.V.Moody and J. Patera, to appear in SIAM J. Algebraic Discrete Meth-
ods § (2) (1984).
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Making use of the isomorphism of O*(2,2) with the direct product O*(2,1)x 0*(2,1 ), the matrix
elements of O™(2,2) in its unitary irreducible representations are explicitly calculated in terms of
Euler angles introduced in a previous paper. The expressions so obtained consist of infinite sums
of product of Clebsch-Gordan coefficients and Bargmann’s v functions, both for the group

O*+(2,1).
PACS numbers: 02.20. + b

1. INTRODUCTION

The problem of computation of unitary irreducible rep-
resentation (UIR) matrix elements for the unimodular or-
thogonal and pseudo-orthogonal (generalized Lorentz)
groups has a pretty long history, although quite a large
amount of work on it was done in fairly recent past. It was
originated in a recognizable form by Wignerin 1931 when he
introduced® his, by now very well-known and extensively
used, D and d functions, which are just the elements for the
three-dimensional pure rotation group O™ (3). Next, Barg-
mann® obtained them for the three-dimensional Lorentz
group O*(2,1) as well as for the ordinary Lorentz group
0%(3,1); these latter have also been calculated by several
other authors.>” The d functions of O *(4} have been ob-
tained by Friedman and Wang® and Biedenharn,® those of
0O*(5) by Holman'® and those of O*(4,1) by Holman, "'
Strom,'? and Takahashi.'? For the general cases O™ (n) and
O (n,1), the problem has been studied in considerable de-
tails by quite a large number of authors.’*'® However, as far
as the author knows, none of the cases O*(n,2), n>2, has
ever been considered in this connection. Hence, in order to
make a beginning, we start with O*(2,2) and obtain its UIR
matrix elements in the present paper. This group turns out to
be exceptionally simple due, essentially, to the fact that it is
isomorphic to the direct product 0*(2,1) X O™ (2,1); this en-
ables one to use the trick of Friedman and Wang?® [intro-
duced in connection with the isomorphism
O*(4)=07(3)xX 0" (3)] and make the calculations almost
trivial. One of the main reasons for the lack of interest in the
matrix elements of O™ (n,2), n>>2, in spite of the fact that a
number of series of UIR’s of O ( p,q), p,g>2, have been
known ' for some time, has probably been the absence of a
suitable set of parameters for these groups, similar to the set

of Euler angles for O*(n) and O™ (,1). In a previous paper,*°

the author was able to define a set of Euler angles for the
general case O™ ( p,q); these, and a second similar but slightly
different set of angles, are now used to obtain explicit expres-
sions for the matrix elements of 0*(2,2).

2. THE GROUP O* (2,2) AND ITS UIR’S

The group O*(2,2) consists of all the 4 X 4 real matrices
a = {a,, } which satisfy

a’ga=g,
deta =1,
2132 J. Math. Phys. 25 (7), July 1984
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g being the 4 X 4 diagonal matrix
g = diag(l,1, — 1, — 1),

The first condition ensures that these matrices keep the
lengths of vectors

X = (xl’xz’x3’x4)

in the four-dimensional real Minkowski space M (2,2), given
by
2 2
xX=xi +x —x;3 —x3,
invariant, i.e., are orthogonal linear transformations in this
space. It is a six-parameter group and the six generators
Ay Gy bys by by, boys

of the infinitesimal transformations in various x, — x,
planes, i.e., the generators of the Lie algebra of O (2,2) are
given by

(@2ie = — 81202 + 6,621,

(@3ahax = 012620 — 81,045,

(b‘uv)ﬂ.lc = 5#/161»{ + 5;LK6V/1’ lu’ = 1’2’ v= 3’4’
&, being the usual Kronecker delta. Setting

h,=iby,, h,=1ib,, h;=1ia,,
ky=1iby, k,=1ib,,, k;=1iay,,
it is easily checked that
{Anhy] = —ihs, [hyhs) =ihy,  [hsh] =ih,.

Note that (a,,,b,3,b,3), i.€., (h,,h,,h5), are just the generators

of the Lie algebra of the subgroup O*(2,1) of 0*(2,2) con-

sisting of those of its elements which leave x, invariant.
Introducing now

Ji=vh+ k), L=4h —k) =123,
we find that

Uwel = =i ahsl =i, Usdi] =i

Unhl= —i, (L] =il, [LL] =i,

/i1 =0, ij=123.

Thus {4, } and {k, } combine together to give, and are them-
selves determined by, two independent sets { j, } and {/, } of
generators of the Lie algebra of O™*(2,1); this leads to the
well-known fact that O*(2,2) is isomorphic with the direct
product O*(2,1)X0O*(2,1). If — g;(g; + 1) and m, are the
eigenvalues of

V=-0R+i-5)
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and j,, we denote by 2% any of the UIR’s of O™ (2,1) (gener-
ated by { j; }) labeled by g; according to the labeling scheme
of Holman and Biedenharn.?' The standard basis for the

representation space of 2% consists of

{lg;m;}},
the collection of simuitaneous eigenvectors of J* and J5:

Jz‘qj’mj> = - q/'(qj' + 1)|qj’mj>’

J31qj!mj> = mj Iqj’mj),

(capital letters denote the representatives, in the representa-
tion under consideration, of the operators denoted by the
corresponding small letters). g;, m;, g,,, m,, and Z ¥ are
similarly defined. The range of values of m;, m, and

m, =m; + m, (as h; = j; + I;) depend on the particular re-
presentations 2% and & ¥ chosen; we shall carry out our
calculations only for the case when both 2% and £ ¥ belong
to the integral variety of the principal series of continuous
representations’' (i.e., they are of the type 3, ¢ > 1, in the
notation of Bargmann?) as results for other choices can be
obtained in a similar manner. The range of values of the three
eigenvalues m;, m,, and m,, will therefore be

09 i 19 i 29"‘ .

As O*(2,2) is generated by the union {j; }u{/, }, its
UIR’s will be labeled by the pair (g;,q,). We shall denote
them by 2 %%, these are, in fact, the direct product?? of 2%
and 2

@‘If‘?i — g9j® g‘}r.

Obviously, one basis for the representation space of 2%
will be the set of vectors

Iqj’mj;ql,ml>Elqj’mj> |q19m1):

mym; =0,+1,4+2,..
However, as

J%, L2 H?,H,
also form a set of four mutually commuting independent
Hermitian operators, another basis for it will consist of their
simultaneous eigenvectors, i.e., the set of vectors

|Qj’41;% ).

Ash; =j, + [,, the range of ¢, will consist of those val-
ues which label those UIR’s of O* (2,1}, which appear in the
reduction of the product of % and Z?. Looking at the
analysis of this reduction given by Holman and Bieden-
harn,”' we see that the possible values of ¢, are such that it
labels either a continuous representation of principal series
and integral variety or a discrete representation, again of
integral variety. In the former case, the range of values of m,,
is

0’ i 17 i 2,'" )
while it is

—4u— 4Gy + 1, —q, + 2,
if g, labels a positive discrete representation and

9ns9n
if it labels a negative discrete representation.

_ l’qh — 2,
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As h; are the usual generators of the subgroup O*(2,1)
of O*(2,2) which keeps x, invariant, we shall have, for
ac0*(2,1),

Th

T(a)|q;+9:395 M) = Z vmhm'(a)lqj’ql;qh M),
mj,

h

where T (a) is the operator representing a in 2 %%, and the
v, (a) are Bargmann’s® v functions for O*(2,1). This leads to

(9;,91395-m5 | T (a)|q;,91395,m3,)

8lg, —q, )vf:hm‘,'(a) if (A) is satisfied
{0 if (B) is satisfied (1)

v*  {a) if (C) is satisfied,

9hqh MM

where (A), (B), and (C) are the following conditions:

(A) g,,,4; both label continuous representations of prin-
cipal series;

(B) one of ¢, ,g;, labels a continuous representation of
principal series and the other a discrete representation;

(C) both g,, and g, label discrete representations.
This equation will be used in the next section.

3. THE MATRIX ELEMENT
Let
a={a,, }e0%(2,2).
We shall calculate

U:T,i,h;q;pm;'(a) = <qj 1395 M4 | T(a)lqj 15 qhomp )

the matrix elements of & in the representation Z %7 It turns
out that the two cases
ayu>1, ayu<l

have to be considered separately.

Case l: agq> 1

Here the suitable Euler angles are the ones given by
Syed.?® These are

¢44’¢43!642’¢33’6329022’

with & given in terms of them by

A =100 15(Paa)l 1l — Bad)ri2(035)115( — G330 12 — 653),

wherer,, (0) = arotation by an angle 8 in the u—v plane and
L,.(¢) = a Lorentz transformation by an angle ¢ in the y—v
plane. We write

a=0bl,(— dula
so that

a = rpl03)]15( — @33)r1a — 0,,)€07(2,1),
b = ry5(04,)]13(#43)€0*(2,1).
Then
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99t
Uq:,mh;q;’.,'"i. (@)

= (Qj:qliqh oy | T (B )L o — ¢44)T(a)|qj:41;%,m;.>
(by Ref. 23)

= f ) > 445594.m, | T(b)|g;,q1395,m7)
a5 Jai' m

my’
X (Qj,q1§q;."m;x'|L14( - ¢44)|q,,ql,q;,”,m;,”)

X (qj»q“q;.",mi."lT(a)qu,qz;q;', "y, )
where f, stands for summation over discrete range and inte-
gration over the continuous range of values of g. Using now
(1), we get

9591
UMl

(@)

S ovh bt @O~ ()

” " qh ’nh q m
my.mpy

where

Vo anmp®) = (4,.0130,m7 € |9,.915q5,,m"),

and, of course, e ~ %% = L, ,(¢). To evaluate the last matrix

element, we use the expansion of |g;,4;;9,,m, ) in a series of
|qj’mj;ql’ml>zlqj’mj> lg;m;).

Taking this expansion in terms of Clebsch—Gordan coeffi-
cients of O*(2,1/** as

95,9135, ) = E C(g;9:1:9nm;my — m;,m,)

X |g;sm; ) |qrmy, — m;),

and using K, =J, — L,, we get

Vo ml®)

‘Ip. my.qhmy

z Cx(qj!ql’qh;m_;”m;xl - m;”m;:'

"

m] ]

X Cg;41,9h3m;" my’ — m{,m}’)
X {g;,m}'le =% |q;,m")

X {g;my —mj’|e"? |gq,mp —m").

Now, by actually carrying out the matrix multiplications, it
is easy to check that

ro@/2s — @l —a/2)=Ds( —¢);
this leads to

o — iy 21 gin) /2.

Hence

"

(q,,m”le”’"!q, m;

11rJ;/2eiJz¢eiﬂ'J3|q . ,m " >

iﬂ(m;” — mj" V2 ”

=e
=W Y, A= 672),
where

Via(y) = (gm| — e"¥|q,n)
is Bargmann’s ¥ function.? Similarly,

(g;,m]'|e"* |q;,m;

2134 J. Math. Phys., Vol. 25, No. 7, July 1984

(q];m;" ’e1L¢lq m/n mm

. (l)mh —my —{m/” —m] DV‘I/ . m(¢ /2),

my — m'm}]

so that

459
Vq;,,i,;";q;“m;‘"(¢)= Z C (qj’ql’qh) J ’mh - m;,ym},;

”
mj ,mh

r” 13 e

Xc(qj,qn%, my —m” my,
=872

X V‘f’ig g ,,,(¢ /2). 3)

(2) and (3) completely determine the matrix element of a in
gq]&ql.

X ()™,

Case ll: aqs< 1

We need, for this case, a slightly different set of Euler
angles which are obtained by a variation in the definition of
“polar angles in C™’ given by Syed.”® We define the “new”
polar angles in C* by

Z,=1 COS Xa 0<0,<m,
z;=t sin Yy, cOs X, 0<6:<7,
z,=t sin y, sin x; cos X, 0<8,<2w,
z;=t sin y, sin x; sin X,
t=t +it,, >0,
Ym =06, +id,, l<m<4.

These give

t=+ (@ +2+27 +2)7
CO8 Y4 = 2,/1,
cos 3 = + 2/ + 2 +273)3
cos y, = + 2,/ + )3,
siny, = +z,/(z2 + 23)'/%,

Let now aeo™(2,2) with a,,<1, and set
a=faf',

where f'is the 4 X 4 diagonal matrix
[ = diag(1,1,i,i).

Thus
a, Qap ia,; — oy,
b= Ay Ay —iay  —iag,
iay, 103 a33 A3y
iy, iy, Q43 Qs
Let

— Xaa» — X430 — Xa2
be the new polar angles of the fourth column
[ —iaw, — (04040 as] T
of &. Then it is easy to check (using a,,<1) that
Xas = Osss Xa3= b3 Xaz=0Our,
and that

~

&= r;,, (044)"2Ts (i¢43)’{2 (Ora
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has the last row and column as those of the 4 X 4 unit matrix.
Hence, if @V is the matrix obtained from @ by deleting its
last row and column, we will have

&9e0*(2,1).

We now take

X33:.X32:X22

as the old Euler angles of & defined by Syed,”® who shows
that

X33 =103, Y3 =03 X2=0n
The collection

{644’¢43’042!¢33!€32’922}

of six angles is now taken as the set of new Euler angles of ..

Now, from Syed,2°

& = rp(0 )71 — ids3)rial — 652),

so that

A

& = 112{0a2)r 23{i43) 34(0a0)112(62)
X7i3( — id33)rial — 62)
=a=f"laf
= 112l0a2)23(B43)734(0aa)7 12(052)

X1j3( — b33)ria{ — 652)

ie.,
a = bry,(8,,)a,

where

b = r,5(0,)5(643)€07(2,1),
a = r15(03,)l15( — d33)r1al — 022)€0%(2,1).

Thus

94
vqi»'";.;q;’.-MA ()

= {4;,413q5,m, | T (b )R34(0,5)T (a)1g;,9,395m})

= z Z Um;, m,’,'(b )vqh"' '( )

iK,8, 2
? “Iqj ,ql’qh ’mh”)

L] et (W

q,,qmm

X (q,,q,,qh smjle”

=3 Sl

my mjy’

where
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V‘I_p‘lll . ",(9)

G QM My

= (g;,4::9x. M} e

“ZZC “(g;,q1:9n5m) sy, — m)\mj;

iK 5

® iq_] 4; )qh ’mm>

" ”r " )

Xc(qj’ql’qh; ;”’mh —m;,my
X {g;,m;'|e*% |q;,m;")

X <q1,mh m"]elL +0 |q1’mlll _ m-’”)

J

= Z C (qpqn%» f,”nh

l

X C(g;49:5955m] ymy —

” ”
—m/,mj

-
m,m,,)e"'"" "8

Thus we finally get the matrix element of @ in £ %% as

UIIJ»QI , '(a)
GrMpiqp My
_ a5 q;. Y
= 2 Vg O W (@Y O]
|
with

yos (0)= 2 CHg;q1.gn;m] smy — m],my

%q’.’"

imy — 2m?)60

X C(qj,%:q;, ;m;'am;: - mj”’m},:)e
Note the close similarity of this last expression with the
expression for the “boost” matrix of O*(4) given by
Friedman and Wang.®
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Invariant submanifolds of the linear representation space C*" of the physical symmetry group
SU(2,2) X SU(m) and its subgroup .# X SU(m) are studied in some detail. It is shown that there
exists only one such manifold admitting unique projection onto Minkowski space. The structure
of this manifold is investigated by using proper local coordinate systems.

PACS numbers: 02.20. + b, 02.40. + m, 11.30. — j

INTRODUCTION

I describe in this paper some of the geometrical conse-
quences of the physical symmetry SU(2,2) X SU(m) and
2 x SU(m) and the assumption that the physical space is the
minimal invariant submanifold, containing Minkowski
space, of the complex linear representation space C*” of this
symmetry.

The assumption is, of course, quite arbitrary. It can be
justified, to some extent, by the basic role played by spinors
in the description of elementary particles. The idea to use
spinor spaces as the geometrical basis is quite old' and has
already many applications.'~ It has, so far, been limited to
the direct product SU(2,2) X SU(2) for the full physical sym-
metry (cf,, e.g., Ref. 4). Therefore, this paper may also be
considered as an extension of the idea to SU(2,2) X SU(m)
with arbitrary m (cf. however also Ref. 5 where such an ex-
tension was considered for the first time in a different set-
ting).

Another justification may be found in the desire to pro-
vide a common geometrical background for both the inter-
nal and external symmetries. A common background is
quite natural if we consider the direct product SU(2,2)

X SU{m) as a subgroup of some larger symmetry, say
GL(nm,C).

In the two sections to follow, I describe in some detail
the invariant manifold mentioned above. First, some general
properties of matrix manifolds, local coordinate system in
these manifolds and their transformation character are de-
rived in the general case of the direct product
GL(n,C) X GL{m,C) (Sec. 1). These properties are then spe-
cialized to the physically interesting case of SU(2,2) X SU(m)
and its subgroup & X SU(m) and applied to the description
of the invariant manifold in question (Sec. 2). It is shown that
there exists only one such invariant submanifold of C*
which admits a unique projection onto Minkowski space
consistent with the physical symmetry group under consi-
deration.

1. SOME PROPERTIES OF MATRIX MANIFOLDS

Consider the linear representation space C"" of
GL(nm,C). With respect to the subgroup
GL(n,C) X GL{m,C) this representation space decomposes
into invariant submanifolds

Oi={£eC™ranké =k}, k=0,1,.,min(n,m),

(L.1)

in such a way that
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.0, =0 forls#k, (1.2)
and
min(n,m)
U g,=C" (1.3)
k=0

We introduce an atlas on &, consisting of the (; {7
neighborhoods

§a,;a, LAt ga.;ak
(s ST 2
g(a ):=det : i |0, (1.4)

Ve @p
" é‘ak;a, 3oy gak;ak

where {a,,....a, } and {a,,...,a, } run over all possible selec-
tions of £ numbers out of n or m numbers, resp. In particular,

.....

§={§a;a}a=l ..... n (15)

in the following way,

(5 )

where
K: = {ga‘;a' ]a =1,k B - {§a';a' } a=1,..,k
a =1,..,k a"=k+1,...m
(1.7)
A:: {é‘a”;a’}a":k+1 ,,,,, ny Y = {ga”;a }a =k+1,..,n
a =1,.,k a”"=k+1,..m

Four different local coordinate systems can be introduced in
the neighborhood det K 50 by means of the formulas

Y =AK 7'B = aB = Ab = aKb, (1.8)
where
a=AK~', b=K"'b. (1.9)

It is seen from {1.6) and (1.8} that the complex dimension of
O, is
dm?Z, =k{n+m—k). (1.10)

In a similar way local coordinate systems are introduced in
the other neighborhoods (1.4).

We can consider & as the set of independent coordi-
nates of #n complex m-vectors or m complex n-vectors of
which only k are linearly independent.

We shall need the following statements concerning the
relation between some of these coordinate systems (1.8) and
their transformation properties.

Statement I: On the common part of the respective
neighborhoods, the following relations hold:
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1,..,k\"! (1, ...,k)
Gara _g(l,...,k> S\l —1ama +1, ok
[ SU, 0 Sl (al,..., ...,ak) , ,
= , fora'=1,..,k, a"=k+1,.,n, 1.11
§( 1,...k ) § .. —la"a +1, ..,k ( )
1,...,k)—1 (l,...,a’ - lLa",a +1, ...,k)
baa “5(1,...,k § 1. sk
ek NV (la—lLa"a' +1, .k
=§'( 1 ) §< @ @’ + ), for a’'=1,..,k, a"=k+1,..m. (1.12)
ayyennsly a,... el

The proof follows from general properties of matrices and
canbefound, e.g., in Ref. 6. One can easily verify that formu-
las (1.11) and (1.12) admit extension to a,, and b, with

a=\1,.,m;a=1,.m;anda’,a' = 1,....k, and that
Ay =06,,, forab'=1,..k,
(1.13)
ba'ﬂ' = sa'ﬁr, fOI' a’,ﬂl = 1,...,k.

Consider now the transformation properties of the co-
ordinates. With respect to GL(n,C) X GL{m,C) the matrix £
transforms according to

E—E' = gth, (1.14)
where g € GL(n,C) X 1 and # € 1 X GL(m,C). The corre-
sponding transformation properties of the matrices @ and
are (cf. Ref. 6)

a—a' = al§') = algth) = alg€),
b—b' =b(E')=b(gth)=b(th).

We have, therefore, the statement
Statement 2: a is 1 X h and b is g X 1 invariant.
The explicit form of (1.15) is

(c,, ...,c,,) (1k)
28 a
.2t \Lp =10 4, k) \epeta

d,,...,dk) (1k)
2.8 (1, ok )%\a.d,
(1.16)

‘rl,...,yk 1,...,a' - I,B ”,a, + 11"')k
5 (1)
200, .k ok

(1.15)

y

o T Viseeo
a'B b (51,...,5,‘) h (],,k )
; 1, ...k 61--"6k
(1.17)

The various factors in (1.16) and {1.17) are subdeterminants
of the matrices a,b,g,# taken according to the general rule

s 5 57y STk
19000k . .
m ( ) : =det : ' 3
Fiseees?

Siry Skrx

(1.18)

Thesumsin (1.9)and (1.17) are over all the (} ) or (") possibili-
ties to choose k different numbers out of # or m numbers,
resp. These formulas show that Statement 2 can be complet-
ed by the following:

Statement 3: The elements of the matrix a transform
among themselves, and similarly the elements of b, under the
transformations of GL(n,C) X GL{m,C).
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We are interested eventually in the physically impor-
tant case of SU(2,2) X SU(m) or its subgroups & X SU(m).
Therefore, we are going now to specialize the above results to
GL(4,C) X GL(m,C) and to derive the consequences of
further restriction of the symmetry to SU(2,2) X SU(m) or
Z X SU(m).

2. THE MODEL

Let us consider first the, still too general, case
GL(4,C) X GL(m,C) with 0<k<min(4,m). With each pair £,
= (uplac,.e a0 £5: = (£4p)am s, Of the m complex
four-vectors represented by the 4 X m matrix

peeny

a=1
defined by the formulas [cf. (1.11)]

-1
(@ B) _ a,ﬁ) (a, B ’
aa 1 5(1’2 g au’ 2 ’

—1
(‘i’ﬂ) — a,ﬁ) <a’ B ) ” —
as) §( 1.2 & L o) a 3,4.

Again with each such 2 X 2 complex matrix one can associ-
ate a complex four-vector by means of the Pauli relation

258 = — (1 /2)0, )" a%f), (2.2)

where A is a constant with dimension of length (a is dimen-
sionless).

It can be shown (cf., e.g., Refs. 2,4,7,8) that conformal
linear transformations SU(2,2) X 1 of the matrix £ induce,
viaa,-,., conformal nonlinear transformations of each of the
complex vectors z#’. In the infinitesimal version they have
the form

(2.1)

2,2, =2, —€2, — €, +€(g,,2" —2z,z;)

+ €(8,12, — 8,12,), (2.3)
representing dilatations, translations, special conformal
transformations, and Lorentz rotations. It is seen from (2.3)
that the coordinates x, = (z, + z) of the real part of z,
transform among themselves like a real Minkowski vector
with respect to dilatations, translations, and rotations. The
coordinates y, = }(z, — z}}) of the imaginary part of z,
transform similarly, the only difference being their invar-
iance with respect to translations. The coordinates of the real
and imaginary part of z, are transformed into each other by
the special conformal transformation only. A consequence
of these facts is that in the case of Poincaré symmetry (ex-
tended possibly by dilatations) one can consider the coordi-
nates x, = (x{} + x) and y, = x’ — x? as the proper lin-
ear combinations of two vectors x; and x{? of the same
Minkowski space M,. This interpretation corresponds to the
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idea of Yukawa’s bilocal theory® in which the coordinates X,
= }(x{]’ + x') of the center of mass of the elementary parti-
cle and the relative coordinates y, = x!}’ — x\ were intro-
duced a priori. It breaks down if we extend the symmetry to
the full conformal group due to the mixing of x,, and y,
caused by special conformal transformation.

So far we have considered only conformal transforma-
tions of the external group SU{2,2) X 1. What are the trans-
formation properties of 2l #) with respect to transformations
of the internal group 1 X SU{m)? The second order determi-
nants £ (&'?) appearing in the numerator and denominator of
a'%?) in (2.1) transform with respect to the Greek indices as
an (7')-dimensional representation of 1 X SU(m).

This situation is highly unsatisfactory for all k > 2 be-
cause of two reasons: First of all, for m > 2 we have (7 differ-
ent complex Minkowski spaces M ' #) with coordinates
2% and, therefore there is no unique projection from &,
onto M,. Secondly, the z{#' and, therefore, also the real
parts x\#) are not invariant with respect to internal symme-
tries which contradicts experimental evidence. Thus all in-
variant submanifolds &, C C"™ with k& > 2 must be discard-
ed. Also the manifolds &, & | are out of question because &,
is the point £ = 0 and £, does not admit an imbedding of M,
according to (2.2) because all second-order determinants
vanish.

Thus we are left with £, and we shall show now that in
this case the projection & ,—M, is unique and invariant with
respect to the internal symmetry group 1 X GL{m,C).

Indeed, from Statement 1 it follows that on the common
part of the respective neighborhoods

, 12)

aﬁg’a'ﬁ‘ = a(a”a') - aa"a' > (24)
and, consequently,
(@ B) — 1.2 _

2P =V =7 . (2.5)

The projection is unique. Moreover from Statement 2 it fol-
lows that the (unique) a,., and, therefore, also z, are invar-
iant with respect to the internal symmetry group

1 X GL{m,C). Finally from Statement 3, we infer that the
matrix elements of the matrix a and, therefore, also the z,
transform among themselves with respect to the external
symmetry GL{n,C) X 1.

It is seen that #, is the only invariant submanifold of
C"™ which admits a unique projection on M, consistent with
the group.

If we now restrict the symmetry to the physically inter-
esting case of SU(2,2) X SU(m) the invariant manifold &, will
decompose into submanifolds according to the existence of
two independent SU(2,2) X SU(m)-invariants

Foo and rugfi, (2.6)
where
Yog = Era fhbgb;ﬁ 2.7

is the SU(2,2) invariant Hermitian SU(m)-tensor and f** the
Hermitian matrix with eigenvalues 1,1, — 1, — 1, determin-
ing the transformations of SU(2,2).

It is convenient to use a representation in which
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0 ia'o)
= . 2.
s ( gy 0 (2.8)
In this representation
Tap =24 T, a0, (2.9)
where
rllﬁﬁ = ::a (0‘” )d’b I§b';ﬁ‘ (210)

Equation (2.9) is a consequence of the second equation (1.8)
specialized to the casen = 4, k = 2.

By virtue of (2.9) the two invariants (2.6) can be written
in the form

Tia =24 7VEr,, Taglpe =4 7T, (2.11)
where
Pl =i
(2.12)

Tiw': = Piaplvpa = — 3 8uutal + 1yt
Introducing the second equation (2.12) into the second rela-
tion {2.11) one obtains

Faplia =44 T2{(r, YV —irar'y, 3. (2.13)
We can use, therefore, instead of (2.6} the two invariants
r,» and r,ry_ y" (2.14)

The submanifolds of &, can now be described by the
two equations

r W= —c, Yu Yrri=c,. (2.15)
To describe these manifolds in more detail, let us note that r,
is a “‘time-like” vector pointing towards the “future”

rrr= =2 23[5(‘;’,’5)[2
= — H[I5IPN6I — KEng P} = — &7, (2.16)
=3 lbual” =611+ lI&l* >0,

where

<§l’§2>: = i:,‘ §’1";a§2;a’ l|§a’ ”2 =

It is seen that the first equation (2.15) describes a hyperplane
in the space of the variables { y, } perpendicular to the vector
r,.- The second equation (2.15) describes a rotational ellip-
soid with y,-axis as symmetry axis. In the case whenc, >0
(c; <0}y, is timelike (spacelike). In the first case these sur-
faces intersect for a proper choice of ¢, and ¢, [cf. (2.21)]. In
the second case they intersect for all ¢, and ¢,. Their union is
an (dim #, — 1)-dimensional invariant submanifold. Their
intersection has one dimension less and is of particular inter-
est in view of the assumption of minimality mentioned in the
Introduction.

From the first equation (2.16) and second equation
(2.15) we have

VY= — o/ Y =Y+ e/K (2.18)
From the first equation (2.15), together with (2.18) we obtain

S Eal217)

a=1

Yo = (yr + c))/r,, (2.19)

and
yy — (yr + ¢,)/r§ + c/k> = 0. (2.20)
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(2.20) is a second-order equation for the three-vector y with
coefficients depending on £,.,, @' = 1,2, a = 1,...,m by the
intermediary of the vector r,, [cf. (2.12)]. It is symmetric
with respect to rotations around r. In a coordinate system in
which r, = r, = 0, it has the form

(Vs — eirs/if —
(¢} — /) /i

yi+5
(@ —c )/

(2.21)

For ¢? > ¢, (2.20) represents a rotational ellipsoid, for ¢ < ¢,
(2.21) has no real solutions and we have to do with two three-
dimensional disjoint surfaces [cf. (2.15),(2.18)]: one plane and
one hyperboloid. Note that for ¢, > 0, y, is a timelike vector
[cf. (2.18)]. In a coordinate system in which also r; vanishes
r, = x and (2.21) becomes a sphere

¥ = (2 — )/ (2.22)
If we further restrict the symmetry to & X SU(m) an-
other invariant appears, namely ¥ = — r,r [cf. first rela-

tion (2.16)]. The equations x> = const describe a one-param-
eter set of (4m — 1)-dimensional real submanifolds of C*™
given by the equations [cf. first relation (2.16}]

W& IPIEN17 — (€ uéR) P = (/2)2. (2.23)

We have mentioned already that the three sets of varia-
bles {x,}, {y,},and (&, .}, p=1...4a =12
a = 1,...,m, do not mix under transformations from
2 x SU(m)and, therefore, we can consider x,, = }(x} + x?)
and y, = x{}' — x{*' as proper linear combinations of the co-
ordinates of two points in the same Minkowski space. It is
seen first of all that in the case ¢, < ¢? the relative coordinates
are restricted to the surface of the ellipsoid (2.20). There ap-
pears, moreover, another Minkowski timelike four-vector r,
of constant length (r, 7 = — «?) and pointing towards the
future. This vector determines the direction of the symmetry
axis and the ratio of the axes of the ellipsoid and is itself
determined by the position of the point {£,., } of C*™ on the
surface (2.23). The coordinates x,, of the center of mass of the
particle are not restricted. The invariant submanifolds of Z,
have in this case 44 + m — 2) — 3 = 4m + 5 real dimen-
sions and consist each of the Minkowski space of the four
real variables x,,, 4 = 0,1,2,3, the two-dimensional ellipsoid
(2.20) determined by the values of the coordinates of the
four-vector r,, which are functions of £, ,, a' = 1,2;
a = 1,...,m, and of the 4m — 1 real variables on the surface
{2.23).

There exist also SU(2,2) X GL(m,C)-invariant (4m + 4)-
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dimensional submanifolds of ¢, determined by the condi-
tions

rop =0. (2.24)

Due to the fact that Egs. (2.29) can be solved with respect to
y,, for any pair of indices a, B, of the set 1,...,m, condition
(2.24) implies y, = 0. From the space-time structure only
the timelike direction 7, remains. According to (2.7},(2.6)
both invariant forms vanish in this case and we have to do
with the isotropic submanifold.

Another kind of invariant condition would be

(2.25)

However, one easily persuades oneself that this condition is
consistent on &, only in the case m = 2 and, therefore, hasa
rather limited application.

One may note that all considerations concerning the
relations between the three Minkowski vectors x,,, Yyt are
independent on m.

The generators and Casimirs of the symmetry group in
the Hilbert space of functions over the minimal manifold
were derived in Ref. 8 in the case of SU{2,2) X SU(2) or
Z X 8U(2) in terms of the local coordinates {x,,, y,, £, ]
and {x,,7..5.6a.,} [in the case of SU(2,2) X SU(2), y, isa
linear invertible form in r.,; with coefficients depending on
the variables £, ]. In the general case of SU(2,2) X SU(m)
the results obtained for the first set of coordinates can be
taken over from the particular case SU(2,2) X SU(2) by ex-
tending the summation over the index a from 2 to m.

r;dﬁ = 6(-15.
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Proof of an algorithm for the evaluation of the branching multiplicity

S0(211)—S0(2n — 2) ® U(1)
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The proof of an algorithm, previously proposed by us, for the evaluation of the branching
multiplicity SO(2n}—SO(2n — 2) ® U(1) is given. This proof is based on explicit construction of

lowering shift operators for the class D, of Cartan.

PACS numbers: 02.20. + b, 02.60.Gf

INTRODUCTION

In a series of papers'~ we proposed an algorithm for
computing the branching multiplicity in the reduction
SO(2n)—S0(2n — 2) ® U(1). Using this algorithm, we made
also a very efficient computer program?® for the evaluation of
the inner multiplicity of SO(2n) and SO(2n — 1). The validity
of the proposed algorithm has been verified by a large num-
ber of numerical tests by computer; however, this algorithm
was so far without proof.

In this paper we give a proof of our algorithm. This
proof enables us to better understand the surprising fact that
by some constraints on the Gel’fand triangle* we can evalu-
ate the degeneracy of the eigenvalues of the elements of the
Cartan’s subalgebra, in spite of the fact that the Gel’fand
triangle is an orthogonal basis for the irreducible representa-
tion {IR) of SO(2#), in which, however, the elements of the
Cartan’s subalgebra are not diagonal.

NOMENCLATURE
We use the tensorial notation introduced by Louck and
Biedenharn® for the unitary groups and recently by Bincer®
for the orthogonal groups. We denote the generators of
S0(2n) by C; with the indices ranging from —nto + n,
zero excluded. Their commutation relations are
[Ci,Cq]=685Ca —85C; +85CE —8:CF, (1)

where

a= —a. (2)
These C’s obey
Cy=-Ck 3)

moreover, in the unitary representations we demand that
C¢ = C%. The generators C¢, 1<a<n, which are the ele-
ments of the Cartan subalgebra of SO(2n), may be taken si-
multaneously diagonal. Let |m) denote a simultaneous ei-
genvector of any C5:

C2lm) =m,|m), n<a<n,
where
m=(m,,m, _y..,n,mi,...m;) (4)

is called the weight of the vector |m) and the m,’s are the
components of the weight. From (3) it follows that

m; = — m,, and therefore the last 7 entities in relation (4)
are redundant and can be omitted. The usual ordering
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between the weightsismam’if m, — m/ 20for the highesta
such that m, — m/, is nonzero.
It follows from Eq. (1) that

CiCElm)} = (m, + 82 — & + 8 — 85)C5 |m),
so that we may write

Cilm) < |m'y,m; =m, + 8 — &; + 8¢ — &5
Consequently,
if azb,
and we may classify generators as raising, weight, and lower-
ing generators. The IR’s of SO{2n) will be classified by their

heighest weight M = (M, .M, _,,...,M,). For the dominant
weights it must hold

m'zm

M, >m, _ >>my>|my|. (5)

Tensor T and vector V,; operators are defined as follows:

[CoTo) =8,T5 —85T5 +85T5 — 8T8, 6

[Cs.Val= —6iV, + 85V, 1<l|al|bl,|d |<n.

Similarly to the generators, the tensors can also be defined as
raising, weight, and lowering operators; moreover, the vec-
tors ¥, are lowering if d>1 or rising if d< — 1.

SEMIMAXIMAL STATES AND SHIFT OPERATORS
Let us define semimaximal vectors |sm) the vectors sa-
tisfying the conditions
{Clem) =0 if a>b, 2«la|,|bl|<n,
Cilsm) =m,|sm), 1<la|<n.
Evidently, the vectors |sm) satisfying Eqs. (7} are vectors
with heighest weight for SO(2n — 2) and with definite weight

for SO(2n). Now we define as shift operators S + ' the polyno-
mials of generators of SO(2n) such that

(7

[[CZ,Sf‘]lsm)=0 for a<b, 2<al.|b | lul<n,  (8)

[Co.8 lom) = (83" — 8% + 8 — &, ) 2 sm), (9)
l<a<n, 2<|p|<n.

From Eqgs. (8) and (9) we have that S '|sm) is a semimaxi-

mal vector whose weight has the |u|th component lowered

or raised by 1 if 4 is positive or negative and the component

m, becomes (m, + 1). Our aim is to construct explicitly low-
ering operators S ' such that
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[SL.SL Jlsm) =0, 2<u,p'<n, if' = £ 1. (10)
Following the technique of Bincer,5 let ¥ ( u);f ' be for fixed
4 an SO(2n — 2) vector operator, which transforms m, into
(my + 1). if weset S F'=V(u)t', Eq. (9) holds true if Eq.
(6) holds; moreover, Eq. (8) becomes

[V (! — 8V (p)i Tlsm) =0, a>b.  (11)
In order that Eq. (11) is satisfied, it is sufficient that

Viwi'|sm) =0 for u>d. (12)

A solution of Eq. (12) can be found recursively as follows: let
V(u)F " satisfy Eq. (12) and define

Vip+ ) '=rpC—-CDir

= 3 V(EC—CIN

where C,, is a number to be evaluated below and the prime on
3’ indicates that the range of ¢ is from iton, O and + 1
excluded. We have

d
Vip+r'= 3 " V(ps(C-CIN;

n

+ Y V(pE'Ch

a=d+1

= $vimEic—cu,

where = means that the equation holds when both sides are
applied to semimaximal states.
Next by using relation (6) we obtain

Vip+1)F' =V(pi'(Ci—C,)

+ S pE + [V(mECo])

d—1 _
=V |me -G+ 'S 1= )
d—1
+ T CivimE 13

For u >d the rhs of (13) vanishes. For 4 = d the rhs of (12)
vanishes too if C, is chosen to be

C,=m, + "21'(1 — &), (14)

a="n

Hence V(u + 1)F!|sm) =0 for u + 1>d. By iteration
we find the solution

Vi = {ve Ij c-cn|”

where II' indicates that j is in the SO{2n — 2) range, and
Vin)jt'lsm) =0 for i>d. (15)

But Eq. (15) is empty because the inequality 7 > d is never
satisfied. It follows that the only requirement on V' (71)# ' is
that it must be an SO(2# — 2) vector operator. The simplest
choice is

ViR =Cx

We conclude that
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viw' =[P e-on| ™

J
Hence an operator S 7' = V(u)f ' satisfying relations (8)
and (9) is obtained; but it is worthwhile noticing that § ;'
depends on the components of the weight to which is ap-
plied, and this must be kept in mind in the next sections.

COMMUTATIVITY

Let |m) be a semimaximal vector with weight m ac-
cording to Egs. (12), (13), and (14). Then we have

Viue'imy ={[C; = C,_, 1V (p— D'

+ ‘El CZV(,u—l)ail}lm). (16)

a=p
In Eq. (16) C§ is a lowering operator. Since in an unitary
representation C§+ = C 2, alowering generator working on
the left is a raising generator; hence
(m' [V ()it 'lm) = (m'|{Cy — C, _,}¥V (. — 1)F'|m).
Consequently, by iteration,
u—1
(m\V(p)i'imy = T]'(Cs— C)(m'|V ()5 ' |m)
j=n
or
u—1
(m'|S #Hm) = [ (C, — G)<m'|C E!|m).  (17)
j=n
We note that numbers C, and C; depend on the weight m.
We can directly verify that II’;.‘;;(C” — C,) is equal to zero
only if m, = 0 and u = 2; therefore, we can define the fol-
lowing operator:

~ u—1
S,ui lESuil _H_' (C” - CJ)
j=n

only if this operator is appligd on a semimaximal vector with
m,#0. We can prove that § * ! satisfies (8) and (9), and the
following holds:

(m'|8 £ m) = (m'|C £*|m). (18)
Let us consider

(m'|S87|m) with ii’ = 4 1,
by introducing a completeness in the subspace of the semi-

maximal vectors {m ; », which can be limited to the vectors
) with weight equal to the weight of S, [m); we obtain

(m'|SIS7 |m) = S (m'|Si|m,)(m; |85 |m)
= 3 (m'(Siim) (m(S ] |m)
= ¥ (m'|Ci|m)(m|CL m)

= Z (m'|C L m; ) (my|C L | m)

={(m'|CiCL|m).
Hence we hgve
(m'|[S7,8, ] Im) = (m'|[C},CL, ] Im)

I

= (m'|(8,C7 — 8{C])|m),
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which is equal to zero if r and  are positive, because §, =0
and always (m'|C,|m) = 0. Since |m'} is arbitrary relation
(10) is true.

From these very important facts it follows that we can
apply to a semimaximal vector a succession of § { in any
order without loss of generality. However, it must be re-
marked that constants C, that appear in the operators S ’s
depend on the weight of the vector |m ), on which S’sact,i.e.,
in a relation like the following:

S22 m) =525 1|m),
the constants appearing in S £ ! on the Ihs depend on the
weight of {m) and these on the rhs depend on the weight of
S x1m).
THE ALGORITHM

We can obtain the whole set of semimaximal vectors
with fixed weight N = (N,,,N, _,,....}¥;) with
N, >N, _,>->N,>0as follows
IN), =85 ) M8 ) =M 7

N,

n

(S+1)M2—q2 (S+l —inM> (19)

where |[M ) = |M,,,...,.M,) is the heighest weight of an IR of
SO(2n) and N, results

Ny=M,+ 3 M +N)-2 3 g, (20
J= 7=

with g, positive integer or positive half-odd integer as the
M’s are.

As was shown before, any ordering of the operators
S ! is equivalent. We choose the ordering (19).

Let us point out that we choose M such that M, >0 and
N such that N,>0. However, this is not a limitation since, as
we proved in a previous paper,’ the situation with M, <0
and/or N, <0 can be reconduced to the above situation.

We remark that from the constraint N, >0 it follows
that the operator S +1js always applied on semimaximal
vectors |m) with m2 > 0, and, therefore, S +1is always well
defined. From relation (19) obviously it holds

q:<M, i] =2 n
b l = 3 2k

g:>N;
Since S F! transforms semimaximal vectors into semimaxi-

mal vectors and since dominance condition (5) must hold, we
have

g:i>M;_, ]

Ni>q: ’
We know from our previous work (see Ref.?) that the follow-
ing conditions:

> M> 2 N, j=1l,..n,
&M 2

> M, —M> 3 N -N, 21)

i=2 i=2

(20a)

i=3,.,n. (20b)

z (M, — N,) = even integer

i=1
are necessary and sufficient in order that a dominant vector
belong to the weight diagram with highest weight M.

We remark that the dominant weight, obtained by the
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Weyl group from the weight NV = (NV,,,N, _ ,,...,N,), to which
we apply construction (19), is by hypothems a dominant
weight satisfying (21). Relation (19) is meaningful only if the
weights of (S 1)~ %M )V, and of

(S e a7 )V, belong to the IR defined by M. This
request for (S;+1) 4y - “|M ) is satisfied if and only if
¢,>M, and in the other cases it is satisfied by the relations
(20a) and (20b).

Furthermore, we can verify that any semimaximal vec-
tor |m) obtained by any partial application of the operators
S *'in relation (19) has weight belonging to the IR defined
by M. These checks, even if tedious, are very simple and
therefore omitted.

The new condition, in addition to (20a) and (20b), that
we obtain is hence M,<g,.

Consequently, a between condition holds, which can be
represented in the following triangular form:

Mn Mn~1 Mn—2 o MZ Ml

q. 9n 1 9,
N n N n—1 o N 2
(22)
where we have exactly the first three rows of a Gel’fand
triangle related to an IR of SO(2n).

Relation (20) with the constraint (22) for ¢,’s is exactly
the algorithm that we proposed in a previous paper”’ for
evaluating the branching multiplicity SO(2n)

—80(2n — 2) e U(1).

Finally we have to show that vectors obtained by (19)
are linearly independent. In particular, we will show that if
the vectors obtained by (19) are linearly dependent, there
exists a contradiction between the branching multiplicity
SO(2n}—S0O(2n — 2) obtained by other algorithms and that
obtained by enumerating the vectors |N }; of relation (19)
with all the different values of N, and fixed N,,,...,N,, which
belong to the IR of SO(2n) defined by |M ). Particularly,
given an IR of SO(2n) defined by (M, . M, _ , ,-.»M), the con-
straints on &,, in order that the weight (N, ,¥, _ | ,...,V;) with
fixed N,,N, _|,...,V, be a weight of the glven IR, are given as
follows: from condition (21) we have

$ - E " "

<KNi< Y M, — Y N

i=2 i=1 i=2
by comparison with (20) we obtain

ZN + M, — Z <M, + Z (M, +N;)—2 Zq,,
=2 i=2 i=2 i=2

(23)
EM ZN>M1+ Z(M+N)—22q, (24)

i=1 i=2 i=2 =2

From (23) and (24) it follows that

Zq. ZM,,

i=2 i=2
S 4> 3 N
i=2 =2

These last conditions are always satisfied if the g;’s obey the
triangle condition (22); consequently, any choice of ¢;’s is
possible. Then it is shown that the number of vectors given
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by (20} with all the possible values of NV, is exactly equal to the
number of different sets of g,’s, i = n,n — 1,...,2, satisfying
the triangle (22), and this number, as is well known, is equal
to the branching multiplicity SO(2n}—->SO(2n — 2). Conse-
quently, any different choice of g;’s must give rise to vectors
of the form (19) which are linearly independent. Q.E.D.

In conclusion we stress the result that the triangle (22),
which is formally equal to the Gel’fand triangle, has, how-
ever, a very different group theoretical meaning.
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A fixed symmetry (or fixed plethysm) generating function enumerates all representations R, of a
compact Lie group G contained in that part of the direct product of p copies of any irreducible
representation R, of G that has a particular exchange symmetry under the symmetric group S,.
Fixed symmetry generating functions are conveniently given as linear combinations of the simpler
fixed class generating functions. We give a systematic procedure for their construction and some
examples for SU(2), SU(3), and SO(5). For SU(3) the examples include plethysms of up to three
boxes; for SO(5) we treat two-box plethysms in general and give the scalar content of three-box
plethysms; the SU(2) examples include up to six boxes.

PACS numbers: 02.20.Qs
I. INTRODUCTION

A problem which occurs frequently in dealing with
multiparticle systems is the following: Given a product of p
copies of an irreducible representation R, of a group G, what
is the multiplicity of the irrep R,, of G contained in the com-

The most straightforward construction of ¢ ;| exploits
the properties of group characters.? For the right-hand side
of Eq. (1) we find the character in the class p of S, to be

3 nAX Ry, () 3)
bA

ponent of the product having a given exchange symmetry
under the permutation group S,. Recently, a new type of
generating function has been introduced’ which provides the
solution to this problem for all irreps of a compact Lie group
G for a fixed exchange symmetry. Examples have been given
in Ref. 1 of such fixed plethysm or fixed symmetry generat-
ing functions for the group SU(2) as well as for SU(3) with
p=2.

In this paper we present a systematic procedure for the
construction of fixed symmetry generating functions for Lie
groups. These are most conveniently given as linear combi-
nations of new “fixed class” generating functions. In Sec. II
we describe the construction of fixed class and fixed symme-
try generating functions. In Sec. III we give some examples
for the groups SU(2), SU(3), and SO(5). Section IV contains a
discussion and some concluding remarks.

Il. CONSTRUCTION OF THE GENERATING FUNCTIONS

A fixed symmetry generator enumerates all irreducible
representations R, of a compact Lie group G contained in
the part of the direct product of p copies of any irreducible
representation R, of G which has a given exchange symme-
try under the symmetric group S,,.. Specifically, its expansion

coefficients are the coefficients n%) which arise in the decom-
position
R,8R,®--®R, = ean‘“(/i)xRb, (1)

where there are p factors in the product on the left-hand side
and where the (4 ) are the irreducible representations of S,.
The required fixed symmetry generating function has the

expansion
$u)(4,B)= 3 ni'd°B". (2)
a,b

We are suppressing subscriptson 4, B, a, and b. If G has rank

I, the symbol 4 ¢, for example, stands for 4 {'4 5:---A4 |
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where X ! is the character of the irreducible representation
(4)of S, in the class p and y, () is the character of the irredu-
cible representation b of G in the class labeled by (7,,...,7;).
The character of the left-hand side of Eq. (1) in the class
p=(192%3".)is

Sap (1) = X2 S (1) - (4)
Using the orthogonality property of the characters X ) we
find

Zsa,, (MX k()" = {4, (5)

where £, is the order of the class p and / = p! is the order of
S,. Here {4 }, is known as a Schur function or S-function.?

In the basis in which the highest weight of the irreduci-
ble representation R, of Gis (a,,...,a;), the character is given
by the Weyl formula®

Yo = E.(m)/Eolm), (6)

where £,,(7) is the characteristic for the irreducible represen-
tation R, :

Ealm) =

Thesumin Eq. (7)is over the elements { S } of the Weyl group
of G. Each element S can be written*> as the product of wg
generators S; (i = 1,...,/ ). Theactionof Son,, S7,,isdeter-
mined from the action of the generators

N H 7 =7 (j#k) (8)

i=1
where A, is the Cartan matrix of G. In this basis it is
straightforward® to solve equation (5) for n}) to obtain

nSfb—ZX“'( )§o(n
X an Sap

k=1

z niys(n) =

z( 1) 11 (Sm )" (7)

ST = Sﬂ]k

, (%)

EX(n) =b
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where the last instruction tells us to keep only those terms
whose 7, exponents are b;.

In order to obtain the generating function ¢ , (4,8 ) itis
most convenient to construct first the fixed class generator

b =&l I 0S|

EX(7)>0
where the expansion coefficients of S, (4,7) are s,, (7). Then
we find

$)(4,B)= Y Cl',(4,B),

(10)

(11)

where C% = X #'h,/h. These coefficients are given in Table
I for p<6. If the partition p contains N cycles, with the ith
cycle having length n;, then the compound character gener-
ator S, is given by

with

N ws, 1 N .
zm= 3, (=0 I IT (s
x[l—Ak s

i=1

(13)

where the sum is over N sets {S;} of elements of the Weyl
reflection group [the S; here are not to be confused with the
generators appearing in Eq. (8)]. The denominator of Eq. (12)
can be written more simply as

Z,0m) =TI &oln™).

i=1
The procedure outlined above has proven to be the sim-
plest one for the construction of fixed class generators. There
is, however, another procedure which makes use of the gen-
erating function for the Clebsch-Gordan series to combine

(14)

S, (4.m) = Z,4n)/Z,(0.m),

two fixed class generators to produce a third. If p, and p, are

TABLE I. Coefficients C}' connecting fixed class and fixed symmetry generators.
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two partitions containing, respectively, a; and b, cycles of
length j, then their product p = pp, will contain @, + b,
cycles of length i. We can compute the resulting generating
function for the class p from
¥,(4,B) =1, (4p.gi¢,.(p~ ")
XG(q_l’rVI;B)IEX(p,q,r)=O9 (15)
where, as usual, each letter stands for / variables. The
Clebsch-Gordan generator G plays the role of a metric,
while the EX( p} = 0 operation ensures that the representa-
tions in the product (1) are all the same. By using Eq. {15) we
can build up fixed class generating functions from basic units
which correspond to partitions (r) containing a single cycle
J

¥.(4,B;a,b)
= [(1 — 4a™(1 — Bb")(1 — 4B)] !

of length n. The basic units have fixed class generating func-
tions .
Yuldm) = &oln) [] nc 'X (4,97 , (16)
K=1 EX(n)»0
where X {4,7) is the group character generator.

It is easy to see that 3, (4,B) is also the branching rule
generator for the subjoining to the group representations of
representations of the group with weights stretched by a fac-
tor of n.” For n sufficiently large we can construct general
formulas for ¢, (4,B ). For G = SU(2) we find, for n>2,

Uald.B)=(1—AB"3/[(1 —A%)(1 —AB"]. (17)
For G = SU(3) we find, for n>3,

X{[A%" —~A4%ab" "2+ A4%" > —A%" "+ A3%" b "A%ab) 2)/[(1 =431 —A4%")]

+[B%" —B%" " *% +B%*" *—B%""'b" " *+B%"b" >~ Bab)"~?1/[(1 — B*1 — B%a")]

+(1+AB+A°B?[1 —Bab™~*+Bb" > —Aa" b+ Aa" > — AB(ab)*~*]/[(1 — 431 — BY)]}, (18)
where we have used the variables (4,B,a,b ) instead of (4,,4,,B,,B,) in order to simplify the notation. For G = SO(5} we find, for

n>4,
¥.(4,Ba,b)

=[(1-4?(1—-B)1—4a"y1 —Bb"] ™!

X {(1+A%B)[1—Aa"~%b+ Aa"~*b — Aa"~* — Ba*h ">

+Ba®h"~*_Bb"~* 4 AB(ab)"~*]/[(1 - 431 —B

2)]

+ A —b" 1= b+ "1 —b)+Aab) Y1 — b3 —Aa"~*b"(1 — b)]/[(1 — A1 — 4%")]
+ (4B + Ba"{ba"~ %1 —a®) —a" %1 —a*) + Blab )" ~ %1 —a*) — Ba"b"~ (1 — a)]/{(1 — BY(1 — B%*"]},

(19)

where (10) and (01) are, respectively, the four- and five-dimensional irreducible representations of SO(5).

1. EXAMPLES OF FIXED CLASS GENERATORS

In this section we collect examples of fixed class generating functions which, with Eq. (11), can be used to obtain fixed
symmetry generators. The results presented in Table II for SU(2) can be used to construct the fixed symmetry generating
functions for p<6. For G = SU(3) we have the following results which can be used to construct the p = 2 fixed symmetry

generators given in Ref. 1:

Yy (4,B;a,b) = (1 + ABab)[(1 — A4a*)X(1 — Bb 21 —AB)(1 —Ab)(1 — Ba)] !, (20)
YA, B;a,b) = (1 — ABab )[(1 — Aa*)X(1 — Bb?)(1 — AB){1 + Ab)(1 + Ba)] . 21
The generating functions ¢ ,) and ¢+ for symmetric and antisymmetric combinations of SU(3) irreducible representations

are, respectively, %(1/1(12, + ¥5)) and 5(;&(12) — Yy

For SU(3) the fixed class generating functions for the product of three copies of an irreducible representation are

U5, (d:Bia,b)
= [(1 — Aa*)(1 — Bb3)(1 —AB)1 —A)1 —B)]~"

X [(1 + ABa*h? + 24Bb> + 24Ba*b? 4+ 34AB% > + 24B%a*b? + A*Ba*b)/(1 — Aab )1 — Bab)(1 — ABb?)

+ (4Ba® + A°B?a%b? + 24Ba® + 24Ba*b® + 34 *Ba® + 24 *Ba’b > + 4 *B*a*h3)/(1 — Aab)(1 — Bab )1 — ABd?)
+{(342B%a?h? + 34°B%a®b* + A*B*a*b* + A?B3ab* + 4°B%a°b2)/(1 — Bab){1 — A*Ba®1 — AB?b?)

4+ (34°B2%a%b > + 34*Ba*b* + A°B*a°b® + A°B%a*b + A*B3a*b%)/(1 — Aab)(1 — A*Ba*)(1 — AB*b?)

+ (B%a® + Bab + B2a*b?)(1 + 24 + 24Ba® + A *Ba®)/(1 — Bab )1 — ABa*)(1 — B )

+(A%° + dab + A%a*b?)1 + 2B + 24Bb* + AB*b*)/(1 — Aab (1 — ABb*)(1 — 4%b?)

+ (342B*bS + A2B%ab* + A2B3a*b° + A*B*a*b%)/(1 — Bab)(1 — ABb®)(1 — AB?%?)

+ (34°B%® + A°B%% + A*B%°b? + A*Ba°b?)/(1 — Aab )1 — ABa®)(1 — A *Bd®)

+(4°B%*b + A°B%a°b? + A*B*a’b)/(1 — Bab)(1 — ABa*)(1 — A 2Ba’)

+(42B3%b* + A*B%a*b° + A*B*ab”)/(1 — Aab)(1 — ABb3(1 — AB?b )], (22)
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TABLE II. Fixed class generating functions for SU(2).

o ¥, (4.8}

(1 1/{1 — AB)

(1% /(1 —AB?)(1 — 4)

() 1/(1 —AB{1 + 4)

(1?) (1+AB+A4%B%/(1 —AB3(1 — 4B)(1 — 47

(12) (1—AB+A°B?/(1 —AB*(1 — AB){1 + 4?)

{3) (1 —~AB)/(1 — AB3(1 - 43

(1% (1424B*+ A%B*/(1 —AB*1 —ABY)(1 —A)

(1%2) (1+A42BY/(1 —AB*{1 —AB?)(1 —A4?)

(13) (1—A)1 —AB2+A’BY/(1 —AB*(1 —AB?)(1 - 4?)
23 (1 —ABY/(1 —ABY(1 — A}

(4) (1 —ABY/(1 —ABY(1 — 4}

(1%) [M1 43424+ A%+ A(4+242 —A4YB+AH10 —5SA)B2 + A(3+ 442~ T4%B>

FAYT -84 =348 + 45— 104385+ A1 — 247 —444)B°— A1 + 342+ 44B7]
X[(1 — AB®%)1 — AB3{1 —AB){1 —A*P]!

(132) [(1—A2+AY+4°2—A)B+A4%2—A)B* +A(1 — A" B3>+ A*1 —A*B*
+A4%1 —24%)B° + A1 —242)B5 — 431 — A2 + A%B7]
X[(1 —A4B%(1 —AB3(1 —AB)(1 — A1 —4%4]~!

(123 [(MI4+A)—AQR+A>+AYB+ A1 +A)B2+ A1 —AYB> + A*(1 — 42)B*
— A1+ AYB + A1 + 42 +24%B°— 431 + 4%)B7]
X{(1 —AB%)(1 —AB3(1 —AB){1 —A%]~!

(123 [(1—A24+AY+A4°2-A)B+ A2 —A)B? —A{1 —AYB> - 4%1 - 4*B*
+A4%1 —24%)B° 4+ A1 —24%)BS ~ A1 — A2 + 44B7]
X[(1 —AB%)(1 —AB3(1 —AB)(1 + 431 —A4]~!

(14) [(14+A42+A—A(1 +A4)B+AB* —A(1 + A2+ AYB> + A*B* — 4°(1 + A}B°
+ A1+ A2+ AYBY[(1 — AB%)(1 — AB31 + A1 + 44]~!
(23) (1—A(1+A43)—A°B—A’B> —AB> + A} 1 + AY)B*|/(1 — AB®){l — AB)(1 —A49)
{5} (1 —AB/(1 — 4AB%)(1 — 4%
(19 (1 +A+A)+A8—A—~A)B> 4 A4+ 104 — 114Y)B* + 4411 — 104 — 44 )BS
+ A1+ A4+84%B% — A1 + A+ AYB /(1 —AB®1 —AB*)1 —AB*1 —A)*
(142) [1—A+A4)+A42+A—4%)B? + 4(2+24 —343)B* + A3 — 24 — 24 })BS
+ A1 —4—24Y)B% — A1 — A+ AYB /(1 — ABS|1 — AB*)(1 —AB)(1 —A\(1 + 4)
{173) (1—A4)~A(1—A)B> + A(1 +24)B* + 4724+ 4)BS + A*(1 —A)B* — 4%(1 — 4)B ]
X[(1 — AB®)1 — AB*(1 — AB*}(1 —4?)]!
(1723 [(1+A+A4%)— A1+ 4)B>+ 42+ A)B* — A1 +24)BS+ 41 + 4)B*®
— A1+ A4+ A4YB")/(1 — ABO)1 — AB*(1 — AB¥(1 — 4%
(1%4) (1-A+A4)—~AQ—-A+A)B>+ 42— A)B* + A*1 —24)BS
+ A1 —A+243)B% — A1 —A+ A})B")/(1 — ABS)(1 — AB*(1 — AB?)(1 — A%
(123} (1+4)—A(1+A)B>—AB* + AB* + A¥1 + A)B® — A1+ 4)R']
X[(1 —AB®)1 — AB*{1 — AB}(1 — A 3)]!
(15) (1—4%)—A(1—A)B*—A(1 ~A*B*— A1 —A)BS+ A%1 — 4%)BY)
X1 —AB%(1 —ABY1 — A%)] !
(2) [(1—A+A)+ A2+ A4 —A)B?—A(1—A—24)B*+ A% 1 — 4+ A%)BE]
X[l ~AB®) 1 —ABY1 — A1+ 4!
(24) (14+A4+A)— A5 1+ A4)B>*—A(1 +4)B* + A1 + 4+ A?)BY)
X[(1~AB 1 —ABY)1 + A1 + 4]}
(3 (1—AB%/(1 —AB® 1 —A)
{6) (1—A4B%/(1 —ABY(1 — 4?3

Y2 (4,B;a,b)
= [(1—Ada’(1 —Bb31 + AB)(1 +A)(1 + B)] !
X[(1+A4°B%**+ 4 ‘B*a*b*)/(1 — ABb>)(1 — ABa®)1 — 4B %)
+ABaX(1 + A’B%a*b* + A°B*a*b %)/(1 — ABa*)(1 — A ’Ba’)(1 — AB?b3)
+ AB%ab*(1 + AB)/(1 — Bab )(1 — ABb>)(1 — AB?b?)
+ A°Ba’b (1 + AB)/(1 — Aab )(1 — 4Ba*)(1 — 4 *Ba?)
+ AB3ab*(1 + A *Ba’)/(1 — Bab (1 — ABa*)(1 — AB?%b3)
+ A4°Ba‘b (1 + AB?b7)/(1 — Aab )(1 — ABb>)(1 — A4 ?Bd’)
+ (1 + 4%Ba®( — B%*® + B’a*b + B*a*b?)/(1 — Bab )(1 — ABJ%)(1 + B2

+(1+A4B°6°)(—A4%0°> + A%ab* + 4%a*b*)/(1 — Aab )1 — ABb>)(1 + A% ?)], (23)
'I’(3) (4,B;a,b)
= [(1 —44%(1 — Bb°)(1 — AB)]~'[(1 — Bab)/(1 — B)(1 — B%a*) + A% *(1 — dab)/(1 — A )1 — A %?)
+A(1—ab)/(1 —4)1 - B)]. (24)
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For G = SO(5) the fixed class generating functions for p = 2 are

¥,(A4,Bab) = (1 + ABa®b)[(1 — Aa®)(1 — Bb?)(1 — A)(1 —B)(1 — Ab)(1 — Ba®)] ', (25)
and

¥ 4,Bab)=(1 —ABa*b)[(1 — Ad®)(1 — Bb?*)(1 + A)(1 — B)(1 + Ab)(1 + Ba*)] . (26)
For p = 3 we find

¥,5(4,B;0,0) = (1 + 24 B+24°B*+A°B3)[(1-A43(1 —B*(1 —A°B)1—-4°B?]", (27)

Y12 (4,B;,0,0) = (1 —A4*B°)[(1+ 471 —~ B?)(1 + A°B)(1+ 4°B*)]~", (28)

Y3 (4,Bsa,b) = [(1 + Ba®)(1 + ABa*)(1 — Ba’b)/(1 — B?a®

+(14+B)A4°> —Aab)/(1 —A%b3][(1 — 431 —B*})(1 —Ad’)(1 —Bb?] . (29)

For the classes (1°) and (12) we have given the generating functions enumerating only the scalars contained in the direct
product. The full result for the class (3) is given because it is the generating function for branching rules for the subjoining
SO(5) > SO(5) corresponding to dilation of weight space by a factor of 3; it reduces to [(1 — 4 %)(1 — B*)] ' in the scalar limit.

IV. CONCLUDING REMARKS

The construction of fixed symmetry generating func-
tions follows the usual procedure. First we construct a gener-
ating function for the compound character and then we pro-
ject out the corresponding irreducible representations. The
use of Eq. (12) for the compound character generator simpli-
fies the construction in that the EX(7)>0 operation is per-
formed at an early stage when there is a large number of
relatively simple terms. Each term in the result of the projec-
tion will contain spurious poles which must cancel out when
the terms are combined. This provides a guide to the mani-
pulations needed to combine the terms to produce the final
result.

The introduction of fixed class generating functions not
only simplifies the construction but also allows us to present
the results in a more compact form. The fixed class genera-
tors for a given p have, in general, different denominator
factors so that their combinations, written over common de-
nominators, have far larger numerators. For practical pur-
poses of determining individual plethysms, it is simpler to
isolate the desired terms in the expansion of the fixed class
generators and then to combine these with the coefficients
cy.

An interesting observation arises from examining the
three box mixed symmetry A = (21). The SU(2) and SU(3)
generating functions with this symmetry contain no terms in
their expansions which are independent of B,. This means
that the part of the direct product of three copies of any irrep
of SU(2) or SU(3) with this symmetry has no scalar compo-
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nent. In fact, it can be shown that SU(2) and SU(3) are the

only simple compact groups for which this is true. For exam-
ple in the case of SO(5) the scalars contained in this plethysm
are enumerated by the generating function

¢(2”(A,B;0,0)
=A’B/(1—A%)1—-B)1—-A4°B)1 -4 2B%.  (30)

This was constructed with the help of the generating func-
tions of Sec. IIL
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Some comments are made on the classification of finite-dimensional subalgebras of the Lie
algebra of vector fields in n variables and of the related nonlinear ordinary differential equations
with superposition principles. In particular for n = 2 a very natural requirement of
indecomposability implies that only two types of equations need be considered.

PACS numbers: 02.20.Sv, 02.30.Hq, 11.10.Lm, 11.30.Na

A recent publication’ has been devoted to the determin-
ation of all pairs of ordinary real differential equations of the

type
X(t)= Y Z,()5:xp) He)= 3 Zift i (x.y) (1)

i=1 i=1
such that (i) the system (1) allows a superposition principle,
i.e., the general solution of (1) can be written as a function of a
finite number of particular solutions and of two significant
constants; and (ii) the functions &, (x,y} and 7, (x,p) are poly-
nomials of at most second order in x and y.

In view of a classical theorem due to Lie? the construc-
tion of all equations of type (1) with superposition principles
is equivalent to the construction of all finite-dimensional Lie
algebras that can be realized in terms of vector fields in two
variables:

¥, ¢ (x,y)% +, (x,y)%- @)

The results of Ref. 1 thus amount to a classification of such
algebras with the restriction that the coefficients in (2)
should be polynomials of at most second order.

The purpose of this short note is twofold.

a) We correct the result reported in Ref. 1 by recalling
the work of Lie (1880).>*

b) In view of the increased interest in this area we wish
to make some comments which summarize the proper for-
mulation of the mathematical questions involved in classify-
ing nonlinear ordinary differential equations with superposi-
tion principles.

Comment 1: When solving a classification problem sev-
eral basic rules should be followed.

a) False generality should be avoided, i.e., the objects
should be classified into equivalence classes under some
well-defined equivalence relation. Each class should be rep-
resented precisely once in a representative list.

b) Triviality should be avoided, i.e., it should be decided
beforehand which objects are of interest and then only these
should be classified.

Thus, if we are interested in Egs. (1), it is natural to
classify the Lie algebras (2) under local changes of variables.
Two sets of Eqgs. (1) are then equivalent if they can be trans-
formed into each other by a change of dependent variables
u = ¢ (x,p), v = Y(x,p), where x, y, u, and v are real, and ¢ and
¥ are sufficiently smooth functions, such that the inverse
transformation is locally well defined. Such a classification
of finite-dimensional Lie algebras that act on two-dimen-
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sional manifolds was performed by Lie himself in a different
context, without any restriction on the form of the coeffi-
cients (see Refs. 3 and 4 and Hermann’s comments in Ref. 4
for an exposition of Lie’s results in modern terms).

Restricting ourselves to real variables x and y and to
quadratic polynomials as in Ref. 1, we can extract the follow-
ing very simple results directly from Lie’s list (without going
into the extensive algebraic calculations of Ref. 1).

Proposition: Any finite-dimensional Lie algebra that
can be realized in terms of vector fields in two variables with
polynomial coefficients of at most second order is equivalent
(under local changes of variables) to one of the following Lie
algebras, or one of their subalgebras:

(i) sl(3,R):

{0,,0,,x0,,y0,,x3,,y3,x(x3, +yd,),yx3d, +y 5y)}(;3)
(if) o{3,1):

{0:,0,x3, +yd,xd, —yd,, ¥ — "9,
+ 2y 8,,2xp 3, — (x* — »*)dy}; (4)
(ifi)o(2,2) ~ 02,1} ® 0[2, 1):

{0..0,,xd, +yd,x3d, +yd,,
(xz +y2)ax + zxy ay’ 2Xyax + (x2 +y2)ay]’ (Sa)

or equivalently

{d,ud,,u*d,}e(d,,vd,v*d,}, (5b)
U=x+y, v=x—y
(iv) gl(2,R)& 1,

[{0,x3, +3,,x* 0, +2xpd,} & {y3d,}]
&{d,x3,x*3d,}. (6)

The equations (1) for the Lie algebras sl(3,R) and o(3,1) are
special cases of projective and conformal Riccati equa-
tions.>¢ Superposition formulas for these equations, as well
as for the more general matrix Riccati equations’ have been
obtained for the general case of sl(n,R) and o(p,q) algebras.”™’
The special cases of n = 3 and p + ¢ = 4 do not need a sepa-
rate treatment. The equations corresponding to algebras (5)
and (6) are “trivial” in the following sense. For algebra (5b)
we obtain two uncoupled scalar Riccati equations with inde-
pendent superposition formulas for # and v. For algebra (6)
we obtain a scalar Riccati equation in x and an equation in y
that turns into a linear scalar equation, once x{(z ) is substitut-
ed into it. We thus have a Riccati superposition formula for
x(z) and a subsequent linear one for y(¢).
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Subalgebras of the algebras (3), ..., (6) lead to the same
types of equations with some of the coefficients Z, () set
equal to zero. Thus, out of infinitely many different equiv-
alence classes of Lie algebras that can be realized in terms of
the vector fields (2), only 2 need be considered, namely sl(3,R)
and o(3,1).

Returning to the list of algebras and equations given in
Ref. 1 (and leaving aside the fact that the problem was al-
ready solved by Lie), we see that the above rule (a) has not
been followed. The list is too long, since it contains many
algebras that are mutually equivalent. On the other hand,
one of the only two “nontrivial” cases, namely the o(3,1)
algebra (4) is missing. This algebra is also missing from Lie’s
list but that is because he considers its complexification
0(4,C) which is decomposable: 0(4,C) ~0(3,C) @ 0o(3,C) [com-
pare to (Sb)].

We are now also in the position to comment on rule (b).
When classifying systems of ordinary differential equations
we should restrict ourselves, on one hand, to equations that
are not equivalent to linear ones, and on the other hand, to
“indecomposable” systems of equations. By this we mean
that it should not be possible to split off a subsystem of equa-
tions in fewer variables that has a superposition formula of
its own. If indecomposability is ignored, seemingly very gen-
eral systems of equations can be written. For example, one of
Lie’s algebras is’

{d,x0,,F\(x)d,,..F.(x)3,,y0,}, r>1, (7)

y
where 1,x,F|(x),...,F,(x) are linearly independent and the
F(x) are otherwise arbitrary differentiable functions. The
corresponding “‘decomposable” system of equations is

x =0,
Y=2,(t)+ Z,(t )x + Z,(t )F\(x)
+.+Z, LX)+ Z, 5ty (8)

For all practical purposes this is a system of linear equations
and is of no interest. Clearly, such “false generality” should
be avoided.

Comment 2: Ultimately the aim should be to classify all
systems of ODE’s

!
()= S Z, (MR x"), T<ps<n (9)
i=1

with superposition principles. A “brute force” classification
of all finite-dimensional Lie algebras that can be realized in
terms of vector fields in n variables, even with a restriction to
second-order polynomial coefficients, is an extremely diffi-
cult task. A more geometric approach, taking the above clas-
sification rules into account, goes a long way towards pro-
viding the required results.®® Instead of constructing a Lie
algebra L of vector fields in n variables directly, consider the
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action of a Lie group G on a manifold M. If we restrict our-
selves to transitive and effective group actions, then M can be
identified with a homogeneous space G /H, where H is a sub-
group of G not containing a normal subgroup of G. Let L be
the Lie algebra of G, L, that of H. Then L, is realized by
vector fields that vanish at the origin. The “nontriviality”
requirement that the system of equations (9) should be inde-
composable then implies that no coordinates exist in a neigh-
borhood U of the origin in which all vector fields constitut-
ing L can be written as

R k

ad
Xxhoox) =Y x,(p'.pf)—
( )= xp'.y )8yk

i=1

" a
+ b.(yl.yht ) —,
j:kz+l ! ) az'
{x} ={yz}, l<k<n—1 (10)

(the coefficients of the first & derivatives depend on the first &
coordinates only). If such coordinates do exist, then an in-
variant foliation of U exists. To exclude this we must require
that the action of G on M be not only locally transitive and
effective, but also locally primitive. These requirements take
us directly to a classification of transitive primitive filtered
Lie algebras, a task that has essentially been solved by differ-
ential geometers.'®'? For a discussion of this classification
and its implications for the construction of systems of ordi-
nary differential equations with superposition principles see
Refs. 8 and 9.
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The summation of Bessel products
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We produce in what follows the closed forms for the summation of certain products of Bessel
functions pertinent to a number of distinct fields of research, such as the theory of plasma waves,
charged particle beam interaction with plasma, and density wave theory in galactic dynamics.

PACS numbers: 02.30 — f, 02.30.Lt, 52.40.Mj, 98.50.Lh

I. INTRODUCTION

Gross' in his pioneering article “On Plasma Oscilla-
tions” was the first to state explicitly expressions of the fol-
lowing type:

© (a} (a)
K= § —Jmeelm i
P = o m+ 1l +w/w,

A AL
L=y —meetm 2)

ma o m—1+w/w,
He also was the first to attempt their summation into closed
forms and he partially succeeded, in the sense that he
stopped short only of the final integration.

More than twenty years later, similar expressions arose
in the study of density wave theory and closed forms were
derived and used in a series of publications®™ for expressions
which were conveniently summarized as

© J (a) J (a)

meen 3)
mat e m—pu+q
A recent attempt® at the summation of similar expressions
appeared, in the context of laser-beam-plasma interactions,
as a particular application of a more general expression.
We would like to stress from the outset that we are not
concerned at all with the general expressions of Ref. 5. The
purpose of the present communication is to provide the cor-

rect expressions and domains for the particular case at hand.
In order to make our point clear, we employ Egs. (2.3)
and (2.7) of Ref. 5. It is then
* J, J,
S = )y im=ne
1= 22 3 (—1) —

/2
-2 f J,.(2z cos 8) cos[{m + 2u)0 ] d6,
sin (um) Jo
fora =m, B =0, y = 1. For the definition of a, S, ¥, cf.
Ref. 5.

This integral is of the standard type found in Ref. 6 (p.
738, expression 6.681.1}); it exists only under the condition
m> — 1. This expression (2.8) of Ref. 5 already shows the
limited applicability of the expressions derived therein. An
erratum (Ref. 7) published recently provides the correct
expression for m <0 but in no way lifts the condition
m> — 1.

Thus we produce in what follows a simple derivation of
the closed forms (1) and (2); then we show how these results
can be continued to p = — 1; and then how meaningful ex-
pressions can be obtained for p < — 1. Finally we show how
more results can be derived from expressions (4) and (5).
Hence, the results presented here extend the results of Refs.
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2-5 and, to the best of our knowledge, are presented for the
first time.

Il. THE DERIVATION

To this effect we employ Graf’s addition theorem.® For
any complex quantities, a, b, ¢, f3, ¥, for which the relation

ceP=aq—be~ " (4)

holds true, it is also true that

S Jrla) T (b) € =T, (cle® . (5)
Under the restrictions
a=b L=u/2-7y/2, (6)
consistency with expression (4) requires that
¢ = 2asin(y/2). (7)

For reasons dictated by the divergence of integrals to be indi-
cated further below, we first accomplish the summation of
expressions (3) under the restriction

i) Re{p)>—1. ®)
Then we derive the expressions for the continuation to
(i) Refp}=—1. (9)

Then we show how these results can be extended to
(iii) Re{pl<—1. (10)
(i) For Re p> — 1 a multiplication of (5) by a factor

e~ 1#+9 g any number, yields after an integration over y
from O to 277, the sought-for form

i I+ (@) Jrla)

mil . m—p—g

= - {7T/Sil’l [(,Ll, + q)7T] } Jp+u+q(a) J~(,u+q)(a) .

(11)

The integrals involved can be found in Ref. 6 (p. 739, expres-
sions 6.681.8 and 6.681.9). A perusal of those expressions
shows clearly the necessity of the condition Re { p} > — 1.
It is noted that under the restriction ¢ = integer the expres-
sion (11) is written in the form

i Jm +p (a) Jm (a)
m=—o M—U—gq
= —T— ), )T )
sin( p)
—a closed form first given in Ref. 3. Expression (12) repre-
sents the closed forms of Gross’s functions K »» L, in a suc-
cinct form.

(12)
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(ii) With the observation that integrals of the form
f sin(2Mx) J,, (2a sin x) dx
0

{cf. Ref. 6, p. 739, expression 6.681.8) are convergent for
Re{v]> —1,ie, Re { p} > — 2, we are able to find the
closed form for p = — 1 in the form
b Jm -1 (a) Jm (a)
m—p—gq
7

T mj"(“+ql(a)‘l(u+q)—l(a)- (13)

This is the crucial expression upon which hinges the continu-
ation on the axis of the integers to values of pless than — 1.
Thus we have the following.

(iii) For p < — 1 it suffices to make the trivial observa-
tion that

v/, (@) =(e/2){J, @)+ 7, ()} . (14)

Thus Bessel functions of lower order, v — 1, say, are ex-
pressed in terms of Bessel functions of higher orders v and
v + 1, thus enabling the computation in terms of (13) and
(11).

m= — ¢

As a first application we retrieve from (11) the long-
known expression of plasma physics

$ L@ T i@ ()
me= — 0 M — (M

sin( u)
by putting p =0, ¢ = 0. A combination of (12)~(14) yields

- (a) T
m ,u sin( pr)
Further, a combination of (14) with (13) shows that

& Im+10@) In(a)
m_____—.__

> —

+2

- — E(/‘__) J_,a)
sin{ u)

Differentiation of (16) with respect to the argument and a

combination with (14) and

J_.@J.@. (16)

m= —

Juiila). (17)

Jiay=J,_,(a) - (v/a)J,(a) (18)
shows that
b Jm (a) Jm — l(a)
D
= — {2J_,@J, 10
sm(#)
—pJ @) _la)} . (19)

Finally, the combination of (17) and (19) yields
S la)

2

=~ m—u
a
=-3 sm( !(#+4)J_u(a) w+1a)
—#J#(d)Jl_#(a)}- (20)

One can derive in this fashion the closed forms of products of
Bessel functions up to any desired order. However, we turn
our attention to the derivation of closed forms along a differ-
ent direction.
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Let us go back to expressions (4) and (5) and modify the
restrictions (6). Namely, we require now that

a= —b. (21)
Then it is

ce® = — 2a cos(y/2)e =2, (22)
Thus ¢ = 2a cos(y/2),

eiB = —e~ iy/2 , (23)

implying =7 — y/2.

Hence employing the relation

J.(€™z) =™ T (2), (24)
we find that

Y Jnip b)) b)e™ =, (Zb cos 2) T2 (25)
Because of (24) we stress that this expression is true strictly
for p noninteger. Following the same steps as previously
(and expression 6.681.1 of Ref. 6} we find that

2 Sy pb)J_(0)
m=§;w m—p—gq

T

= T alzra g e —ralb), 26

P> — 2 noninteger.
Let us now transform Graf’s addition theorem (5) ac-
cording to the prescription of Ref. 8, p. 361 so that we obtain

S Nl

(We write N, instead of Y, of Ref. 8, in agreement with Ref.
6.)

Then for a = b, repeating the steps after Eq. (6) and
using expression 6.681.2, p. 738 of Ref. 6, we find that

J.(b) €™ =N, (c) €. (27)

= N, ,aJ,la)
z_ o m+u
= [n/sin( um)] {cot(pm)J,_ ,(a)J, (a)
— [U/sin(pum)] T _ (@) ], _, (@)}, (28)

for — 1< p<1only.
It is a simple exercise now to prove that

- m m+p(a)1 (a) m
Z (=1 m-+4p sin(,u#)

—y(a) I,u(a) 4
(29)
p>—1,

upon using Eq. 7, p. 361 of Ref. 8, and 6.681.3 of Ref. 6.
Similarly one finds that®

& K..,@l.l)

)y

m= — oo m+ll’
=T {1, @1_,@)—1,_.a) @)},
sin( u) sin( pm)
—1<Re{pl<l. (30)

One could certainly use Eqgs. (4) and (5) and *“‘variations”
on them to produce more closed forms of Bessel function
products along the lines detailed above. However, our initial
purpose was to produce the correct expressions of products
which would enable the exposition of the wave plasma the-
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ory in terms of closed forms. Apart from aesthetic reasons,
which to our mind are more than sufficient motivation, the
necessity to obtain concrete numbers dictates the retention
of a few terms only of the infinite series involved in the dis-
persion relations; thus singularities do disappear as hap-
pened in the theory of galactic density waves—or, it turns
out, they do not contribute to the growth/decay rate of the
wave involved.
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Poisson reduction and quantization for the 7 + 1 photon
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For a dynamical system in which the constraints are given by the vanishing of a singular
momentum map J, reduction in the usual group-theoretic sense may not be possible. Nonetheless,
one may still “reduce” J ~'(0), at least on the level of Poisson algebras. An example of such a
singular constrained system is the “» + 1 photon,” that is, a massless, spinless particle in {7 + 1}-
dimensional Minkowski space-time. We apply the generalized reduction procedure to the n + 1
photon, explicitly constructing the Poisson algebra of gauge invariant observables. This technique
also enables us to completely analyze the effects of the singularities in J ~!(0) on the system. We
then quantize, obtaining results which are in agreement with a quantization of the extended phase

space and the subsequent imposition of the constraint.

PACS numbers: 02.40. + m, 03.20. + i

I. INTRODUCTION

Let (X,) be a symplectic manifold and let G be a con-
nected Lie group with Lie algebra g. Assume that there is a
Hamiltonian action of G on (X,w) with a G-equivariant mo-
mentum map J: X—g*. If Ocg* is a regular value of J and if
the action of G on J ~(0) is sufficiently nice, then the Mars-
den—Weinstein reduced space J ~'(0)/G will be a symplectic
manifold.’

These constructs are particularly relevant to physics. In
this context, (X,) represents the extended phase space of a
dynamical system, G is the gauge group, and, typically, the
constraints are given by J = 0.> The reduced phase space
J 7'(0)/G is then interpreted as the space of gauge invariant
states of the system.

In many interesting situations, however, this group-
theoretical reduction procedure does not work. For in-
stance, it may happen that O is not a regular value of J as in
gravity and Yang~Mills theory. Moreover, even if J ~'(0) is
smooth, J ~!(0)/G need not exist as a symplectic manifold. In
either case J is said to be “singular.”

For systems with singular momentum maps, then, re-
duction in the usual sense often cannot be carried out. None-
theless, éniatycki and Weinstein® have recently pointed out
that it is still possible to “reduce” J ~'(0), at least on the level
of Poisson algebras. This generalized reduction procedure
allows one to determine the effects of the singularities of J on
the structure of the system as well as uncover certain dynam-
ical features which would otherwise remain inaccessible. In
particular, it identifies the gauge-invariant observables and
equips them with the structure of a Poisson algebra. This is
very useful when quantizing such a system.

Under sufficiently regular conditions, one may quan-
tize a constrained system in two equivalent ways. The first is
to quantize the extended phase space (X,w) and then impose
the constraints J = 0 on the quantum wave functions; this
ensures that the physically admissible states are gauge invar-
iant.*> Alternatively, one may quantize the reduced phase
space J ~!(0)/G,>° in which case gauge invariance is directly
incorporated. When J is singular the latter technique is, of
course, no longer applicable. But then the reduction proce-
dure of éniatycki and Weinstein enables one to do the next

2154 J. Math. Phys. 25 (7), July 1984

0022-2488/84/072154-06$02.50

best thing, viz., to quantize the Poisson algebra of gauge-
invariant observables.

Probably the simplest physically interesting example of
a singular constrained system is that of a massless, spinless
relativistic particle in (# + 1)-dimensional Minkowski
space-time, which we refer to as the “n + 1 photon.” The
extended phase space is R*” *? with coordinates (p,p, ,x,?)
and symplectic form

w=dp, Ndt + Y dp, Ndx;.

i=1

The gauge group is R with momentum map

J(p.pox,t)=pi —||p|*

Since the particle is massless, J must vanish. The constraint
set is thus

J-l(o) — CnXRn+ 1,
where C" is the null cone in R” * . In this paper we reduce
J ~'(0) on the Poisson algebra level and then quantize, ob-
taining results which are in exact agreement with the quanti-
zation of the extended phase space {R*" * 2 ,w) and the subse-
quent imposition of the constraint J = 0.

This example serves three purposes: First, it illustrates
the usefulness and essential correctness, at least in this in-
stance, of the generalized reduction procedure. Second, it is
simple enough that we can both identify and completely ana-
lyze the effects of the singularities inJ ~'(0) on this system. In
this regard, our presentation seems to be the first which
treats the singularities seriously (compare with standard dis-
cussions of the 3 + 1 photon, e.g., that given in Ref. 7). Final-
ly, Arms, Marsden, and Moncrief ® have shown that singular
momentum mappings typically have quadratic singularities
so that J ~'(0) is always a “cone.” Since the n + 1 photon is
an elementary, and in some sense canonical, example of this
phenomenon, its elucidation is essential for further progress
in understanding the structure of singular constrained sys-
tems.

In the next section we briefly recall the basic features of
the éniatycki—Weinstein reduction procedure. The details
for the 1 4+ 1 photon are then worked out in Sec. II1. The
n = 1 case is done separately, since it is rather “special” and
technically much easier than the n > 1 case, which is elabor-
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ated upon in Sec. IV. The physical interpretation of these
results is discussed in the last section.

Il. POISSON ALGEBRAS, REDUCTION AND
QUANTIZATION

Let % be a commutative algebra over R. If [-,]] isa
bracket operation on % such that (i) the pair (% ,[-,-]) is a Lie
algebra and (ii) the Leibniz rule

LA L) =401+ LA ALA

holds, then (% ,[-,]} is called a Poisson algebra. The basic
example of a Poisson algebra is C (X'), where (X,w) is sym-
plectic and the Poisson bracket is given by

{fg) = — ol &)
Here £, the Hamiltonian vector field of f; is defined via
le o= — df.

Now let (X,w), G, and J be as in the Introduction. For
each aeg define the functionJ, on X by J, (x) = {(J(x},a), and
denote by # the ideal (relative to the associative algebra
structure)in C* (X ) generated by the J, . Since Jis G-equivar-
iant, the action of G on C* (X') induces an action of G on
C* (X )/ # insuch a way that the projection homomorphism
j: C* (X )=C= (X)/ # is G-equivariant. Let ¥ be the space
of G-invariant elements of C~ (X')/ #, that is, the collection
of all equivalence classes jf for whichj{{ £, # }) = 0. Againby
equivariance, the Poisson bracket {-,-} on C* (X ) descendsto
a bracket [-,-] on ¥ given by

Lif jgl =i f.8})- (2.1)
The pair (#,[-,-]) is the reduced Poisson algebra of the con-
strained system under consideration.

If 0 is a regular value of J, then C* (X)/ #

= C= {J ~!(0)). Furthermore, if J ~'(0)/G is aquotient mani-
fold of J ~!(0), then the reduced Poisson algebra .% is canoni-
cally isomorphic to the Poisson algebra of the reduced sym-
plectic space J ~'(0)/G. Under sufficiently regular
conditions, then, this generalized reduction procedure is
consistent with the Marsden-Weinstein technique, and we
may therefore interpret (#,[-,-]) as the Poisson algebra of
gauge-invariant observables. It is important to note, how-
ever, that in the singular case ¥ need not be the Poisson
algebra of any symplectic manifold nor must it be nondegen-
erate (in the sense that the only elements of & which Poisson
commute with everything are “constant”®).

We close this section with some remarks concerning the
quantization of a Poisson algebra (% ,[-,-]). The problem is to
construct the quantum state space from a knowledge of this
Poisson algebra. This is fairly straightforward, using the
techniques of geometric quantization theory,” when .¥ is
associated with a symplectic manifold. In the singular case it
is necessary to proceed by analogy; briefly, this works as
follows.?

Let I = % & C be the complexification of % ; elements
o€l are the algebraic counterparts of sections of the pre-
quantization line bundle (which we take to be trivial). Given
aderivation £ of &, we may compute the “covariant deriva-
tive” V.o of a section o once a connection V on I” has been
specified. A polarization 7 is a maximal commuting subal-
gebra of (#,[,-]). A section o€l is said to be “polarized”
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provided V, o =0 for all feZ, where £ is the derivation
g—[g.f] corresponding to the Hamiltonian vector field of f.
The quantum state space relative to this data is then defined
to be the set of all linear functionals on the space of polarized
sections in I

For our purposes we may choose a connection V such
that

Vio=1l0.f]

for all feZ2. Then the space of polarized sections in I' is
precisely Z ® C, and the quantum wave functions are ele-
ments of the dual (#Z & C)'.

Turning now to the example, we compute the reduced
Poisson algebra for the #» + 1 photon and quantize it.

lil. THE 1 + 1 PHOTON

The analysis of the n 4 1 photon is considerably easier
when n = 1, for then the constraint J = O factors. This cir-
cumstance simplifies the algebraic computations required
for the construction of the reduced Poisson algebra as well as
its presentation. This simplicity is also reflected in the struc-
ture of the constraint set J ~!(0) = C* X R"* ', which is es-
sentially trivial when n = 1.

We begin by changing to null coordinates

u=t—x, v=t+ux
and their corresponding momenta
H=pD —Dx» V=P + Dy

The symplectic form on R* is then
o = }duANdu + dv Adv)
and the momentum map becomes
J (@, v,u,0) = pv.
The ideal # of C= {R*} is thus generated by the product uv.
Define j: C= (R*)—>C= (R*)x C= (R?) by
I = (fl,0,u0), f(0,v,u,)). (3.1)
Proposition 3.1: The quotient C* (R*)/_# may be identi-
fied with the image of C* (R?) in C* (R? X C* (R?) under .
Proof: If fe #, then clearly jf = 0. On the other hand,
suppose that jf = 0. Then f(u,0,u,v) = 0 which, by Hada-
mard’s lemma, implies that fis divisible by v. Thus f = v for
some smooth A. Then f(0,v,u,v) = 0 yields 4 (O,v,u,v) =0,
which similarly implies that 4 is divisible by x and so fe # .
Thus ker j = _# and the claim follows. Q.E.D.
Now jfe Fiffj({ f, J }) = 0. From (3.1) this will be the
case iff

a—f(,u,O,u,v) =0= i(O,V,u,v),
v du

so that the invariant elements of C* (R*)/_# are of the form

(f(12,0,4,0), £(0,v,0,0))

with £(0,0,u,v) constant. We may thus regard 5 as consisting
of pairs of functions

(Ylu,u), ¢ (v,p)) € C* (R?) < C* (R?)
subject to the compatibility conditions

YO,u) = ¢ (0,v) (= const). (3.2)
In these terms, a direct calculation shows that the in-
duced Poisson bracket (2.1} on .# is given by
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[(@161)s (@2s82)] = 2[¥1¥2)0 5 2[1,82)00),
where

[Yutnl,, =2 _ 930,

(3.3)

denotes the ordinary Poisson bracket with respect to the pair
u, p etc. It is straightforward to check that [-,-] is nondegen-
erate.

In view of (3.3), the reduced Poisson algebra % is close-
ly related to the Poisson algebra C= (R?) X C* (R?) of the
symplectic manifold consisting of two disjoint copies of R”.
Due to the compatibility conditions (3.2), however, ¥ is
strictly a subalgebra of this Poisson algebra, and so is not the
Poisson algebra of any symplectic manifold. These condi-
tions therefore express the influence of the singularities in
J ~!(0) upon the system. In fact, a correlation between these
two Poisson algebras might have been expected from a
consideration of the case when the photon has a mass m.
Then the constraint set J ~'(m?) is nonsingular, but discon-
nected, and the reduced phase space is symplectomorphic to
R?UR2 It follows that the reduced Poisson algebra for a mas-
sive particle is exactly C* (R%) X C* (R?). The effect of letting
m~>{Q is thus to reduce the number of gauge-invariant obser-
vables. We shall have more to say about the physical inter-
pretation of this phenomenon, and its relationship to the
singular space J ~'(0)/R, in Sec. V.

To construct the quantum state space, we must choose a
polarization & of .. Noting that the horizontal polariza-
tion P on R* spanned by the vector fields £, and &, projects
onto J ~'(0), a natural choice for & is

Z = {(Yw), ¢ V)|¥(0) = ¢ (0}}. (3-4)
According to general considerations, then, the quantum
wave functions are elements of (¥ ¢ C)'.

To represent these states, we need the following result:
Consider R? with coordinates u and v, and let / be the ideal
in C* (R?,C) generated by the product uv.

Lemma: C* (R,C)/ 7 = 7 oC.

Proof: Mimicking the proof of Proposition 3.1, we have
that C* (R)/ 7 may be identified with the image of C* (R?)
in C* (R) X C~ (R) under the map f~{ f(x,0), f(0,v)). Com-
parison with (3.4) and complexification then yields the de-
sired result. Q.E.D.

With this in hand, we now establish:

Proposition 3.2: (% & C)' is isomorphic to the space of
all complex-valued distributions @ on R? satisfying

pv®@ =0. (3.5)

Proof: Let @ be such a distribution, in which case @
annihilates all functions which are divisible by uv. Then &
induces a linear functional donC> (R%,C)/ / so that, by the
Lemma, 456(5” ® C)'. Conversely, every linear functional on

ZeC=C"(R%L0)/ / can be lifted to a distribution on R?
satisfying (3.5). Q.E.D.

These distributions @ take the form

D () =4 )@ S ) + Sl ox (v,
where A and y are distributions on R. Then for f € C* (R%,C),

(D,1) = (A (), f,0)) + {x(v), £OV)),
from which we obtain the explicit representation

@ (v) = (A w)xv)
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of @ as a linear functional on Z ® C.

Proposition 3.2 is the main result of this section. Not
surprisingly, it shows that the gauge invariant wave func-
tions must satisfy the 1 + 1 wave equation, which is just the
Fourier transform of (3.5). It also guarantees that this quan-
tization is equivalent to that of the extended phase space
(R*,@). In fact, quantizing in the momentum representation
defined by the polarization P, we find that the quantum Hil-
bert spaceis L %(R?)and that the quantum operator 2J corre-
sponding to J is given by

2I[@] = uved.

Thus, from this point of view as well, the physically admissi-
ble photon states must coincide with the distributional solu-
tions of (3.5).

Finally, note the crucial role of the compatibility condi-
tions (3.2), in the guise of (3.4), in Proposition 3.2. Without
them (3.5) would not follow and the correlation with the
wave equation would be lost.

IV. THE n + 1 PHOTON

For the 1 4+ 1 photon the constraint set consists simply
of two intersecting hyperplanes in R*. This enabled us to
compute directly on J ~'(0); in effect, we worked on each of
the two hyperplanes and then “glued” along their intersec-
tion by means of the compatibility conditions. For n > 1,

J ~'(0) is more complicated and we can no longer proceed in
this straightforward manner. In particular, it is now neces-
sary to “resolve” the singularity.

Our first task is to construct the quotient
C= (R* *?)/ # . The following result is the higher-dimen-
sional analog of Proposition 3.1. Let feC= (R*" * 2).

Proposition 4.1: fe # it f|J ~'(0)=0

Proof: The obverse is apparent. For the converse, it is
clear from the structure of the constraint set
J 7'0)=C" xR"*" that the configuration variables (x,?)
are largely irrelevant and may accordingly be factored out.
We are thus effectively reduced to proving that if
g: R" "' —>Ris such that g|C" = 0, then g is globally divisi-
ble by p; — ||pl/*.

There is no problem off C*. On either of the regular
components of C*, this follows from the inverse function
theorem and Hadamard’s lemma. It remains only to demon-
strate that g is divisible by p? — ||p||? at the vertex of C", and
for this it suffices (Ref. 10, p. 72) to show that the formal
Taylor series of g at the origin is divisible by p? — ||p||>. We
now establish this for n = 2; this case is prototypical, and the
generalization to arbitrary » is immediate.

Thus let

, I

Teg= ,H;ﬁ Tk —BPPLP
be the homogeneous part of the rth Taylor polynomial of g at
the origin of R?, where

ai +i+k g ( )
opiapapt
In (4.1) view all variables other than p, as parameters. Then
to say that T'5g is divisible by p? — (p% + p}) is equivalent to
requiring that both p, = + (p2 + p?)'/* be roots of T ;g
Substituting these values for p, into (4.1), decomposing the

4.1)

K
8ij =
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sum into even and odd powers of (p2 + p2)'’?, expanding
these powers in a binomial series and reorganizing gives

( Y amp;"p;')

m—++n=r
)] @2)
m4+n=r—1
where
(m/2) (a2 411
Ay = z z (1)
=0 k=1

1
(m 2/ n — 2k + 21 )2k )!

[m/2] [n/2 + 1]
k

bmn= Z Z (1)

=0 k=1

g,Z —2Ln—2k+ 21 (4 3)

1
X m = 20 — 2k + 202k + 1)

gfrf:—;I,n-Zk+21!
(4.4)
and [k ] denotes the greatest integer less than or equal to k.
From (4.2)it follows thatp, = + (p2 + p2)'/? will be roots of
T g iff the coefficients a,,, and b,,, vanish.
Now let v be a vector at the origin which points along a
generator of the cone, and consider the rth derivative of g in

the direction v:

d a
D’g(0,0,0) = [(vx —+v,
£(0,0,0) ™
Another lengthy calculation, cons1sting of expanding this
expression out, separating into even and odd powers of v,,

and then using the fact that v} = v2 + v2, yields

D’g(0,0,0)= (z Gy VT )
m4n=ypr
-1 + vi)“z( S b v:'v;'),
m4n=r—1

where q,,, and b,,,, are given by (4.3} and (4.4), respectively.

But by assumption g|C" = 0 so that D g(0,0,0) = O for all

such v. This implies that 2,,, =0and 4,,, = 0, and we are

finished. Q.E.D.
This proposition shows that

C= (R +2)/,F = C=(J ~Y0)),
the smooth functions on J ~(0) in the sense of Whitney."
Unfortunately, C* (J ~'(0)) is rather difficult to handle. To
obtain a more tractable representation of C= (R*"*+2)/ ¢,
we “resolve” the singularity by means of the map
#:R*+2 R?"*+2 given by

& (m, ps X,t) = (P, 7P, ,X,1 ).

Note that now the physical momenta are given by p, and
p = p,w. If we define K: R>"*? >R via

K(mp, xt)=1— ”ﬂHZ’
then K W0)=(S""'XR)XR"*! and 3
# (K ~(0)) = J ~(0). Let ¢ be the restriction of ¢ to X ~'(0).
Note that ¢ is a local diffeomorphism away from the *“equa-
tor” p, = 0 and collapses the equator (S” ~' X {0}) X R"*+!
onto the singular set S = {{0,0)} XR" ! inJ ~'(0).

We think of X ~'(0) as being a “covering manifold” of
the singular space J ~'(0); using ¢, we pull the entire formal-
ism on J ~!(0) back to X ~'(0). The advantages of this proce-
dure are (i) K ~!(0) is a manifold and (ii) we can dispense with

9 4y, 9 ) g](o,o,O).
ap.
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C= (J ~(0)) directly and work instead with its more man-
ageable isomorph ¢ *C= (J ~'(0))CC> (K ~'(0)). The key
fact which makes this possibleis that¢ *C= (J ~'(0)) admits a
relatively simple characterization in C* (K ~(0)) in terms of
formal Taylor series.'?
Proposition 4.2: Let FeC* (K ~(0)). Then
Feg *C= (J ~}(0))iff for each seS there exists a formal power
series /, at s such that
T,F=/oT,$
for all geg ~'(s).
Proof:Supposethat F = fo¢ forsomefeC= (J ~'(0)). Let
Fbe any extension of f to R?" *2; then £, = T.fwill do in
{4.5). The reverse implication follows from the inverse func-
tion theorem and Theorem 3.2 of Ref. 12. Q.ED.
Note that (4.5) is a very strong condition: for a smooth
function Fon K ~'(0) to liein ¢ *C= (J ~'(0)), it does not suf-
fice for F simply to factor through ¢. Rather, (4.5) requires
that F and all its formal Taylor series 7, F factor through #.
In summary, we henceforth work on X ~*(0) and identi-

(4.5)

fy

C>(R*"+2)/ F =¢*C~ (J ~0)

From this standpoint, the conditions (4.5) reflect the pres-
ence of the singularities in J ~'(0).> With these consider-
ations out of the way, we are now ready to construct the
reduced Poisson algebra.

Let Feg *C> (J ~!(0)) so that there exists a smooth func-
tion fon R?" +2 with F = fog. Then F will be invariant pro-
vided {f,J }°¢ = O which, on K ~(0), translates into

OF & oF

3t i=1 6x
Setting w = x + art, this implies that F = F(wp,,w) only.
Since F must also factor through ¢, it follows (with a slight
abuse of notation) that

F = {Fep *C= (J " (O)|F = Flp,mp,p,W)}.  (4.6)

Now if Fand G are two elements of & with F = fo¢ and

= g°4, then the induced Poisson bracket (2.1) on & is
[F,G] = {f8}°¢. After making the coordinate change
(m,p, Xt }—>{m,p, ,w,t JonK ~'(0),astraightforward computa-
tion yields

=0.

n l n
[EG] = z [FIG ]w,-.p,7ri + - 2 [F’G ]wi,m(lsij - Triﬂ-j)‘
i=1 rif=1
(4.7)
Although this expression would appear to be singular when
p, =0, in fact it is not because of (4.6).

We show that (4.7) is nondegenerate. Indeed, suppose
that [F,G] = 0 for all Gin % . Take G = p,w, . Then

[F.p,w,] = 0 reduces to
) IF _ 0.

(pt . Z (91Tk

i=1
Multiply this by 7, and sum; since ||m]|? = 1, it follows that
JF /dp, = 0. But then, by (4.6), F (p, m,p, ,p,w) = F(0,0,0) is
constant and nondegeneracy is proven.
The quantization of the n + 1 photon is patterned after
that of the 1 + 1 photon given in Sec. III. The analog of the
horizontal polarization P on R*" *? spanned by the vector
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fields §, and £, i = 1,...,n, is the maximal commuting sub-

algebra
P ={Fe¥|F=F(p,mp,)} (4.8)

of #. We now construct the quantum state space (7 @ C)'.

Let J and K be the restrictions of J and X to the first
factor of R”*! in R * 2, and denote by 7 the ideal in
C= (R"* ') generated by J From the proof of Proposition
4.1 we see that

C>R**Y)/ 7 =C=(C").

Letting ¢ be the restriction of é to K~ 1(0), we may then
identify C= (R"*+ ')/ # with the subalgebra ¢ *C= (C") of
C= (5"~ ! XR). From (4.8), (4.5), and the analog of Proposi-
tion 4.2 applied to $*C=(C")CC= (S" ' XR), it follows
thaté *C= (C") isisomorphicto . Upon complexifying, we
finally obtain

Cm(Rn+1’C)/j=ﬁ’®C,

Imitating the proof of Proposition 3.2, this last result yields:
Proposition 4.3: (Z & C)' is isomorphic to the space of
all complex-valued distributions @ on R" +! satisfying

lp? — llp||)@ =0.

Thus, as before, the physically admissible photon states
must satisfy the Fourier transformed n + 1 wave equation.
As expected, this is consistent with the quantization of the
extended phase space (R" * ? o) in the polarization P. In-
deed, we compute

2J[®]=p! - |Ipl")®
on L (R"*') and gauge invariance demands 2J [®] =0

V. DISCUSSION

We spend a moment correlating our results with the
structure of the singular reduced space J ~'(0)/R. This will
incidentally help clarify the physical significance of the com-
patibility conditions (3.2) and their higher-dimensional ana-
logs (4.6) which arise both from the presence of singularities
and the requirements of gauge invariance.

The action of the gauge group R on R*"*? is given by

(Aspsp e Xt }{Pops X — 2Ap,t + 24p, ).

OnJ ~{0)=C" XR"*! this action fixes every point of the
singular set S and is otherwise free. We may therefore sche-
matically representJ ~'(0)/R as shown in Fig. 1. The trouble
with J ~*(0)/R, aside from the expected conical singularity,
stems from the anomalous factor of R” *' associated with
the vertex. This is actually a remnant of a slight defect in the
extended phase space description of the #» + 1 photon con-
cerning the physical interpretation of states in the singular
set SCJ ~'(0). Such astate (0,0,x,¢ ) represents a photon with

R”
1 FIG. 1. The singular reduced
R space J " (0)/R.
]R”
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vanishing momentum located at (x,z ), that is, a vacuum state.
But presumably there is only a single vacuum state, not one
located at every space-time point. It is this (n + 1)-dimen-
sional array of unphysical vacua which contributes to the
pathology in J ~'(0)/R and prevents the latter from being
construed as the space of all gauge-invariant states.

On the other hand, a physical observable should be un-
able to distinguish between these spurious vacua. The topol-
ogy of the reduced space indicates that this will be the case:
sinceJ ~'(0)/R fails to be Hausdorffalong thisR" * !, contin-
uous functions cannot separate these states. This observa-
tion is substantiated by our analysis above, and here is where
both gauge invariance and the compatibility conditions en-
ter. For n = 1, (3.2) guarantees that a physical observable is
constant on S. Similarly, for n > 1, the form (4.6) of a gauge
invariant function ensures that it is constant along the equa-
tor ¢ ~'(S) and hence also cannot differentiate between these
states. Consequently, the generalized reduction process
“corrects” the flaws in both the original description of the
system and the reduced phase space, at least to the extent
that it guarantees that the gauge invariant observables “de-
tect” but a single vacuum state, as required.

Our analysis of the n + 1 photon thus demonstrates the
utility of the Poisson algebra approach: even though a sys-
tem may be singular, one can still construct the essential
components of the reduced canonical formalism. Moreover,
subsequent quantization yields results in exact correspond-
ence with those obtained by standard methods. We hope that
this example will encourage further study of the structure of
singular constrained systems. Techniques for resolving sin-
gularities and, in particular, the work of Bierstone and Mil-
man'? on composite differentiable functions (of which Pro-
position 4.2 is a special case) should prove to be quite
valuable in this regard.
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Itis shown that the problem of parameter estimation for distributions of the exponential type, has
a unique consistent Bayesian solution: The requirement that Bayes’ rule and maximum entropy
lead to the same inverse distribution determines the loss function. Similarly, the demand that the
best estimate for a random variable, given an observed value of that variable, coincides with the
observed value, determines the prior distribution for the corresponding conjugate parameter.
Properties of the dual distribution thus determined are investigated. In particular, the
symmetrical role of parameter and constraint as a pair of conjugate variables is shown to imply an
inherent uncertainty principle. Possible applications to temperature fluctuations and to an
imbedding of classical mechanics in a statistical background are indicated.

PACS numbers: 02.50. + s, 03.20. + i, 05.40. +j

I. INTRODUCTION

Thermodynamics and hence statistical physics’ intro-
duces a set of extensive variables to characterize the state of
the system. Corresponding to these is a set of conjugate in-
tensive variables. In the maximum entropy approach'? the
conjugate variables are introduced as Lagrange multipliers
in the procedure of seeking the constrained extremum of the
entropy. The two sets of variables do not appear therefore to
be on equal footing. A glaring example of this “asymmetry”
is that given the mean value of an extensive variable, the
theory clearly predicts that fluctuations in that variable are
possible. [For example, given the mean energy, we generate a
distribution of energy (cf. Sec. II below) and hence can com-
pute the variance of the energy which is closely related to the
specific heat.] Yet, given a mean value of an extensive vari-
able, the existing theory assigns a unique numerical value to
the conjugate Lagrange multiplier and does not appear to
recognize the possibility of fluctuation about that value.

One can, of course, take the stand that the symmetry
between the two possible sets of variables is guaranteed in
classical thermodynamics by the well-understood changes of
variables via the Legendre transform.’ It is clearly desirable
however to trace this symmetry to the fundamental theory.
Furthermore, the maximum entropy formalism is being ex-
tensively applied* to the description of collisions of compos-
ite projectiles (be they nuclei or molecules) and to other areas
of statistical physics (e.g., irreversible processes,”’ statistical
optics®) where there is no corresponding phenomenological
thermodynamics.

A technical resolution of the problem is to proceed not
via the maximum entropy formalism but via a classical Baye-
sian approach.®~® There, the problem of determining the La-
grange multiplier becomes one of parameter estimation as is
discussed in Sec. II. The problem is then that the two routes
do not necessarily coincide. The conditions under which
they do are determined in Sec. II1.

* Permanent address: Racah Institute of Physics, The Hebrew University,
Jerusalem 91904, Israel.
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The result of our considerations is the characterization
of a unique dual distribution: the distribution of the value of
the Lagrange multiplier given the mean value of the con-
straint. Some properties of this distribution are explored in
Sec. IV. Particular attention is given therein to the “uncer-
tainty relation” between the pair of conjugate extensive and
intensive variables. Generalizations to several variables are
provided in Sec. V. We conclude with potential applications
to physics in Sec. VI.

li. BACKGROUND

Suppose we are given a vessel containing & ideal gas
molecules in thermal equilibrium. We know that the ener-
gies of the molecules are distributed according to the Boltz-

mann law
N(E)eFE

E =
fIE|B) 20B)

but we do not know the temperature 7' = 1/f. We are al-
lowed to pierce a hole in the vessel and let n<N molecules
escape, meanwhile recording their energies. Given the evi-
dence E,,...,E,,, what value should we assign to the unknown
parameter 3 and how reliable should this assignment be con-
sidered?

The problem just described, namely, parameter estima-
tion, is basic to statistical theory. Given the outcome x,...,x,,
for a random variable X distributed according to

02 (x)e ™

Sfixld)= )
what is the distribution P(4 |x,,...,x,) and what is the best
guess A = 4 (x,,...,x, ) for the unknown parameter A. In the
{now, generally accepted) Bayesian approach,’ one proceeds
as follows.®

(a) Choose a “prior” or ““marginal” distribution?o(/l ).
The distribution inverse to the “sample distribution”

Pxyot, 4] = [T S5ilA), o)

i=1

, z(B):J.O(E)e‘BEdE, (1)

, z(i)zfﬂ(x)e‘“""dx, (2)
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is given by Bayes’ rule
Pxy..%n |4 ) folA)

Pl xna) =g AT aA
= M * (4a)
Z(4)
Here
A= 3 4 )

is the “sample average,”
mA )« fold VA (4c)
is the “density of states” for the parameter A, and

Z(Z)=fm(,1 le=*4 di (4d)

is the “partition function.” Note that the distribution of 4
given the sample x,...,x,, is completely determined [once
fold ) has been chosen] by the value of the “sufficient statis-
tic” 4 {(X15.--x,, ). That is, all the information relevant to the
distribution of A obtained by sampling can be summarized
by a single number—the sample average 4 A. We shall hence-
forth denote the distribution (4) by P (4 |A ).

(b) In order to determine the “best estimate” A for the
parameter 4, choose a non-negative ‘‘loss function” L (/1,/1 )
and determine the best estimate A = A (A ) by minimizing the

“average loss”

RA) =JL(A,2 P (A |4 )dA (5)

over A. For example, by choosing
LAA) =4 —A1), (6a)

one obtains
)1(2‘):]@(,1 |[d)dA=(1|4) . (6b)

Similarly, the choice L (4,4 ) = |4 — 4 | leads to

A (4) = median of PA |Z)
as the best estimate for A. To ensure uniqueness of the mini-
mum (or infimum), R (/1 )is made convex by requiring L (/l,/l )
to be convex in A for all A.

The shortcoming of the above procedure stems from its
indeterminate nature. Two non-negative functions, namely
fod)and L (/1,/1 ), are to be chosen almost freely. Can one
somehow narrow the choice? It is our intention to demon-

strate that this is indeed the case. We shall show in Sec. III
that requirements of consistency lead to a unique choice for
theloss function L (4,4 )and the prior £y ), at least for distri-
butions of the “exponential type”® of which Egs. (1)—{4) are
examples. Thus, to every distribution f(x|4 ) of the form (2)
there corresponds a unique dual distribution

2(A)e—*m

F - 4= | D —id
T =L, ) f Ddle-Mdi,
(7a)
with a density of states
RA)<folA)zA). (Tb)
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Owing to the reflexive property of duality (which we shall
prove), f(x|4 ) is the dual distribution to f(1 |4 (x)).

In Sec. IV some further properties of the dual distribu-
tion are explored. It is shown that the random variable 4 (x)
and its conjugate parameter A satisfy an inherent uncertainty
relation. Next we discuss the connections between samples
of size n and samples of size 1. We show that sampling of the
variable X induces a corresponding sampling in the dual
space A in such a way that only the sufficient statistic
A =(1/n) Z A, (but not the individual A,’s) is observable.

lil. THE DUAL DISTRIBUTION

In this section we confine ourselves to samples of size 1.
Hence only f(x|4 ) and f(4 |4 (x)) [Egs. (2) and (7)] enter.

A. Determination of the loss function

Having made a choice for the density of states 2(A)and
the loss function L (/1,/7. ), the best estimate A=A {4 (x))is de-
termined by solvmg

R')= —(M)f(/llA)di (‘;j) 0. @

But given the average {(dL / aA )(/1,/1 )} the principle of maxi-
mum entropy>’ predicts

where
Z(wh)= [ B —p Zad)ir. o

Here i is a Lagrange multiplier whose value u = ,u(i (4))is
determined by solving

0= (%) - - ZloZ(ud), (10)
A I
We now have two predictions [for the same data 4 (x)!], name-
ly,

fA|d)=102(1)e~*/z(4) (from Bayes rule), (11a)
and
— oL /34 A A )]
Z{pAi)
(from maximum entropy) .

(4 )exp[

Flld)=

(11b)

Proposition: The two predictions (11a) and (11b) coin-
cide 1f and only 1f the loss function is quadratic. That is,
L (AA) = A — —Ap where ¢ > 0 is constant. Indeed, if
= c(/l AV then (AL /34 Y = — 2c(A — A ) = O implies
=(1l4), (12)

and
Z=fﬁ(,t)e2ﬂd*—“d,1=e—2ﬂ°ﬁz(—2,4c). (13)

Applying Eq. (10) to the last expression, we obtain
O=<3—L> _ _OlogZ _
a Iy

Hence, with the aid of Egs. (12) and (7a),

2cA +2CM (14)
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ie 8logZ(A——2yc) —(Ad) = — dlogZz(d) '
94
(15)
Now
d’logzd) .., )
YT R (A —{1))>0. (16)
Hence — (0 log Z(A )/3A ) is monotonic and by Egs. (15) and

(11) we have — 2uc =4 and F(A |[4)=f(4 |4). Thus
=cld — i ) is sufficient to establish harmony between the
predlctlons of maximum entropy and Bayes’ rule.

In order to prove that the condition is also necessary, we
shall somewhat restrict the choice of loss functions. We as-
sume (in addition to non-negativity and convexity) that
L(AA)=L(A—A)isa function of the difference (A — A)

only, satisfying L (0) = 0. Now F (4 |4 ) = f(4 |4 ) implies
8;' = —AA+logZ —logz{d). (17
Invoking Eq. (10}, we have
_,;C?;) —(A)A +1logZ—logZd), (18)
and Eq. (17) reduces to
—‘?)—j—-%u (ay). (19)

The last equation can be viewed either as an explicit expres-
sion for the Lagrange parameter 4, or as a condition satisfied
by thelossfunction L {4 — A ). Takingthelatter point of view,
we have

AL _ 4L A
—= ———{1)), (20)
FYRY Iz
hence, by integration,
— (A /A2 — (AYA)+RA). (21)

Here u = ,u(/i (4))and (1) = — (3 logZ(4)/3dA ) are func-
tions of A. Inverting A4 = 4 (4 } (which is certainly valid for
some range of A ), and taking the derivative of (21) with re-

spect to 4, we have

%L ()5 wn)

N PELIRT
Iz di

={d/pd —4)). (22)
Comparing equal powers of 4, we secure

A/u= —D, (23a)
where D is a constant,

aid) (23b)

dA

h'A)=D{). (23c)
Hence

A)Y=4+6G, (24a)
and

hA)=DA¥2+Gi)+H, (24b)
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where G and H are constants. Inserting these expressions
into (21), we obtain

=D/JA—AP—DGA—A)+H
=(D/2JA—-{A))—-DG*¥*2+H. (25)

The constants G and H are now determined by use of the
assumptions L (0) =0, °L /A% = D>0and L>0. Putting
A = A we have H = 0. Again, putting A = (1 ) we obtain

L = — (D /2)G *>»0, which can be satisfied only by G = 0.
Thus,
=), (26)
and
=(D/2A—-1), D>0. (27)
Incidentally, by Eq. (26) we have
. .
di _d{d) _ _O'logz(d) _ — var(4)<0.
dA dA 0A*

Hence, /1 (4 ) is a monotonic function of 4 and the inversion
A=4 (/l ) is valid for all A. Note that the class of loss func-
tions for which our proof applies, could be enlarged to in-
clude L(A1)=g(Ad) 1A — 1), whereg(4)>0 could be ab-
sorbed in the yet undetermined density of states 12 (4 ).
Having established / = c(4 — A }* as the only loss function
which brings harmony between the predictions of maximum
entropy and Bayes’ rule, we shall now turn to determine
£2(1), or, equivalently, the prior distribution for A.

B. Determination of the density of states

Observing an outcome 4 (x), our best estimate for 4 is
Ad)=(A]4),but glvenll our best estimate for the param-
eter 4 (x) in Eq. (7a) isA A)= (4 |/1 ). We now demand self-
consistency: the best estimate of A given 4 is A. That is,

) =iy = — ezt _, (28a)
where
_ __ dlogzi4)
=)= - 22 (28b)

The last equality in Eq. (28a) can be interpreted in a slightly
different way. The estimate A (given A4 ), determines an esti-
mate for the average (4 ) via

~ dlog z(;l )
A)= ———*. 29
) B (29)
Demanding that the bes? estimate for (A ) given A is A, we
have

=4. {30)

We shall now show that the requirement of self-consistency
[Egs. (28)], isenough to determine the partition functionz(4 )
and the density of states 2 (4 ) uniquely (up to an irrelevant
factor). Indeed, determining A (4 ) as the (unique) solution of
Eq. (28a), condition (28b) serves as a differential equation for
the unknown function z(4 ). Let (4 ) be such that — log Z{4 )

is the Legendre transform>'° of — log z(4 ), that is,
—logz(d)=A4 — [ —logz(1)], (31)
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where 1 = 1 (4) is the (unique) solution of

A= _9los7d) (32)
oA
But by Egs. (31}, (32), and (28),
_8log2(A)=/~{ dﬂ c?logz(/l)dzi —i=1,03
o4 dA 9i dA ’
hence
_OdlogZd) _ _ JdlogZ4) (34)
a4 4’
and
34)=C3d) . (35)

Since the constant C is irrelevant, we shall standardize
the solution Z(4 ) by adopting C = 1, that is
—logZz{4) = (1 )4 +logz({1)), (36a)
or
Zd)=e~P1/z((1)), (36b)
where (A ) is the solution of (32). Finally, the integral equa-
tion
Z(A) =sz(/1 Je ~* dx (37)

determines (under broad conditions) a unique solution for
the density of states {2 (1 ), given the “moment generating
function”® Z(4 ). In summary, given the distribution

D (xje” MW __dlogz({4))
e 2 , (4)= "
(38)
a dual distribution
- D)+ __ dlogZz({4))
f(/H(A))——————E((A)) , A= T

(39)

is uniquely determined via the Legendre transform of

— log z({A )). Since the Legendre transform is a reflexive one
[that is, — log z({A }) is the transform of — logz({4 )],
S(x|{A)) is the dual distribution to (4 |{4 }).

C. Examples

By way of illustration, consider the following two ex-
amples.

{a) The Maxwell-Boltzmann distribution for the energy
of ideal gas molecules is

FIEB)) =T BY*Ee PE, 0<E<w.
(40a)
Here
N(E)=CE, (40b)
and
2((B))=CWm(B)~*?, (40c)

where C is a constant. Equation (38) yields
(B)=3/2(E) . (41)
Hence, substituting in Eq. (36), we obtain
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_ 1 3 372
(<E>)~T:—E(Ze(E)) ' (422)
The integral equation (37) is now solved by
am=+L1 (2", (42b)
C \2e
and the distribution dual to (40a) is
FIBUE) =QNTKEY'*JBe~ ®7, 0<B< ocz4-2 |
c

Using Eqs. (7b), (42b), and (40c) we can also determine the
prior f( ), namely,

foB)=2(B)e B) = 1/B, (43)

which is the result obtained by Jeffreys'' for a scale param-
eter.
(b) As a second example we take

Fx[(A)) = (1/2m)e —172%e = @rx/5((4 )

= (I2m)e~W/Ax+ OF 1 cx<w . (44a)
Here
Q(x)=(1/2Zme =P, zZ((A)) =247 (44b)
Hence
)= —(x), (45)
A)=(N2me= VD4 F((x)) =, (46a)
and
FA1R)) = (1/V2mle = e =49 /3((x))
= (I/2m)e WA+ A< . (46b)
In this example the prior probability is uniform:
fA)<2(A)d) 1. (47)

IV. PROPERTIES OF THE DUAL DISTRIBUTION

Having observed x, and hence 4, = 4 (x,) and
A=A {4,) = — dlogz(4,)/34,, we expect the next obser-
vation to fulfill

4,=A4,+44, (48)
where

44 = (A4 — (A))'? = [varl4)]'?, (49)
and

A

s 5 » aA
Ay=Ad)=A(A,+44)=4 (4y) £+ a(Al)AA -(50)

But
oh _ _FlogBd) _ i aap, (51)
04, 942
Hence
AymA T (44 )44 . (52)
That is AA = (44 )* 44, or
AA(4)AA(4))=1. (53)

Thus the expected uncertainty in 4 having seen 4, times the
expected uncertainty in 4 having seen 4, is of the order of
unity.
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We turn now to a more careful discussion where it
proves possible (nay, essential) to distinguish between experi-
mental and inherent uncertainties.

A. Inherent uncertainty relation

Let (4 ) beknownandlet44 ({4 ))and 44 ({4 ))denote
the inherent uncertainties in 4 and A given (4 ) (or (4 )).
Then

(A= )P =pap=2 oA -ga,
(54)
and
= =@ip=2 ‘;f;(;;“ A gzj ;
(55)
Hence
(AA (A4 ) = _%@_}( ‘9“))
1) a{4)
That is,
AA((4))AA({4))=1. (56)

The inherent uncertainties are related as above regardless of
the accuracy by which {A ) is known. Of course, the individ-
ual uncertainties 44 and A4 are dependent on the accuracy
of (4 ). Thebetter we know (A ), the better are our estimates
for A4 and AA. This leads us to discuss the accuracy of the
estimation that is, the relation between samples of size 1 and
samples of size n> 1.

B. Accuracy of the estimation, induced sampling in the
dual space

Given a distribution
fix|A) =02 (x)}e~¥/z(4), (57)
the sample distribution is

Pix,,.x,|A) =T fix;|1)= T2 (x;)exp[ —AZ 4(x;)] '

z"A)
(58)
With the aid of P, the distribution of the sample average
1
=— Ak, (59)
can be expressed as
PA|A)= fp(x,,...,xn 14)
1 -
Xé(—n— SAx)—4 )a'xlmdx,,
4\, — /lnf
_midle " (60a)
ZQ)
where
mid) = [ @m0,
P (i S A@x)—A )dx,---dx,, , (60b)
n
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and
ZR)=2"A). (60c)
It is easy to show that the following relations hold®:
(A)p=14),, (61a)
varp(d) = (1/n)var,id), (61b)
hence
(61c)

( A4 ) 1 ( 44 )
@)Y/r yn \(4)
The last result can be regarded as a form of the law of large
numbers®: the larger the sample the better is our estimate 4

for the average (4 ),.
Consider now the distribution P(4 |4 ) dual to P (4 |4 ):

PA[d)=md)e~*4/Z(d), (62a)
where
Z(d)= ~and gy (62b)
and A is the solution of
3 dni)
ut Z (1) = z"(4 ) implies
1= _alogz:'(l)z_ _alog~z(/1). (63)
dnd) oA
Hence
J= @A), = ~Seidl
04
and
Z{@)=[e"H/z4)"=7(4). (64)
Thus, given the sample average A, we have
Ayp = __‘21:;8”14#= _GlogZd) _ (4.,
) (65a)
s - -
vars(i) = d log_Z(A ) =i8210'g_z(A )
d(nA)? no g4?
=L vara), (65b)
n
and therefore
(65¢)

(&)=,
AYF  yn \(A)/;
The property (65a) characterizes the dual distribution

P (4 |4). Any Bayes’ distribution P (/1_[:4 ) satisfying (65a) is
necessarily the dual distribution to P{4 |4 ). Indeed,

- dlogZ(4) - dlogz(4)
Ald ) = _.____—=(,{ A)—: —_——
(A14)5 20d) |4 )7 Fy

implies Z (Z ) = const - E"(Z ). Property (65b) and its counter-
part (61b) allow us to connect the uncertainty product for a
sample of size n to the corresponding product for a sample of
size one, namely,

- S 1 - 1 -
- =——[4A{4)); — [44(4)],.
[44(4)]5[44(4)]p JE[ { )]f‘/;[ )],
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In view of Eq. (56), we secure
[AA ()]s [A4(A)], = 1/n. (66)

The two “uncertainty products” [Egs. (56) and (66)]
have quite different meanings. Equation (56} is the inherent
uncertainty: However well we know the mean value (4 ) of
A, there will be a finite variance A4 and a finite variance 41
and no further measurement can reduce their product below
unity. Equation (66) deals with a more mundane aspect: the
variance of our estimate of (4 ). It is a purely experimental
uncertainty and does therefore reduce [cf. (61)] as more mea-
surements are being made. Now, AA is what the experimen-
talist reports as his estimate for the uncertainty in the mea-
sured mean value of 4. Often, of course, one does not
estimate 4 for each measured value of 4 but rather reports
only 4 and A4 from which A and A4 are to be computed. In
that case the experimental uncertainties satisfy (66) with
n = 1. Note however that even when many measurements
are made so that the experimental uncertainties are quite
small [i.e., n in (66) is large], the inherent uncertainties con-
tinue to satisfy (56). As we said in the beginning of this para-
graph, 44, defined by (54) is an inherent variance [of the
distribution f (x| )] and is quite distinct from AA, the uncer-
tainty of our estimate for (4 ).

Let us now calculate the density of states m(A4 }. From
Egs. (64) and (7a), we have

- J (e ™M di o J B " da,
-J

d/le“"“f{)(/il) ~2(4,)

s (% S A, —ﬂ.)di,---d/l,,. (67)

Since Z (Z ) determines 7i(A ) uniquely, we obtain, comparing

Eq. (67) with Eq. (62b),
() = f DA)-BA,)

5 (i S, -1 )d/ll---d/{,, , (68)
n

which is the exact counterpart to (60b). The last result sug-
gests that Eqgs. (65) should be rewritten, in analogy to Egs.
(61), as

</-1 )p={(4 )7 (65a’)

varp(d ) = (1/nvary{A ), (65b')
and

ARN 1 (An 65¢'

(<71>)ﬁ_\/;(</1>)7‘ (63¢)

We can summarize the structure revealed by Egs. (57)—{(68)
as follows. The sampling of the random variable X has in-
duced a corresponding sampling in the dual space A, with all
the properties one usually associates with a sample. The
sample distribution in the dual space is given by
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Bld 1) = [ 70 [A) = EW—;— .
Hence the sample average |

A=(1/n)3 A (70)
is distributed according to

PA|A)=m)e "*:":/2"(2 ), (62a’)

with r?z(z ) given by Eq. (68). The quantity A serves as a suffi-
cient statistic for the parameter 4 in Eq. (62a), that is, any
Bayes’ inverse distribution

Py, |4 ) fofd)

PA A A,) =
SP(Arh, ) fofd \dA
m(A)e—’"“ P l/{
Z@A)

is completely determined by the e single number/?. In particu-
lar, the distribution dual to P l{i )is P(4 I/l ), where
Z (/1 )=2" (/1 ). Note that [given 4 (x,,...,x, )] the individual
Ay,...,A, are not observable (and not needed). The only obser-
vable quantity is the sufficient statistic A = (1/n)24,, which
isneeded. Givenan observgtlonA (X15esX ), @ corresponding
observation (or best guess) A is formed viad = — dlog z(A )/
4.

We end this section with the following conjecture. In-
stead of solving directly for the distribution P (4 |4 )[Eqgs. (64)
and (68)], we could have used the prior

folA)=2(A)2(A)
obtained from the solution of Eq. (37) and determine P as the

Bayes’ distribution (4). Thus, we should expect the following
relations to hold:

24)  (purpu
=y [2ar-aa,
5 (i S A -4 )dxl,---d/l,, (71a)
n

or, equivalently

Cavi ﬁ(/l) Yy =nq

v A «7(q).

@) pE dixz(q) (71b)

Although all the examples checked by us do fulfill these rela-
tions, we failed to prove them.

V. GENERALIZATION

Most of the results derived in the preceding sections for
a single parameter can be generalized to the multiparameter
case. Thus, given the distribution

Q (Xexp[ — Z7_ 14,4, (x)]
Z(A 1yl )

(e.g., maximum entropy distribution with m constraints), we

can Legendre-transform any group 4,,...,4,, 1<s<m, to

their conjugate variables 4,,...,4, and obtain the correspond-

ing dual distribution. For example, transforming all the var-
iables 4,,...,4,,, we have

S&|Apd,) =

(72)
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SR isin Ay,
_ 2 (A4, )exp(— 27\ A,4,)

= , 73a
3A,,...A,,) (73a)
where

_ —31,4,

Z(A,,..d,,) = exp (———) (73b)

o Z(A 1seeeh )
with A,,...,4,, the solution of

—3log z(A,,...A
4 = ol An) (73¢)
oA,

and 2 (4,,...,A,,) the solution of
ZA s m)

~ f B (A, h, Jexp ( - ZA,A,)d/l,---d/lm . (73d)

To assure uniqueness of the solution A ,...,4,,, [Eq. (73c)], we
assume that the m + 1 constraints 4y(x) = 1, 4,(x),...,4,,(x)
are linearly independent.'® The uncertainty relation (56) is
now replaced by

44, 44,.>1, r=1,..m, (74)
where equality holds if and only if the covariance matrix
c - _ d{d4,)  Slogz
" I,y I4,) I4,)
= (4, — (4,))4, — (4))) (75)

is diagonal. In order to derive (74), we make use of the fact
that C'is a positive definite symmetric matrix'* with inverse
C ! = C, where

= _ i)  logz
" A4,y  d(4,)d4,)
= (A, — AN, — () . (76)

It is shown in the Appendix that any positive definite sym-
metric matrix C satisfies

C.(C7),>1, (77)

with equality if and only if C is diagonal. In particular, the
covariance matrix fulfills

C,.C, =(44,244,)%>1.

rr rr

V1. DISCUSSION

We have seen in the preceding sections how arguments
of consistency single out a unique inverse distribution dual to
a given direct distribution. We also saw that the only consis-
tent best guess for a random variable is its average. The ap-
parently unsymmetrical role of the constraint—Lagrange
multiplier has been removed and equal status has been en-
dowed to both as conjugate variables. Is there any reflection
of this symmetry in nature? It is tempting to answer in the
affirmative, though lacking concrete evidence in support of
such hypothesis, all that follows must be considered as direc-
tions for future research.

A. Temperature fluctuations

At the heart of statistical mechanics lies the Boltzmann
distribution
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SIEI(B)=0(E)ePE/(B)), (78)

where ( B ) isidentified with 1/7, T'being the thermodynam-
ic temperature determined by the second law via the effi-
ciency of a reversible Carnot engine. Equation (78) predicts
energy fluctuations

_E) _  HE) 9T

AE)? = = =CT?, (19
AEN= =38y = T Tar a(p) 7
where
JE)
c=227
T (80)
is the heat capacity. Similarly, the dual distribution
F(BUE)) =2(Ble=" " /Z(E)) (81)
predicts “beta fluctuations”
2 I(B) d(B) dT 1
A = — = — =
AP = =) or a&y ¢

If temperature fluctuations are real, then we should expect
AB(T)=4(\/T)=|AT/T?|, (83)

where AT (T') is the inherent uncertainty in T (Sec. III A).
Combining with Egs. (79) and (82) we have

AT=(1/C)AE. (84)

B. Imbedding classical mechanics in a statistical
background

Consider a particle leaving x, = 0 at time 7, = 0 and
arriving at x at the final time z. Let

A (x,txo =0,y =0) = f L (x,%)dt =4 (x,t) (85)

denote the action for such a particle, and let
A(pt)=px —A(xt) (86)

denote the Legendre-transformed action. Here x = x( p,t ) is
determined by solving

A
p=04bt) (87)
dx
Similarly, the transformed action satisfies
A
x=é—(p,t). (88)
dp

Suppose that the final x is not known but we are given the
average (x) at the final time ¢. Furthermore, we are told that
the final average ( p) is related to {x) via the classical rela-
tions (87) and (88), that is,

(p) = 94 ({x),t) aA((P)J) . (89)
3x) a(p)

What can we say about the probability density for finding the
particle at time ¢ in dx around x? Similarly, what is the prob-
ability density for an arrival with momentum p in dp? Now,
maximum entropy tells us that both distributions are of the
exponential type. Moreover, in view of the symmetry
between x and p as conjugate variables, we expect the two
distributions to be dual to each other. These expectations
together with relation (89) lead to

and (x) =
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flat | py) = L tlerpl( pIx/) 90
Z({ p);t)
and
7(p’tl<x>)='O(pat_)exp((x>p/ﬁ), (91)
Z({x),t)
where
Z({ p),t) =expld ({ p).t)/H), (92)
and
Z((x),t) = exp(4 ({x),t)/%) . (93)

Here #i is an arbitrary constant having the dimensions of
action. Having chosen the partition functions, the densities
£2(x,t)and 2 ( p,t } are determined by solving

exp(—z—(—(:ﬂ) = J £ (x,t )exp(<—1;>£)dx (94)

and

exp(-/L(;?—’fl) = f 2 (p,t)exp ((Lﬁ)ﬁ_) dp. (95)

For example, if the Hamiltonian is quadratic, it can be
shown that

2 (x,t)< exp( — A4 (x,t)/f), (96)
and
—A(pt)/#). (97)

There is a general relation between the entropy of a distribu-
tion and the corresponding dual partition function, which
we have not yet written down, namely,

2 (p.t) < exp(

SIf]= ff(xu)logf‘ *A) gy
=ff[/lA (x) + log z(A )1dx
=A{4)+logz(l)= —logZ((A)). (98)
Similarly,
S[f1= —logz((1)). (99)
In the present context, we have
S[f]l= — (/A4 ({x),t), (100)
and
S[f1= —(1/Rd((p)t). (101)

Thus the entropy at time ¢ is proportional to the action evalu-
ated at the average position (x). All this is, of course, remi-
niscent of the Feynman path integral approach to quantum
mechanics. Here, however, we have outlined a possible ex-

tension of classical mechanics where the latter describes the
motion of the averages (x) and { p). One can work out the
details of such an extension. For example, for a free particle
(starting at the origin x, = 0 at time ¢, = 0) one finds

Ax = (fit/m)''*, Ap=(mb/t)'/?, (102)
and hence
Av=Ax/t=(1/m)d p. (103)

Thus, the mass of a free particle plays the role of momentum
fluctuation, in analogy to the role of heat capacity as the
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energy fluctuation. The analogy between Eqgs. (84) and (103)
is also striking.
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APPENDIX: AN INEQUALITY FOR POSITIVE DEFINITE
SYMMETRIC MATRICES

In this appendix the following inequality is proved. Any
positive definite symmetric matrix A satisfies

Ay A N>1, (A1)
with equality if and only if 4 is diagonal. Obviously, we ex-
pect the result to be well known, but we were not able to trace

it in the literature. The present proof is due to Shalitin.'*
Let p be an orthogonal matrix diagonalizing 4, that is,

pAp =a, =pa~'p, (A2)
where g is diagonal. Then

4,470 = Zﬁijaj Pji Zﬁikal: ' P
7 x

A=pap, A~

1

_ 202 -
= zpji Prid;8x
sk

1 _ _
= zpfipii - (ajak s a,qa; 1) . (A3)
ik 2

But, for any positive x,

x+1/x>2, (A4)
with equality if and only if x = 1. Hence

AA7Y, >zk, Pfi Di:
J

= Zi’ijl’j.‘ Zﬁik pu=1. (A5)
J 3

If A is diagonal (44 '), = 4,4 ~';, = 1. Conversely, if
equality holds in (AS) then A is diagonal. In order to see this,
we may assume that the matrix p groups together equal
eigenvalues of A. That is, the diagonal matrix a consists of
diagonal scalar submatrices a, 3,..., with a, = a;, B =B,
etc. Let p be decomposed into two parts

p=o+1I, (A6)

where /7 consists of square submatrices /7,,, I1,,... along the
main diagonal correspondingtoa, 5,...,and /T’ is the rest. If
11’0 then (A3) may be rewritten as

A4, —l—zp,.( S P

k,a;, = a;

1
+ Z Pl E(ajak_l +aia;” l))

k.a,+a;
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>§pﬁ-( S o+ 3 pif)

kax=a; k.ay#a;
=Yp Sri=1, (A7)
7 k
where the strict inequality
%(ajak_l + aa; 1)> 1, for a, #aj (A8)

has been used. Hence, /T’ = 0 and each submatrix /7y satis-
fies

mnmyll, =vy. (A9)
By Eq. (A2) we then have
Ad=a. (A10)
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Decoupling of a system of partial difference equations with constant

coefficients and application
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Consider D multi-variable functions, 4;(n), j = 1 to D, where n stands for the evaluation point in
the associated multi-dimensional space of coordinates (7,,1,,...). Let us assume that the 4;’s satisfy
a system of D linearly coupled finite difference equations: the value of each function 4, at the
evaluation point n is given as a linear combination of the values of this function and others at
shifted evaluation points. By introducing D suitable generating functions, G;, j = 1 to D, one is
able to replace the D coupled difference equations by a system of D linear equations where t}}e G;’s
play the role of the D unknowns. After solving this new system of equations, it is then poss1bl_e to
construct a difference equation for each of the 4,’s relating the value of 4, at the evaluation point n
to the values of 4, itself at shifted arguments. The solution of such a decoupled equation can then
be handled using the multi-dimensional combinatorics function technique.

PACS numbers: 02.50. + s, 05.50. +q

I. INTRODUCTION

A one-dimensional multi-term linear recurrence rela-
tion is a difference equation relating the value of a function
A (n) at point n to the values of the same function at shifted
arguments (n — n,), (n — n,), etc., i.e.,

A(n) =fi{nd (n — ny) + fon)d (n — n,)
+ e+ I(n), neZ. (1)

fi(n), fo(n) etc. and I (n) are given coefficients that may depend
on the evaluation point n. If I (n) = 0, the equation is said to
be homogeneous, and if I (n) 0, then the equation is said to
be inhomogeneous. Equation (1) does not allow one to com-
pletely calculate 4 (n), certain initial conditions have to be
specified such as

A(ng) =4, ngef. (2)
Z stands for the region of the one-dimensional space, where
Eq. (1) holds and # represents the set of “boundary” points
{no:}. The solution of Eq. (1) satisfying the boundary condi-
tions (2) has been obtained in a series of articles introducing
for the first time the so-called “combinatorics functions.”!
Further developments then showed the generalization of
this work to multi-dimensional multi-term linear difference
equations,’

4 (n) =fi(n}4 (n — n,)) + f;(n)4 (n — n,)
+ -+ I(n}, neZ, (3)

Amy)=24;, nyef, (4)

where n now represents a point in a multi-dimensional space.
Applications of the one-dimensional and multi-dimensional
combinatorics function technique (CFT) have shown the
flexibility and advantages of the new methodology.> More
recently, the author showed that further extension of the
CFT method is possible and leads to the solutions of a system
of linearly coupled difference equations.* However, the ma-
trix method proposed for the coupled system,* although
technically feasible, presents some difficulties due to the fact
that matrices generally do not commute. It is for this reason
that a new approach has been developed to handle the special
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case of linearly coupled difference equations with constant
coefficients.

Il. LINEARLY COUPLED DIFFERENCE EQUATIONS

A system of linearly coupled difference equations is a
set of equations that relate a set of D multi-variable functions
A;m),j = 1to D. The value of a given function A, (n) at the
evaluation point n, is related to the values of 4, itself as well
as other 4,’s at various shifted arguments, namely,

A4;(n) = f" Y cpd;in—ny)+ 1, ned. (5)
=T

A set of boundary conditions is given by
A;ng) = Ay; ng€f . (6)
In general, c;; and I, are known coefficients that may de-
pend on the evaluation point n. In this article we will assume
these coefficients to be constant.
At this point, it is convenient to give an example of such
a system of equations. This example is relevant to the prob-
lem discussed by Hock and McQuistan® on “the occupation
statistics for indistinguishable dumbbells on a 2 X2 X N lat-
tice space.” Figure 1 shows such a lattice having N portions
of 2X 2 compartments. One refers to the complete lattice as
4,. One calls 4, the lattice whose last 2 X 2 array is missing
one compartment. There are two topologically distinct lat-
tices missing two compartments in their last 2 X 2 array; we
refer to these lattices as 4, and A, as shown in Fig. 2. Finally,
4 is the lattice whose last 2 X 2 array is missing three com-
partments. Forj = 1to 5, 4,(¢,N ) represents the total num-
ber of arrangements of ¢ dumbbells on the 4 ; lattice having
NN arrays. Hock and McQuistan were able to derive the fol-
lowing coupled recurrence relations®:
A\(gN)=4,(g.N— 1) +44,(g — 1,N — 1)
+24,(g — 2.V — 1) + 4,(g — 4.N — 2)
+445(g ~ LN — 1) + 84,(g — 2,N — 1)
+445g —2,N — 1) + 44,g — 3,N — 1)
+24,(g —2,N — 1) + 445 — 3,N — 1),
(7a)
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FIG. 1. 2X2 XN lattice space.

A)gN)=A4,(gN—-1)+24,(g— ILN-1)
+245g —2,N - 1)+ 4g - 2N - 1)
+ Aslg ~ 3,N — 1),
A;g.N)=A,gN—1) +4g—-1LN-1)
+ 24,(g — LN — 1) + 4;5(g — 2,N — 1),(7¢)
AfgN)=A,(gN — 1)+ 24,(g— LN - 1)
+Adg—2,N—1), (7d)
AsgN)=A4,(gN—- 1)+ A4,(g—1,N—-1). (7e)

The region Z# for which these difference equations are satis-
fied is defined by

(7b)

g non-negative integer
N positive integer.
The boundary conditions are specified by

%=[ (8)

A;(gN)=0 for ¢>2N>0, (9a)
A4,000)=1; 4,00,0)=0 for j#1, (9b)
4;0N)=1 for N>1, {9c)

A;(g,N)=0 for g and/or N negative integer. (9d)

Region 7 is then easily identified from the above. Hock and
McQuistan did not make use of these boundary conditions.
We will propose a general method of solution valid in the
general case, Egs. (5) and (6), and which will enable us to
recover the results of Hock and McQuistan in a much more
efficient and straightforward way, while obtaining at the
same time, new results with no extra work.

A A

%

FIG. 2. We show here the last 22 array in the 2 X2 X N lattice, with no
compartment (4,), one compartment (4,), two compartments (4, and 4,),
and three compartments (4;) missing.

Gi(X X )= 3 Ay X)X,

ny,ng,...

(10)

where 7, #,,... run over the possible values of the coordi-
nates of point n such that ne%. For compactness, we will use
the notation

(X)" = (X,)"(Xp) " (11)
so that Eq. (10) becomes

G(X) = 3 4;(m)XT. (12)
Combining Egs. (5), (6}, and (12), it is easy to show that

Gi(X)= 3 ¥ culX)"G,(X) + F,(X), (13)

=1k
where F,(X) is a function of X that can be calculated in terms
of the boundary values 4, and the inhomogeneous term 7,.
Clearly, Eq. (13) is a system of D equations with D un-
knowns, G;, j =1 to D. This system can be written in the
form

D
S |6, — zcﬁ,‘(X)“vk]Gj =F,. (14)
j=1 k

&;; is the usual Kronecker’s delta. Let M be the D X D matrix
defined by

M, =58, — Scu (X
k

Let G and F be the column matrices representing G; and F,
then Eq. (14) becomes

(15)

Ill. GENERATING FUNCTION METHOD MG =F, (16)
With every 4;(n) one associates a generating function and, solving for G, one finds
G(X), G=M"'F. (17)
TABLE I. Total number of arrangements of ¢ dumbbells on the nontruncated 2 X 2 X N lattice (type 4,).
Aylg,N)
q 0 1 2 3 4 5 6 7 8
N

0 1

1 1 4 2

2 1 12 42 44 9

3 1 20 142 440 588 288 32

4 1 28 306 1672 4863 7416 5470 1620 121
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TABLE II. Total number of arrangements of ¢ dumbbells on the truncated 22X N lattice of type 4,.

Al(q)N)
q 0 1 2 3 4 5 6 7 8
N
0 0
1 1 2
2 1 9 21 11
3 1 17 98 230 206 50
4 1 25 238 1097 2574 2955 1445 208

We now apply the generating function method to the
problem discussed by Hock and McQuistan. In this case,

Glsl= 3 3 AlaNxy (18

N=0g=0
Here n is a point in a two-dimensional space of coordinates
(g,V) and X stands for (x,p). Equation (14) specialized to this
problem becomes

[T —y(1 + 4x 4+ 2x%) — x**]G, — 4xp(1 + 2%)G,

— 4x¥(1 + x)G; — 2xyG, — 4x*yGs =1,
— (1 + 2X)G, + (1 — 3xy — %G,
— 26, — x*yG, — x*yGs =0, (19)
— Y1+ %G, — 296G, + (1 —x)G;, =0,
— G, — 2xyG, + (1 — x)G, =0,
—yG, — xyG, + Gs =0.

The solution of this system of five linear equations with
five unknowns is
G; = N;(xy)/D (x.p), (20)
where
Dixy)=1—y(1 4+ 7x+ 6x?)
— xp}(1 + 6x + 6x% — 7x°)
+ 2%3(1 + 5x + 13x% + 4x7)
— X’y (1 + 2x + 6x% + 9x?)
—x3(1 — x + 2x%) + x'H°, (21)
Nypxp) = (1 = xp)[1 = 3xp(1 + x)

+ x>y x — 3) + x%°], (22a)
Nyfxp) = (1 = x%p) (1 + 2x)

+ xA(2 4+ x) — x°y*], (22b)
Ny(x.p) = (1 + x)N, + 2xyN, ] /(1 — x%), (22¢)
Nyxp) = PN, + 2xpN,1/(1 — x%y), (22d)
Ns(x,y) =yN,; + xyN,. (22¢)

IV. DECOUPLING OF THE DIFFERENCE EQUATIONS

The explicit expression of the generating function G;(X)
can be presented in the form

G;(X) = N;(X)/D(X), (23)

where D (X) is the determinant of matrix M. As exhibited in
Eq. (15), matrix element M;; is a finite polynomial. There-
fore, D {X) is also a finite polynomial. It is straightforward to
show that

D (X)G,(X) = N,(X) (24)

generates a multi-term difference equation involving 4;(n)
only. Indeed, let

DX)= 3 (X)a,. (25)
The left-hand side of Eq. (24) becomes
D(X)G)(X) = ¥ (X)"a, Z@ A;m)(X)*

= zﬂ S a,4;m)(X)" . (26)

The equivalence between the right-hand side of Eq. (23) and
the right-hand side of Eq. (24) provides the difference equa-
tion for 4;(n). By relabeling n the combination n + n,, one
finds

3 3 a,4,n — n,)(XP=N,(X) 27)
or
Ya,4;(n—n,) =K;n), (28)

where K;(n) is an inhomogeneous term which comes from
the expression of N,(X); it is the coefficient of (X)" in the series
expansion of N;(X). This completes the decoupling of our
system of linearly coupled difference equations.

TABLE III. Total number of arrangements of ¢ dumbbells on the truncated 2X2 X N lattice of type 4.

A3(q.N)
q 0 i 2 3 4 5 6 7 8
N
0 0
1 1 1
2 1 7 1 3
3 1 15 73 135 86 12
4 1 23 197 793 1561 1423 506 4
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TABLE IV. Total number of arrangements of g dumbbells on the truncated 2X 2 X N lattice of type A,

A4(q’N )
q 0 1 2 3 4 5 6 7 8
N
0 0
1 1
2 1 6 7
3 1 14 61 92 38
4 1 22 177 650 1109 792 170
For the purpose of illustration, let us apply our general Glav = S N AlgNx?
method to the problem discussed by Hock and McQuistan. ) Nzo q;o @V Ry,
It is clear that a monomial x”)° in the expression of D (x,y) in Jm o (30)
generates a term A4 (g — ¥,V — §). Since D (x,y) is the sum of Dxy)= Y dyxy’,
i=0j=0

20 monomials, then each of the 4 ;’s satisfies a 20-term recur-
rence relation. It happens that, in this case, there is no inho-
mogeneous term. Identifying the left side with the right side
of Eq. (24) setting j = 1, and taking for D (X) expression (21)
and for N,(X) expression (22a), one finds that 4,(¢,N ) should
satisfy the initial values listed in Table I and the relation

A,(qN)—A4,(gN—1)—T74,(g— LN —1)
—64{g—2,LN—1)—A4,(g—1,N—2)
—64,(g—2,N—2)—64,(g—3,N—2)
+74,(g — 4,N — 2) + 24,(g — 3,N - 3)

+ 104,(g — 4,N — 3) + 264,(g — 5,N — 3)
+84,(¢g—6N—3)—A,(g—5N—4
—~24,(g—6,N—4) —64,(g—T,N — 4

—94,(g— 8N —4)—4,(g— 8N —5)

+Aylg — 9N — 5) — 24,(g — 10,N — 5)
+A,(g—12,N—-6)=0. (29)

The initial values listed in Table I are precisely the val-
ues computed by Hock and McQuistan.’

A result not previously obtained by Hock and McQuis-
tan is that 4,, 4,, 4,, and A, all satisfy the same difference
equation (29). However, these quantities do not have the
same set of initial values. Since the method of obtaining the
initial values for the A ’s is the same for all the 4 ’s, we will
drop the indices 1 to 5 on the G’s, the generating functions,
and the 4 ’s. We write G {x,y} and D {x,y} in the form,

so that their product becomes

im  Jm 2N
Dxy)G (x,y)= 2 z Z dijA (@ N+ +i
i=0,=0

0g=0
(31)

This product must be identical to the polynomial N (x,y)
(here again we are dropping the index on function N pretty
much the same way we did it for Gand 4 ). N (x,p) is a polyno-
mial of the form

kp

N(x’y) = z

k=01=

Coefficients d; and e,, are immediately identified

knowing the explicit expressions of D (x,y)and N (x,p), respec-

tively. Since expansions (31) and (32) must be equivalent, one
finds the condition

Z Z d;A(gN)=ey. (33)

gqri=kN+j=1

TMB

e Xy’ (32)
[o]

Fork >k, and/>!,,A (g,N )satisfies the difference equation
(29) and Eq. (33) enables one to obtain the initial values listed
in Tables IL, II1, IV, and V for 4, A,, 45, 4,, and A5, respec-
tively.

V. CONCLUSION

We have shown that any system of linearly coupled dif-
ference equations with constant coefficients can be decou-
pled by use of suitably chosen generating functions G;(X).
All functions 4, (n) are shown to satisfy the same decoupled
difference equation with appropriate initial value condi-

TABLE V. Total number of arrangements of ¢ dumbbells on the truncated 2 X2 X N lattice of type As.

Aslg,N)
q 0 1 2 3 4 5 6 7 8
N
0 0
1 1
2 1 5 4
3 1 13 51 65 20
4 1 21 159 538 818 494 82
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tions. Application of the general theory to a specific problem
discussed by Hock and McQuistan has.been successful and
enables one to not only elegantly reproduce their results, but
also obtain new results with no extra hardship. This is due to
the fact that our theory shows that all 4;(n)’s satisfy the same
decoupled difference equation.®
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We investigate the statistical properties of a special branching point process. The initial process is
assumed to be a homogeneous Poisson point process (HPP). The initiating events at each
branching stage are carried forward to the following stage. In addition, each initiating event
independently contributes a nonstationary Poisson point process (whose rate is a specified
function) located at that point. The additional contributions from all points of a given stage
constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the
initiating point process at that stage. The process studied is a generalization of a Poisson
branching process in which random time delays are permitted in the generation of events.
Particular attention is given to the limit in which the number of branching stages is infinite while
the average number of added events per event of the previous stage is infinitesimal. In the special
case when the branching is instantaneous this limit of continuous branching corresponds to the
well-known Yule-Furry process with an initial Poisson population. The Poisson branching point
process provides a useful description for many problems in various scientific disciplines, such as

the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers.

PACS numbers: 02.50. + s, 29.70. — ¢, 94.40.Pa
. INTRODUCTION

The theory of branching processes provides an impor-
tant set of mathematical tools which may be applied to many
problems in modern physics.* These range from multiple
atomic transitions to extensive air showers produced by cos-
mic rays. In many of the existing mathematical treatments of
these problems, the branching is treated as an instantaneous
effect. However, in most physical systems, a random time
delay (or spatial dispersion) is inherent in the multiplication
process.

In a recent set of papers, we examined a special general-
ized branching process in which the multiplication of each
event is Poisson and a random time delay is introduced at
every stage. The first model that we analyzed®~* is the two-
stage cascaded Poisson, in which each event of a primary
Poisson point process produces a virtual inhomogeneous
rate function which, in turn, generates a secondary Poisson
point process. These secondary point processes are superim-
posed to form the final point process. In that model, primary
events themselves are excluded from the final point pro-
cess.>™ The description turns out to be that of a doubly sto-
chastic Poisson point process (DSPP), which we refer to as
the shot-noise-driven process (SNDP).> The SNDP is also a
special case of the Neyman-Scott cluster process.>> Because
of the great body of theoretical results available for the
DSPP, our calculations for the statistical properties of the
process turned out to be relatively straightforward. In an-
other version of this two-stage model, primary events are
carried forward to the final process.®

The second system which we analyzed’ is an m-stage
cascade of Poisson processes buffered by linear filters. Each
filtered point process forms the input to the following stage,
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acting as a rate for a DSPP. This is equivalent to a cascaded
SNDP. We obtained the counting and time statistics, as well
as the autocovariance function. The results of that study are
likely to find use in problems where a series of multiplicative
effects occur. Examples are the behavior of photon and
charged-particle detectors, the production of cosmic rays,
and the transfer of neural information.

In this paper, we consider a cascade model in which
primary events are carried forward together with secondary
events, to form the point process at the input to each succes-
sive stage. Since the primary and secondary events compris-
ing the union process at each stage are not independent, the
solution is somewhat more difficult than for the cascaded
Poisson case considered previously.” The initial point pro-
cess is assumed to be a homogeneous Poisson process (HPP).
The final process is itself homogeneous (stationary). This
treatment should allow us to model a wide variety of phys-
ical phenomena in which particles produce more particles,
and so on, with the original particles remaining. Our process
may also be regarded as a special generalized branching pro-
cess,! in which each event of the HPP produces an age-de-
pendent point process. However, our interest is in the union
of the branching point processes rather than in the statistics
of the number of events at a certain time (or place), as is the
customary quantity of interest in age-dependent branching
processes.

Branching processes with properties such as age depen-
dence, random walk, and diffusion have been studied exten-
sively from a general theoretical point of view.! Few of the
statistical properties are obtained in a form amenable to nu-
merical solution, however. The present work examines a rel-
atively simple process that describes branching with time
delay. Thanks to the simplicity offered by the Poisson as-
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sumption, we can obtain explicit formulas for useful statisti-
cal properties that may be experimentally measured. Exam-
ples are the counting distribution, moments, and power
spectral density, as we demonstrate.

In Sec. I1, we review the properties of a Poisson branch-
ing process in which the branching is instantaneous. This
establishes the properties of the limiting situation, to which
our process must converge when time delay is negligible. We
also consider the limiting case when the number of branch-
ing stages approaches infinity while the average number of
secondary events per primary event approaches zero. In the
instantaneous multiplication case, this results in the Yule-
Furry process,? driven by HPP initial events.

In Sec. III, we introduce time delay at each stage of
branching and define the process formally. We provide ex-
pressions for the moment generating functional of the pro-
cess, from which we compute the moments, counting prob-
ability distribution, and autocorrelation function (or power
spectral density). In Sec. IV, we discuss the important limit
of the continuous branching point process with time delay,
showing how it differs from the instantaneous continuous
branching case.

1I. INSTANTANEOUS POISSON BRANCHING PROCESS

This section is divided into three subsections. In Subsec.
A, we briefly discuss the well-known general Galton—Wat-
son (GW) branching process." In Subsec. B, a special Gal-
ton-Watson branching process, in which the multiplication
is Poisson, is examined. The properties of a Poisson Galton—
Watson process, in which the initial number of events is itself
Poisson, are examined in detail in Subsec. C.

A. Galton-Watson branching process

Let Ny, N, N,,... be nonnegative integers denoting the
successive random variables of a Markov chain, where N,,
denotes the size of the population of the mth generation of
the branching process. The population &, _ , at the
(m + 1)st generation is determined by the sum

N"I
Npoi=3 Z7y (1)

k=1
of N,, independent, identically distributed (iid) random var-
iables Z W, Z 7,...,.Z %, each with probability distribution

ProbZ™ =k)=p?, k=0,1,2,... 2)

This determines the transition matrix of the Markov chain.
It is assumed that Ny = 1. The chain is known as a Galton—
Watson (GW) process.

The basic assumption is that each of the members of a
generation branches independently and identically to gener-
ate the population of the following generation. The statisti-
cal properties of the random number ¥,, may be determined
from its probability generating function

G,,(2)= ("), (3)
which may be calculated by use of recursive equations. These
are easily determined by using the iid assumption:
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Gylz) =2z,

Gpi1(2) =G, [0nlz)], m=0,1,., 4)
where

0.0)=3 prz (5)

is the probability generating function of the random variable
zm,

B. Poisson Galton-Watson process

We now consider a special case of the GW process by
taking

. |0 k=0,
PE=gk=te= /i — 1), k=12,
i.e., Z 7 obeys a shifted version of the Poisson distribution® of
mean a,, . This signifies that each member of the mth genera-
tion survives and remains in the (m + 1)st generation, add-
ing a cluster of offspring which is Poisson distributed with
mean «a,,. We shall call this special GW process the Poisson
GW process (PGW).

By substituting (6) in (5), we obtain

0,)=z"""", m=01.2,.. (7)
Therefore, from (4), the probability generating function is
Gylz) =z,

(6)

(8)

G, (2=G,[z2"*""], m=o0,1,..

C. Poisson Galton-Watson process with an initial
Poisson population

In this subsection, we define a process in which
members of an initial population of random size N, each
independently generate identical PGW processes. The final
process is the sum of these processes. Furthermore, we as-
sume that V, is Poisson with mean a.

The properties of this process may be obtained by re-
garding it as a shifted version of a special GW process in
which N, = 1, and the p}’ are given by

pr =a%e %/k!, k=0,1,..,

9)
oy =0 ), s
Pe=\ar-te e — 1y, k=12,..]" Mo

Thus N, = Z' is Poisson with mean g, and the branching to
generations m = 2,3,... occurs in accordance with a shifted
Poisson law (in which no deaths occur) with parameters
3,as,... . This allows us to write the probability generating
function for this special process as

Gyz) =z,

Gz =e*" ", (10)

G, 12)=G, [z2"*" "], m=1.2,..

Because (10) forms the limiting case for the process we
shall define in Sec. III, some of its important statistical prop-
erties will be provided in the following. All of these proper-
ties may be determined by using (10).
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1. Moment generating function

The moment generating function (mgf)
Q.. (s) = {exp( — sN,,)) may be obtained from the probabil-
ity generating function G,, (z) by the use of 7

Qn{5)=Gnle™). (11)
With the help of (10) we can show that for a Poisson branch-
ing process, with homogeneous branching (i.e., @; = a), and
with a Poisson initial population,

Qm(s) = Cxp{a[Dm(S) - 1] ] 4
where

m>1, (12)

m—1
Do) =Disjexpfa’S (D611},
j=1
Ds)=e"".
For m = 1 and m = 2, we recover the mgf’s for the Poisson
and Thomas counting distributions, respectively.®*®

2. Moments

The moments of the count number ¥, may be obtained
from (11). The mean and variance are’

m—1

(N)=a J[ 1 +a), m>2 (13)
k=1
and
m—1 m—1
Var[N,]=a ¥ C. [ (1+a), (14)
k=0 r=k+1
where
Co=1,
C1=a1,
k—1
Co=a, > (l+a,), k>2.
r=1

The count variance-to-mean ratio (Fano factor F') provides a
suitable index for the degree of deviation from a Poisson
counting process for which F = 1.° We form this ratio with
the help of (13) and (14):

_ Var[XN,, ]
T AN,
- e [mor] [T 0]
(I_] +ak)) 1, (15)
where i
a =1,

(=1 for s<t.

F=1t

For homogeneous branching
(N,)=a(l+af""",
Var[N,, ]
=a(l+a)" *[2+a)l +a ' —1],
F,=[l/1+all+afl +a)"'—1],

m>1, (16)

m>1,(17)
m>1. (18)
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The results for the one- and two-stage cases are clearly iden-
tical to those for the Poisson and Thomas distributions, re-
spectively.®®

When the branching is homogeneous, the nth moment
of N, may be determined from the mgf provided in (12). The
result is the recurrence relation

N1y = (N,,) 2()<N"—k>1“‘+” m>2, (19)

where

=1,

lk
pien— =17 pear

14+am-t "
D&+ _ pk s (k D(k—l)m_lD(l+l)
m - m+az ] m z J ’
<o i<

po=1,
DM =1, k>1,

(N,,)=a(l +a)"~".

3. Counting probability distribution
The probability distribution p,,(n) of N,, may be ob-
tained by differentiating the probability generating function
G.(2)°
1 8"
()= G,z . 20
Paln =1 Gold)| (20)
Using (10) and (20), we obtain the recurrence relation for the
homogeneous case,

Pn0)=e"", (21)

(m+1)pan+1)=(N,.) ¥ paln—k)JG*",
k=0
where
k+1
(k+1) (“1) (k+n’
" (I4+ar 'kt "
k
E(’L<+1)=__ Y 4 o ( )E(k—lj E(l+l)
2 J;
k
Y+ = o ( )Y(k~n E“*”
I;O l ]Zl
m-—1
Y‘fj:exp[ S [EY - },
Jji=1
EX¥ =0 for all m>1, all k>0, except (mk)= (1,1},
EV= -1
| .

In Fig. 1(a), we present a graphical representation of the
counting distribution p,, (n) versus the count number n for
m = 2,3,4, and 10, with @ = 0.5 and {N,,) = 10. It is seen
that the distribution for m = 10 approaches a 5-function at
the origin plus a relatively flat component, indicating very
strong pulse clustering. In Fig. 1(b), the case fora =2.01is
shown. For both cases, it is clear that the variance of the
counting distributions increases as the number of stages in-
creases. It is also apparent that the variance increases with
increasing a, when m and (N,, ) are fixed. The results for
m = 2 are identical to those for the instantaneous Thomas
process.®®
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FIG. 1. Counting distribution p,, (n) vs count number n with m as a param-
eter. The mean count (N,,) = 10.0 for all cases. (a) a = 0.5; (b) & = 2.0.

4. Limit of continuous branching

An important special case is one in which the number of
branching stages approaches infinity, while the branching at
each stage becomes infinitesimal. Let
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(22a)

m—ow ,

a—0, {22b)
with the product

ma=x {22¢)

remaining finite. In this limit, we denote NV,,, and Q,,.(s) as N,
and Q, (s), respectively. The limit of (12) yields

Q. (s) =exp{a[D,(s) - 1]}, (23a)
where D, (s) satisfies the differential equation

9_Dp,is9)=D,{s) [Dyls)— 1], (23b)

ox
and the initial condition is

Dyfs)=e". (23¢)
Equation (23) has the solution

l—e"*
= —a R 24
Q.ls) exp[ 1-—(1—e"‘)e“] (24)

which is recognized as the moment generating function for
the linear birth (Yule-Furry) process with a Poisson initial
population.'®

The nth ordinary moment of N, is found to satisfy

wrry = 3 (e, e
k=0
where
=1,
I(k+”—(_1)k+le—2x o 1k+1

l—e ™ “i(l—e %
The mean count is
(N,) =ae", (26)
and the variance, which is readily obtained from (25), is given
by
Var[N,] =ae(2e¢" - 1). (27a)
The Fano factor therefore takes the particularly simple form
F,=20-1, (27b)

which is, of course, also obtainable from {18).
The probability (counting) distribution p, (n) of N, may
be determined from (24) or from the limit of (21). The result is

a

p0)=e"",
(28)

(4 Dpn+ )= (N) S poln—k)JE+Y,
k=0

where
JE+D ==k 4 1)(1 —e M.

It is of interest to show the manner in which the distri-
bution p,,(n) approaches p,(n) as m— o0 and a = x/m—0.
In Fig. 2, we plot the counting distributions p,, (#)form = 5,
10, and 50, with fixed ma = x = 1.0. We also plot p, (n) for
x = 1.0, which is labeled Y-F (Yule-Furry). The final count
mean of all distributions was kept constant at a value
{N,,) = 10 [this means that the initial mean a differs from
curve to curve; see (16) and (26)]. The results demonstrate
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that the limiting Yule—Furry distribution p, () is essentially
attained (for this particular set of parameters) when m>50.

i1l. POISSON BRANCHING POINT PROCESS
A. General branching point process

A generalization of the sequence of integers Ny, N, V,,...
discussed in Sec. IIA is the sequence of point processes Nyt ),
N,(t), N,(t),... . Events now have times associated with them.
The variable N, (¢ ) represents the numbers of events of the
mth generation which occur in the time interval ( — oo,2]. It
is again assumed that the sequence N,, (¢ ) is Markov, i.e.,
given the point process V,, (¢ ), the statistics of the point pro-
cess V,, , ,(t) are completely defined. The transition from
the process N, (¢} is obtained as follows. Each event of a
given generation independently generates a point process.
These point processes are statistically identical when each is
measured from the occurrence time of the event that gener-
ated it. The following generation is comprised of the union of
those point processes. For example, if the process V,, (¢) has
occurrence (jump) times ¢ 1, t7, t7,..., the k thevent of the
mth generation, which occurs at time ¢ ', generates a point
process Z ;'(t — t ). The point processes Z '(t), Z 7(t),...
are iid. The process N,, , ,(¢) is the union of the processes
Z7e—1t7), k=1.2,.. ;ie,

Noalt)

N, (t)=3 Zpie—1p).

k=1
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The general branching point process Nyt ), N,(t),... is com-
pletely defined once the point processes Z ™(t ) are defined
form=0,1,....

B. Poisson branching point process

We shall call a general branching point process Poisson
if Z ™(¢ ) is the union of a Poisson point process of rate 4, (t ),
with a process u(t ) [u(t) = 0, 1 < 0; »(t ) = 1, £>0] containing
only one count at ¢ = 0. The initial process Nt ) also con-
tains a single event at = 0, i.e., Nt} = u(t).

C. Poisson branching point process driven by an initial
Poisson point process

Here we assume that the 1st generation N,(¢) is de-
scribed by an HPP counting process of rate u. Subsequent
branching follows a Poisson branching point process as de-
scribed in Sec. ITIB. Because of the stationarity of the initial
generation N, (t ), the point processes of subsequent genera-
tions will remain stationary. This process shall be referred to
as the Poisson-driven Poisson branching point process.

To understand the nature of the formation of this pro-
cess, and its possible applicability to physical systems, we
can think of it schematically as a cascade of systems T,
operating on random point signals. Consider an operator P
representing a Poisson point generator that operates on a
function X (¢ ) to produce a sequence of impulses
dN(t)=Z,8(t — t,); dN (t) represents a Poisson point pro-
cess of rate X (¢ ). Consider also a unit system designated
h,.(t}, representing a time-invariant linear system of impulse
response 4, (¢ ), that operates on the signal 3, 8(r — ¢, ) to
produce the signal 2, 4, (t — 1, ). The functions 4,, (¢ ) are as-
sumed nonnegative.

The Poisson branching point process with an initial
Poisson population is formed as follows. The first generation
dN,(t)is a homogeneous set of Poisson impulses of rate u as
shown in Fig. 3(a). This signal is modified by the system 7', to
produce a set of random impulses dN,(t ) representing the
second generation, and so on, as indicated in the figure. The
system T,,, which is shown in Fig. 3(b), filters the stream of
impulses provided to its input with a linear time-invariant
filter of impulse response 4,, (¢ ). The filtered signal X, (¢ )isa
random continuous process, which in turn acts as the sto-
chastic rate of a DSPP, represented by the set of impulses
dM,, (t). The union of this set of impulses with the input set
dN,, (t) constitutes the final output set of impulses
dN,, . ((t). [Figure 3(c) will be discussed subsequently.]

We now proceed to determine the statistical properties
of the above-described Poisson-driven Poisson branching
point process. The quantities we derive in this section in-
clude: (i) the moment generating functional for the process
N, (t); (ii) the multifold and singlefold moment generating
functions for the numbers of counts in L intervals
[t.t; +T;], j = 1,2,..,L; (iii) the moments of the number of
counts N,, (¢ ) in the interval [0,7 ]; (iv) the counting probabil-
ity distribution for N,,(T) in [0,T]; and (v) the correlation
function and power spectral density.
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FIG. 3. (a) Schematic representation for the m-stage Poisson branching
process excited by a homogeneous Poisson process with rate u. P represents
a Poisson point process generator whereas T, represents a random point
process transformation operator. (b) Point process transformation unit cell
for each stage. The box 4,,, (¢ ) represents the impulse-response function for a
time-invariant linear filter, and P is a Poisson point process generator. (c)
Equivalent unit cell useful for calculating the count mean and variance.
W, (t) is a stationary, zero-mean, white process.

1. Moment generating functional

The moment generating functional associated with a
Poisson-driven Poisson branching point process N, (), at
the mth stage, is defined by the expectation

L,(s)= <exp ( — J_ww s(t)dN,, (¢ ))> . 29)

It can be shown®’ that L, (s) satisfies the following recur-
rence relation:

L,(s)= <exp [ — fjw{s(t)
— by (=1l 11} aN, 1))

=L, {slt)—h, _(—t)e[e= — 1]}, (30)

where the symbol * indicates convolution. The moment gen-
erating functional for the first stage is

Ll(s)=exp{,uf [e“‘”—l]dt]. (31)
For convenience, we define the following operator:
anll= =0+ [ hlo—lexp [~} — 11do.(32)
Combining (29)-(32) then yields
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L, (s)=exp [,u f [exp {41(g2q, — 1 (s(2)))} — 1] at ] ;
m>2. (33)

For the case of identical impulse response functions at
each stage [4,,(t) = h (¢) for all m], (33) can be expressed as

L,,,(s)zexp{ujoo [D, (st} — l]dt], m>1, (34)
where ) »
D, (s,t) = Dils,t) exp {h(—t)* 2 [D;(s,t) — 1]] ,

=
Dst)=e ",

2. Multifold and singlefold moment generating function

The L-fold moment generating function for the
numbers of counts in the intervals [4:4 +T;],
Jj=12,..,L, can be obtained from the moment generating
functional L, (s) by the substitution

sit) =svi(e), (35)
where s and v(t ) are vectors defined by

S = (§1,825.--55. )

V(1) = (vy(2 )0t )0 (2))
bit) = [1, 4<i<; + T,

s

0, otherwise, j=1,2,3,..,L.

The symbol t indicates vector transposition. This results in
o =exp {u [ lexp { —svie)) —11a],

(36)

Ouist=exp {1t [ [exD (41lasaran_ (VD)

—1] dt] , m>2.
For identical branching, it follows that

Q,,,(s)=exp{,uj°c [D,,,(s,t)—l]dt], m>1, (37)
where -
D, (st) = D,(s,t) exp [h(—t)* mf [D,(s.t) — 1]],
Dy(s,t) =exp [ — i 5; vj(t)] .

Equation (37) will be used to determine the correlation func-
tion and power spectral density for the process.

The statistical properties of N, (T'), the number of
counts in an interval [0,T"] at the mth stage, may be deter-
mined from the singlefold moment generating function,
which is readily obtained from (36) by substituting L = 1:

0,(5) = exp [uf Lexp{ —solr)} ~ 11 |, (38)
0,.(s) = exp {u |7 texp tglantar-g— it}

— l]dt], m>2.
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This recurrence relation is difficult to use unless the branch-
ing stages are identical (homogeneous branching), in which
case it reduces to

Q,.ls) =exp [yf_: [Dnlsit) — 1] dt] , m»1,(39)

with

D, (s,t) = Dy(s,t) exp [h (—t)* z [Dyls,t) — ]}

=
D s,t) =e M,
1, OKKT,
)=

e {0, otherwise .
3. Moments

The nth ordinary moment of N, (T') follows directly
from the singlefold mgf by means of the relation’’

(NLTH =(— 1)" (40)

s=0
Using (39) and (40), the recurrence relation for the moments
(in the special case of homogeneous branching) becomes

(NZHHTY
Z n
=(N,(T)) ¥ (k) (NLZHTRIR™Y, m>2,(41)

where

19=1,

T 1) -7 pueyar,
+a'"_ —

D) =or) D100+ 3 (7) D510

x[h(-;).z D“*”(t)]

j=1
DOt)=1 for all ¢,
DR =yt), k>1.
This should be compared with the expression for the instan-
taneous case given in (19).

For homogeneous branching, the mean number of
counts is

(NLAT) =AN(T)) =pT (1 +a)" "', (42)
and the variance of N,,,(T') is

Var[N,,(T)] = (N (T) I3, m>2, @3)
with

It = —-———f D3ty dt,
T +a)"~’

D)= (D) +h(— 1) Z DPht),

i=1

DUt = vle) + k() S DMe),
j=1

DMt) = uft).
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In the limit of long counting times
Var[N, ] =pT(1+a)"*[2 +a)l +a)"~' —1], (44)

in accord with (17) for instantaneous branching. Though
higher statistical properties are difficult to compute for non-
homogeneous branching, the count mean and variance can
be obtained.

For this purpose, we consider the representation pro-
vided in Fig. 3(c), where W,,(t) is a stationary, zero-mean,
white random process, with a cross-correlation function giv-
en by

Ry, w, (1) = (W,(t + 1)W,(t)) = (X,(t))?8(t)5,; . (45)

6(t) and §; are the Dirac and Kronecker delta functions,
respectively. The system in Fig. 3(c) turns out to be identical-
ly equivalent to the one in Fig. 3(b) as far as computation of
the first and second moments are concerned.”'>!* A
straightforward calculation provides

(N T =pT T[ 1 +a), m>2 (46)
and
Var [N, (T)]

=p kz—:o Ce _T(T_ I71)

m—

><,=:+11 [8(r) + h,(r) + h,(— 1) +g,(7)] dr,

m>2, 47)
where
C =1,
Cc =1,

k—1

Co=a; [[ 1 +a), k32,

r=1

a, =f h(t)dt,

g1} =h,(r)*h,(—1),

i [8(r) + A dr) + A (— 1)+ g.(1)] = b(r) for j<i.

The symbol #} _, indicates n-fold convolution. The Fano
factor is therefore

=T nva)] S [ (- )

m—1

X _x [0 +hin)+h(—7)+8(7)] dr,

r=

m>2. (48)

When all o, are identical and equal to @, (46) and (47) reduce
to (42) and (43), respectively. In the limit of long counting
times, the process is effectively instantaneous and the above
expressions for the mean, variance, and Fano factor become
(13), (14), and (15), with @ = u T, respectively. In the special
case m = 2, (46)—{(48) reproduce the previously obtained re-
sults for the Thomas point process.®

Because of the importance of the Fano factor as a sim-
ple measure characterizing the departure of a process from
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the HPP, we carry out a parametric study of its dependence
in our branching process. For simplicity, we assume that the
impulse response functions 4,, (¢ ) are identical at each stage,
and have the simple exponential form

[(Za/rp Jexp( — 2t /7,), >0,

hit)=
0, t<0.

Here 7,/2 is the characteristic decay time of the filter and
is the area under the function.

In Fig. 4, we plot the Fano factor F,, (T) versus the
number of stages m, with 2T /7, and  as parameters. All of
the curves are monotonically increasing functions of m (as
are the underlying mean and variance curves). This is to be
contrasted with the results for the cascaded Poisson process
that we studied earlier,” in which the mean and variance
decay with increasing m if @ < 1. The distinction arises be-
cause of the presence of the feed-forward path [shown in Fig.
3(b)], whch distinguishes the present model as a branching
process, rather than as a simple cascade of stages. For
T /7,» 1, the curves will obey (18}, which provides essential-
ly exponential growth (straight-line behavior on a logarith-
mic ordinate). For T /7, <1, the particlelike clusters of the
points in the process are chopped apart by the small sam-
pling time, leading to the independence that is characteristic
of the HPP.® Indeed, as the curves for 27 /7, = 0.01 show,
F,.(T') remains essentially constant at unity, up to four
stages. The small residual clustering is amplified as m in-
creases above this value. Increasing values of «, of course,
correspond to increased clustering.

(49)

s a=1.1
I .

18 4

VARIANCE-TO~-MEAN RATIO F,(TD

NUMBER OF STAGES (m>

FIG. 4. Count variance-to-mean ratio (Fano factor) F, (T")

= Var(N,,(T)}/(N,,(T})} vs number of stages m, with 2T /7, and a as
parameters. The impulse response functions 4, (¢) are all assumed to be
identical, exponentially decaying functions with time constant 7,/2.
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4. Counting probability distribution

The counting probability distribution function of
N,,(T)canbe derived by using (11), (20), and (38) from which
it follows that

prO=exp{u [~ (ES-1]at), (50)
(4 1) pmln + 1) = N (T S pln — k) TG,
k=0
where
‘I(rf;+” )k+1 f E(k+l)
T(1+a)"‘—‘k'
E%+ V)= EDY %)

m—1

—t)e 3 Efte),

Jj=1

Z E(I+”(t)

ji=1

+ 3 (’j)E‘:,-”(r)h(

vi= 3 (5) v -

/=0

YO9¢)=exp [h(—-t)# 2 [E ) — ]}

i=1
0, 0T,
E(O)(t)z m—1
m exp{ (=) Y [E)f) —1]}, otherwise,
ji=1
0 ogT
E(O)t — { 1 b
o) 1, otherwise,
—1 oikT
Emt 2{ s &S
(¢ 0, otherwise ,

E¥(t)=0 for all ¢, k>2.

Equation (50) reduces to (21) in the limit T'/7,» 1. As T /7,
is reduced, F,,, (T") will decrease (see Fig. 4), and the counting
distributions will narrow. The transition in p,, (1) vs n will
not be unlike that demonstrated for the cascaded Poisson
process (see Ref. 7, Fig. 8).

5. Autocorrelation function and power spectral density

In this subsection, we derive the autocorrelation func-
tion and the power spectral density for the Poisson branch-
ing point process. The autocorrelation function r,, (7) is de-
fined as

r.(r= hm —— (AN, (t)AN,

(A y
where the quantity 4N, (¢ ) represents the number of counts
in the time interval [z,7 + At ], at the mth stage. The equation

for (AN, (t)AN,,(t + 7)) may be obtained from (37) by sub-

(7)), (51)

stituting
L=2,
oyft) = {1, Ogegar,
0, otherwise,
vz(t)={1’ T<IKT + 4t ,
0, otherwise.

Differentiating (37) with respect to s, and s,, substituting
§; =5, = 0, and letting Ar—0 leads to (see Appendix)
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dow

ralr) = {pll +ay" )2 + #f Ynlo)e® 2=, (52a)
where
Yolo) = |1+ H@)P" "+ all +a)"~
1= (I +HEPAL+a)" " g

1-[1+H@)*/(1+a)
H (w)is the Fourier transform of 4 (¢ ). Substituting 7 = Ointo
the second term of (52a) yields the variance

Var [dN,,(t)] =p f Y, () %‘7‘71 , (53)

which represents the power fluctuations of the process
dN,,(t) in the infinitesimal duration A4r.

The power spectral density s,, (@) is defined as the Four-
ier transform of the autocorrelation function r,, (), which is
clearly

Sm(@) =27 { p(l + )"~ '}?6(0) + u Y, (@) . (54)

The first term of (54) represents the dc power of the process
dN,,(t), whereas the second term represents the frequency
distribution of the ac power, which depends on the shape of
the impulse response function 4 (¢ ) through H (w).

The autocorrelation function between the number of
counts in the interval 7, separated by a time delay 7, is de-
fined as

R, (1) = ([N, (t+T)~N,(t)]

X[Nat+T+7) =N, 4+ 7], (55)
which can be easily obtained from (52a) by means of
T pT
R, (7) =f j rat, —t, + 1) dt dt, . (56)
(4] (4]

Substituting (52a) into (56) gives rise to
R, (r)={pT(1+a)"~"}?

dw

+qu Y, @)@ 2, (579)
o 2

where
@, () =T [sinlwT /2)/ (0T /2))*. (57b)

Substituting 7 = 0 into the second term of (57a) leads to the
variance of the counting process,

Var[ V(T =47 [ Vo000 22, (s8)

which is the frequency-domain representation of (43). The
power spectral density for the counts is easily obtained by
taking the Fourier transform of (57a), which provides

Sp(@) =27 { uT(1 + )"~ '}?8(@) + uTY,, (@)Pr(w) . (59)

V. POISSON BRANCHING POINT PROCESS IN THE
LIMIT OF CONTINUOUS BRANCHING

A. Introduction

In this section we investigate properties of the Poisson
branching point process in the limit of an infinite number of
branching stages, when the branching at each stage is infini-
tesimal. Thus we allow
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m—ow , (22a)

a—0, (22b)
with the product

ma =x (22¢)

remaining finite. In this limit we replace the discrete index

m, which has been used throughout Sec. III to indicate the
branching stage number, with the continuous index x. Thus
L, Q. N,..becomeL,, Q., N, .., respectively. Fur-
thermore we define a normalized impulse response function
hy(t) such that

h(t) = aht) (60)

and

J: hoft)dt = 1.

By applying this limit to the expression derived in Sec. III,
we obtain a number of results that form a simple generaliza-
tion of the Yule-Furry process. Their application to the gen-
eration of cosmic ray showers is likely to be useful.

B. Results

We are able to obtain results for the moment generating
functional and moment generating function in the case of
instantaneous branching, when the initial process is Poisson.
These are, of course, identical to those for the Poisson-driven
Yule-Furry process, as provided in Sec. II C. General re-
sults, with arbitrary time dynamics, have been derived for
the count mean, variance, and Fano factor, and for the auto-
correlation function and power spectral density of the point
process. It will be evident in the following that the count
mean and variance depend critically on m. The results below
should be compared with those provided in Secs. II C and
nicC.

1. Moment generating functional

The moment generating functional (34) becomes

L _(s)=exp [,uJ-iO [D.lst)—1] dt] ,

where D_(s,t) satisfies the nonlinear integro-differential
functional equation

(61a)

9 D (st)=Dlsit) (hef — 1} [Dylst) — 1]}, (61b)
ox

with the initial condition

Dys,t)=e ), (61¢)
We are unable to obtain a general solution to (61b). However,
in the simple special case where

hoft) =b(t), (62)

(61b) can be shown to have the solution

— s(t)
¢ ¢ . (63)
1—(1—e e

The moment generating functional is then

—-x

D, (st)=

a I —e=
L (s)=¢ex [— f dt]. (64)
¥ Pl —el—(1—e %
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2. Moment generating function

The moment generating function Q, (s) of the random
variable N, {T') may be obtained from the moment generat-
ing functional L, (x) by setting s(t ) = sv(t ). Equation {61b) is
then a nonlinear integro-differential equation which is diffi-
cult to solve. In the special case of instantaneous branching,
we can use (64) to obtain

1—e"° ] , (65)
1—(1—e Ne™*°

which is identical to {24) with @ = u 7, as it should be. Equa-
tions (24) and (65) are identified as the moment generating
function of a Yule-Furry process driven by a homogeneous
Poisson point process, as mentioned above.

Q. (s) = exp [ —uT

3. Moments

It is possible to obtain expressions for the mean and
variance of N, (T') for an arbitrary impulse response function
hy(t). Applying the limits of (22) on (42} leads to

(N (T)) =pTe . (66)

Note that (66) is identical to (26) with a = uT. A similar
operation on (52b) yields

Y, (@)= lim Y, (o)

m— oo

_ [H{o) + H(— w))eH@+H-all _ g

, (67)
Ho+H(—w)—1
so that the count variance is [see (58)]
Var[N,(T)] =/.LTf:° Y, (0)®r(w) ‘;—j; (68)

Here H (w)is the Fourier transform of At ) (the transfer func-
tion of the filtering system), H ( — w) is the complex conju-
gate of H (w), and the function @,(w} is given in (57b). Using
Eqgs. (66) and (68), the Fano factor becomes

Fir)=[" @sl0)

IHw) + H(—o)] g+ Hi—e~11 _ 1 do
How+H(—w)—1 27
(69)

For the case of instantaneous multiplication, H (@) = 1 forall
o so that (68) and (69) reduce to the Poisson-driven Yule-
Furry results

Var[N,(T)] = uTe*2e" — 1) (70)

and
F,.=2-1, (71)

respectively. Of course, (70) and (71) are then identical with
(27a) and (27b) witha = uT.

To assess the effects of the characteristic decay time 7,
of the filter 4.(z ) on the fluctuation properties of the counting
process N, (T'), we consider a simple example. We make use
of the ideal low-pass filter transfer function

H{o)= [1’ ol <e. , (72)

0, otherwise,
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where /2 = 1/7,. It can be shown that (69) then leads to

Fx=[28x—1]§(T/TP)+ [l—g(T/Tp)] , (73a)
where
EB)=(2/m Si(B/2) — (4/B}[1 — cos{ B /2)] (73b)
and
Si(ﬂ)=fﬁmdy. (73¢)
0 y

In Fig. 5 we plot the Fano factor F,(T') as a function of
the branching parameter x, with the ratio 8=17/7, asa
parameter. In the limit 7»7,, £(7/7,}—1, and

F,.=2>~1 for T»7,, (73d)
in accord with the (instantaneous) results presented in (71).
In the opposite limit (T<7,), £(T/7,}—>2T /7,, corre-
sponding to a reduced Fano factor
F, =[2e"—1]2T/7,)+ 1 — (2T /7,) for T<7,. (74)

It is apparent from (74) and from Fig. 5 that as T /7, de-
creases, the Fano factor, and therefore the degree of fluctu
ation, decreases. The reason for this, once again, is the cut-
ting apart of the particlelike clusters of multiplied events.

4. Autocorrelation function and power spectral density

The autocorrelation function and power spectral den-
sity for the process dN (¢ ) may be determined by taking the
limit of (52a) and (54), respectively. The results are

S.a
IDEAL LOW-PASS FILTER
T _
=, = °°/
4.0 L s
/
/Im.m
/
304 /

VARTIANCE~TO-MEAN RATIO F.(TD

- "
— 8.1
- -
// /
’/ I — .21
" |
1.8 = F L B

a.e a.2 B. 4 .6 2.8 1.e

BRANCHING PARAMETER G

FIG. 5. Fano factor F, (T) as a function of the branching parameter x, with
T /7, as a parameter. In this example of continuous branching, the time

dependence of the process is represented by an impulse-response function
whose Fourier transform is an ideal low-pass filter.
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i) = b [ o) enr 22 (79

and

5. (@) = 2mu’e”S(w) + uY, (@), (76)
where Y (w) is given by (67).

The autocorrelation function of the counts ¥, (7"} for
the infinite branching case is obtained from (75) by using (56).
This provides

Roir) = (TP +uT [ Y, 0l0rlo)enr 92, )

The power spectral density in this case is

S, (@) = 27 uT e*8(@) + uTY, (@)Pr(w) , (78)
corresponding to (59).

In Fig. 6, we present the power spectral density for the
Poisson branching point process s,, (w7,) versus normalized
frequency w7, [see (54) and (76)] with m as a parameter. For
the purposes of illustration, we have chosen an exponential
impulse response function [see (49)] and ignored the delta
function at w7, = 0. The product ma = x was maintained

s. @

EXPONENTIAL FILTER (a)

POWER SPECTRAL DENSITY sSm(wT,)

-18 -8 -8 -4 -2 [ 2 4 [ [ 18

NORMAL IZED FREGUENCY (7,5

. EXPONENTIAL FILTER (b)
B0.B84 o= x=4.0

78.8.4 _(1+ y M

e0.0]

50.8.

4.0l

0.0

20.0.{

2.2

8.9
-10 6 ] 12

POWER SPECTRAL DENSITY Sm(wT¥>

NORMALIZED FREGQUENCY (wT,>

FIG. 6. Power spectral density for the Poisson branching point process
5,,(w7,) vs normalized frequency wr,, with m as a parameter. For the pur-
poses of this illustration, we have chosen an exponential impulse response
function, and eliminated the delta function at w7, = 0. The driving rate
p=(1+a)~"=(1+41/m)" " in all cases. (a) ma = x = 1.0; (b)

ma =x=40.
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constant for each plot [ma = x = 1.0 in Fig. 6(a);

ma = x = 4.0 in Fig. 6{b)]. This enables us to follow the be-
havior of 5,,, {(w7,) as m increases toward the continuous limit
{m = o). The driving rate was adjusted in all cases to be
p=(14+a)~™=(1+ 1/m}~ ™ so that the rate of the final
point processes is unity. For the parameters shown, it is evi-
dent that the curves are of very similar shape, although their
absolute and relative magnitudes are strongly dependent on
m and on ma = x.

Finally, we note that while we generally think of x as
position in a continuum of branching stages, and ¢ as time, it
may be more appropriate in some applications to regard the
variable x as time along which branching progresses, and ¢ as
position. In such an interpretation, 4 (t) will indicate diffu-
sion or migration of particles in space, and ¥, (T") the num-
ber of particles in the space [0,7'] at the time x.
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APPENDIX: DERIVATION OF THE CORRELATION
FUNCTION r_,(r) FOR THE POISSON BRANCHING
POINT PROCESS

Differentiating (37) with respect to s, and s,, and setting
5, =s5,=0, provides

r.lr)= hm (A 7

=,u2f ol (t)dtf @2 (r)dt

(4N, (t)AN,, (¢ + 7))

+ ur @ (t)dt, (A1)
where o
DUt = D V(t)+h(—1) z o),
SR = 0P +h(—1)s S L),
®3t) = & Die) + qba”(r)[h( _ey @%)]
+ ¢‘12’(t)[h (— 1) mf qb;”(t)]
Fh(—1)s z @ Pt)
[h (—1)» mjl @)
X[h(—t)tm_‘ m(z)] (A2)
with the initial conditions
o) = —8),
PPt)= —6(t—1), (A3)
@ Pr) = 5(t)b(7) .
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Taking the Fourier transform of {A2) and (A3) to obtain the
frequency-domain equivalent of Eq. (A1) provides

r(7) = p? @ 0(0)D 2(0) + D 2(0), (A4)

where &  (0) is the Fourier transform of @ ) () evaluated at
o = 0. A simple calculation shows that the first term in (A4)
is

P2 @ N(0)D2(0) = { p(l + )"~ 1}2, (AS)
whereas the second term of (A4) is
p®0)=p f Y, ()t 92 (A6)
 w 27

with Y (w) as given in (52b).
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Orthogonal polynomials with exponential weight in a finite interval and
application to the optical model

R. Mach
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A quadrature procedure is developed which makes the construction of momentum-space meson-
nucleus optical potentials more accurate. We deal with numerical evaluation of integrals with
finite -integration range which contain exp(Dt ) explicitly, where D is a parameter. The Gaussian
rule is used with abscissas determined as roots of orthogonal polynomials with exponential weight
fanction in the interval [ — 1,1]. Recurrence relations and inequalities for these polynomials are
obtained. A nonlinear recursion is derived, which permits the evaluation of abscissas and weights
without accumulation of roundoff error. The nonlinear recursion is solved by means of an
iterative procedure, the convergence properties of which are established. The quadrature
procedure is summarized as an easily implementable algorithm. The rate of convergence is

demonstrated for several test integrals.

PACS numbers: 02.60.Jh, 02.30.Bi

I. INTRODUCTION

Meson-nucleus scattering at medium energies is cur-
rently studied in the framework of multiple scattering the-
ory. The meson-nucleus scattering amplitude is obtained as a
solution of Lippmann-Schwinger or coupled-channel equa-
tions, where the optical potential (or potential matrix) is typi-
cally of the form’

1

Vilp,p, EY=21+ 14 | P(cos )
-1

X t{p’,p, E) F(q)d (cos ). (1.1)

Here, P(cos &) are Legendre polynomials, cos & = p’p/
{p'p) and ! labels the meson-nucleus partial waves. The ele-
mentary meson-nucleon amplitude is usually given in terms
of the partial wave decomposition

tpp E)= Y 24+ 1(p',p, E) Pylcos &) (1.2)
A=0
and the nuclear form factor can be represented as

Flg)= exp( - "—“’—) 0,(q =0 —pl-

n (1.3)

Here, Q, (¢%) is a polynomial and a is related to the nuclear
radius. Since ¢° = p? + p* — 2p'p cos ¥, from Egs. (1.1}~
(1.3) we have

1
V(0 p E)m f e*D,.( ', p, Est dt,
—1

where D = 0.5 p'pa® and Q,, = Q,,.( p', p.E;t ) is a polyno-
mial in the variable t = cos . The degree of the polynomial
increases with the increasing mass number A4 and the energy
E. In typical medium energy calculations it does not exceed
ten or twenty. Relativistic and Fermi motion corrections
spoil somewhat the polynomial behavior of @, ; however,
their role at intermediate energies is not of crucial impor-
tance.”

The angular integration indicated in (1.4} is to be per-
formed with high accuracy, since the optical potential
V,(p', p, E) enters the kernel of Lippmann-Schwinger or

(1.4)
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coupled-channel equations and it is necessary to ensure that
the resulting meson-nucleus amplitudes are not biased by
numerical uncertainty and that they refiect actual physical
assumptions made in constructing the optical potential.?
With increasing D, the function exp(Dt ) Q,, represents a
more and more narrow peak in the vicinity of = 1. There-
fore, the usual methods of evaluating (1.4), e.g., Gauss—Le-
gendre quadrature, are rather awkward for momenta p’ and
p higher than typical nuclear values (~ 1/a), since either only
few abscissas fall into the region, where exp(Dt )Q,, is actual-
ly concentrated, or the number of prints in the quadrature
rule becomes impractically large.

The aim of the present paper is to develop an efficient
and numerically stable procedure for evaluation of the inte-
grals

1 1
I= 7J_,w(1)f(t)dt’

where w(t ) = exp(Dt ) is the weight function, D is a real pa-
rameter, and f (¢ ) is a function which can be approximated to
good accuracy by a polynomial. The Gauss quadrature rule
will be applied to Eq. (1.5), i.e., the integral I is approximated
by I, where

Iy=S 4,fit)

i=1

(1.5)

(1.6)

The method is based on the existence (for any w(t ) > 0) of
a sequence of polynomials {5, (¢)} 7. , which are orthogonal
with respect to (¢ ) and in which S, (¢ ) is of exact degree 7 so
that

(S,,S,,) = -;-f @(t)S,(t)S,,(t)dt = h, when n=m

=0 when n#m. (1.7)
The polynomial Sy(t) = kyII'_ | (t — ¢,), ky >0, has N real
roots — 1 <, <t, <+ <ty < 1. Further, the weights are giv-
en by

k h
A= — M lN L i=12,.,N, (1.8)
knS N8 )Sh 1 ()
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where S, (t;) = (dS(¢)/dt), -, . Note that ¢, and 4, depend
on N, aswellas?;,A;, hy,and Sy(t)in our case depend on D.
However, the dependence on NV and D has been suppressed
here to simplify the notation.

It can be shown that for (¢ )}eC*"[ — 1,1]

FPVNE hy
(2N )k &
holds, thus the Gaussian rule is exact for all polynomials of
degree <2N — 1. Proofs of the statements (1.7)—{1.9) can be

found in Ref. 4.

The abscissas ¢, can be, of course, chosen also in a differ-
ent manner.’ However it is for the property of the highest
algebraic accuracy (1.9) that we prefer to use the Gauss qua-
drature. The property enables one to minimize the number
of usually time-consuming evaluations of the integrand in
(1.4).

The existence of the three term recurrence relation [for
any w(t)>0]

S, 1(t)=la,t+ B,)S,(t) = ¥,S, _,{t)n=0,1,.,N—1
(1.10)

with a, >0, 7,>0, S_,(t)=0, and Sy(z)=1

makes it possible® to determine the roots ¢; and weights A, by
solving an eigenvalue problem provided that the coefficients
{a,,B.¥.} are known. The method is briefly reviewed in
Sec. II.

A numerically stable algorithm is not known for eva-
luation of the coefficients of the three term recurrence rela-
tion (1.10) in the case of an arbitrary weight w(¢) > 0. This
represents a serious difficulty in generating ¢, and 4,. With
the aim of developing a method for computation of the coef-
ficients {a, ,8,,7, } inthecasew(t ) = exp(Dt ), the properties
of the corresponding orthogonal polynomials are investigat-
ed in Sec. III. Relations between the polynomials [we call
them P, (D,t )] and their derivatives are obtained. The links
are established between P, (D, ) and Legendre and Laguerre
polynomials. Further, we succeeded in finding a nonlinear
recursion among the coefficients {a,, 5,,7, }, which turned
out to be very useful for practical purposes.

The nonlinear recursion can be solved by an iterative
procedure, the convergence of which is proved in Sec. IV. An
algorithm is given, which permits an easy and numerically
stable evaluation of the coefficients {a,, B,.7, } and, hence,
of ¢, and 4,, too. The rate of convergence of the quadrature
rule is shown in Sec. V and compared with that of Gauss—
Legendre rule in the case of several test integrals.

Section VI contains a summary and conclusions.

I=1I, + and —1<é<«l (1.9)

Il. GENERATING ABSCISSAS AND WEIGHTS

It was established more than twenty years ago® that a
very powerful method for generating roots of orthogonal
polynomials consists in rewriting the condition Sy () = 0
into the matrix form

T Sit)=1t S). 2.1)
Here, the three term recurrence relation (1.10) was used,

ST(t) = (Solt),S,(t),-...Sy_ (¢)) and T'is the tridiagonal ma-
trix with the diagonal elements ¢,, = — 8, _,/a,_,,

2187 J. Math. Phys., Vol. 25, No. 7, July 1984

n = 1,...,N, and the off-diagonal elements ¢, , . , = 1/a, _,
andt, ,, =v./a, forn=1,.,N — 1. Thus Sy(t;) =0
holds if and only if ¢, is an eigenvalue of the matrix T.
Further, it can be shown®’ that T'is symmetric if the polyno-
mials S, (¢ ) are orthonormal. If T is not symmetric, then a
diagonal similarity transformation is to be performed, which
yields the orthonormal set of polynomials S (¢ ) = Z S (¢) and
the symmetric tridiagonal matrixJ = Z TZ ~'. Eigenvalues
of the matrix J are abscissas of the Gauss rule. Calculating
the eigenvectors S (¢,), associated with the eigenvalue ¢,, one
can obtain the weights A, from

A [SE)™Sit)=1, i=1..N, (2.2)

which is a consequence of Christoffel-Darboux identity.?

Therefore, the crucial point in generating abscissas and
weights is the evaluation of the coefficients {a,, £,,7. ],
which form the elements of the matrix J. The polynomials
can be expressed in terms of the moments

1 ; o
R, = —z—f_lw(t jt/dt, j=0,.,2N—1 (2.3)
as
Ro Rl Rn
Rl Rz et Rn+1
S,(t)= —- : : :
" Rn—l Rn R2n—1
1 t t"
k n
_ R (n)g i
= 3 i;B, L, (2.4)
where B =1,
B‘:’=Det(Bij)>0’ B;=R,,; ,
for I<i<n — 1, Igign — 1, (2.5)

k, #0 is arbitrary and the remaining coefficients B " can be
inferred from (2.4). It is tempting to express the coefficients
{a,,B,,¥,} in terms of the moments (2.3), which can be
easily calculated in the case of w(t ) = exp(Dt ). Such a proce-
dure consists of two steps.”

(i) The norm of the polynomials S, (¢ ) is
h, =kZ B7 /B and the three term recurrence relation
(1.10) takes the form

\)bn+1 §n+1(t)=(an _an+l +t) n(t)
—b,S,_\(t)) n=0,.,N—1
with S_ () =0 and S,(t) = 1/VR,

(2.6)

for orthonomal polynomials S, () = S,,(¢)/\/#, , where

a,=—B /B, b, =By "B "/[B]*>0
(2.7)
and @, = b, =0.
The matrix J, which is to be diagonalized, has the following
nonzero elements: J,;, =a;, —a,_, fori=1,..,N and
i1 =Jdip1,=+b fori=1,.,N—1.
(ii) The matrix B = { B, }, where B, are defined in (2.5),
is symmetric and positive definite. Such a matrix can be de-
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composed as B = F T F, where Fis an upper tridiagonal ma-
trix with elements

i—1
Ek ( i+k—2 — Z

j=1

,-k)/F,-,- i<k, i=1,.,N + 1.

(2.8)
Golub and Welsch have shown’ that
b, = (Fiy Li+ l/Fi,i)Z' (2.9)
The decomposition (2.8) represents a straightforward meth-
od for obtaining all the coefficients a; and b; necessary for
constructing the J matrix.

Unfortunately, in the case of weight w{t ) = exp(D¢ ), the
method (ii) gives numerically unstable results® for all values
D and for as small a degree as N = 10. It would be desirable
to obtain a recursion among the coefficients @; and b,, which
is more transparent than Eq. (2.8) and does not contain re-
dundantelements F, ; , ;,j =2,3,..,N + L. Thisis the reason
why properties of orthogonal polynomials with exponential
weight are studied in some detail in the next section.

a;=F;, 1/Fi,i

ll. ORTHOGONAL POLYNOMIALS WITH
EXPONENTIAL WEIGHT IN[ — 1,1]
In this section, the weight is specified as
o(t) = exp(Dt), (3.0.1)

where D is a real parameter. The properties of the polynomi-
als
P,(Dt)=S,Dt)/k,=t"—a,D)}t"" '+ (3.02)

are studied, since most of the expressions obtained have a
simpler form for P,(D,t) than for S, (D,t ) or S,(D,t). When-
ever the quantities under consideration depend on the pa-
rameter D [e.g.,a,(D)and b, (D )asdefined in{2.7)], it willbe
shown explicitly in this section.

lll.1 Moments

The following recurrence relations hold for the mo-
ments (2.3)

sinh{D 2k
Ryp)= XL _ B g, D) R_D)=0,
(3.1.1)
cosh(D 2k +1
Ry (D)= D‘ ) _ 1 RouD) k=0
Another obvious relation
R...(D)=d(R,(D))/dD (3.1.2)

can be obtained from Eq. (2.4).

1.2 Symmetry properties

It follows from (3.1.1) that R, (D) = R,,(— D) and
R, . 1(D)= — Ry . ,{— D). Using Eq. (2.5), we have after
simple manipulations

B'"D)=B"—D) (3.2.1)
and

P,Dt)=(-1)P,(— D (3.2.2)

This is the reason why we restrict ourselves to nonnegative

,—t).
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values D in our further investigation. Particularly,

a,D)= —a,(—D) b,(D)=b,(—D). (3.2.3)

111.3 Explicit expressions for P, (D,f) with n<2

It is instructive to evaluate the lowest degree polynomi-
als P, (D,t) using moments {2.3) and Eq. (2.4). We have

PyDt)=1, P,Dys)=t+ 1/D— coth(D)
and
2t 1 — D coth(D
PADt =17+ {1+ 5 + D1 ict:oihz)(D)) ]
_1__2_ LDZ—ZDcoth(D)+2.
D? ' D2 1+D*1—coth¥D))
(3.3.1)
With increasing degree n, the coefficients of P, (D,t ) contain

higher and higher powers of coth(D ) and D.

111.4 Limiting cases

It is evident from (2.3) that in the case D = 0 (w(t ) = 1),
the polynomials P, (D, ) go over to the Legendre polynomi-
als P, (t). We have

1
lim P,(Djt) = ———P,(t). (3.4.1)
D0 (2n — 1N
If the values
1
lim Ry (D)= )
lim RalD) = 2 +1
lim R, ,(D)=0, k=0,.,2n—2 (3.4.2)
D—0
are substituted in (2.4), we are left with
n-—1
lim B"(D)= [ ] 343
lim B.D) = kH02k+1 (2k—1)" (3.4.3)
Using Eqgs. (3.4.1) and (3.4.3) we have
2
lima,(D)=0 limb,(D)= ——r (3.4.4)
D0 D0 4n° — 1

In investigating the asymptotic region of large D, we
begin with
Dk ! j
ReD)= £ 3 KL (— i) +0(e-?). (34.5)
2D <o (k —J)! D
After substituting (3.4.5) into Egs. (2.4) and (2.5), we have for
fixed n

BrD)= B 2402 (3.4.6)
)= ST e K
and
1
P,(Dt)= %;L,,[(l—t)D] +0(e~?P), (3.4.7)
respectively. Here,
no(n\ (—z))
L,@z)= ( ) —_— (3.4.8)
j;o J _]1
are Laguerre polynomials. Finally, we obtain
a,D)=n—n*D+ 0 )
b,(D)=n*/D?+ 0Oe " *P) (3.4.9)
R. Mach 2188



It can be concluded that the quadrature procedure
studied here turns out to be the Gauss—Legendre rule for
D = 0 and asymptotically goes over to the Gauss~Laguerre
rule for large D.

111.5 Relations among polynomials and their derivatives

We begin with the observation that the three term re-
currence relation (2.6) can be rewritten for the polynomials
P,(D,t)as
P, \(Dit)—(a,(D)—a, . ,(D)+1)P,(Dgt)

+b,(D)P,_,(Dit)=0 (3.5.1)
with P_(D,t) = 0and Py(D,t ) = 1. Except for Eq. (3.5.1), all
other relations derived in this subsection reflect the special
properties

99t) _ poiry and ) _ ro)

dt dD

of our weight function (3.0.1).

It can be seen from Eq. (3.0.2) that dP,(D,t)/dD is a
linear combination of polynomials P,(D,t ) with the highest
possible degree i =n — 1,

dP,(Djt) =
2 = Y 5,P(D).
dD i;o ( )

Constructing now the expressions

(3.5.2)

(3.5.3)

d
D (P.(Dyt), P(Dyt))

= (D) P D)) + (- P.(Dyt), P(D; ))

+ ( P, (D), %P,.(D,t )) i=0..n—1 (3.54)

and using
(P:i(D,t), P(D,t))

=B \D)/BJD) fori=j

=0 for i#j
we arrive at the conclusion that §, = Ofori = 0,...,n — 2 and
8,1 = — b,(D),sothat we are left with the important rela-
tion

dP,(Dt)/dD 4+ b,D)P,_,(D,¢t)=0. (3.5.6)

It follows from the comparison of the coefficients at z" ~ ' in
Eq. (3.5.6) that

da,(D)/dD =b,D)>0. (3.5.7)
Therefore, a,, (D ) is an increasing function of D, positive [see
Eq. (3.4.1)) for D> 0.

Another class of relations involves derivatives
d P, (D,t)/dt. The relation

(3.5.5)

n+1

Z € P (D)

i=n-—2

24 _
(t? ~ 1) P,(Ds) (3.5.8)

holds, since

( P(D,t)t*—1) % P,(D,t ))

- - 1 d -
=~ (2@, oy 3 L7 = Belt) D] =0
(3.5.9)
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fori <n — 2. The coefficients €; can be determined from Egs.
(3.5.8), (3.0.2), and the orthogonality relation (3.5.5).
Further, using the three term recurrence relation (3.5.1), we
have
dP,(D,)

dt
=(nt+a,(D)+ Db,(D)) P,(Dy)

—b,(D)[21+ 14D (t+a,,,(D)—a,D)]

(t?—1)

X P, _ (D). (3.5.10)
From similar considerations we also obtain
t°—1d

o] dr [@(t) P, _1(D;t)]

—[2n—1+D(t+a,(D)—a,_,(D)] P,(Dy)
—(nt+a,(D)+Db,(D)) P,_,(D;t). (3.5.11)

The last two equations serve as a starting point in deriving
the relations among the coefficients a,,(D ) and b, (D) as well
as the differential equation for P, (D,t).

111.6 Relations among a,,(D) and b, (D)

At the points £ = 1 and t = — 1, Egs. (3.5.10) and
(3.5.11) reach an especially simple form. Denoting

X,(D)=20+1+D(a,,,(D)—a,D)), i=0,1,..n.
(3.6.1)
we have forz =1
(n +a,D)+Db,(D)) P,(D,])
=bn(D)(Xn(D) +D)P,,41(D,1),
(3.6.2)
(X,_.(D)+D)P,D,)

=(n+a,(D)+ Db,(D)) P, _,(D,1).
Since P;(D,1)#0 for i = 0,...,n, we have
n+a, D)+ Db,(D)
=b,D) X, (D)+D \[X,_,(D)+D. (3.6.3)
Here, we used the inequalities ,,(D )>0 and b, (D ) > 0 for
D>0, which have been proved in previous subsections and
which imply [see Egs. (3.6.2)] that (X;(D ) + D) does not
change the sign for D>0. It follows from (3.6.1) and (3.4.4)
that (X;(D) + D )> 0holds for D»0. Further, P,(D,1) > 0fol-
lows from Eq. (3.6.2).
An analogous derivation can be performed also for
t = — 1. Taking into account that
P,(D, — 1) =(— 1)| P,(D, — 1)]#0, i =0,...,n, and
Xo(D) — D = D coth(D)> 0 [see Eq. (3.3.1)], we obtain
n—a,(D)— Db, (D)
=b,(D)JX,(D)-D JX,_,(D)-D,
where
n>a,D)>n—n?/D, b,D)<(n/Dy, and X,(D)>D
for all D> 0. (3.6.5)

The system of two equations (3.6.3) and (3.6.4) can be
treated as a recursion fora, (D), n =0,1,...,N, and b, (D),
n = 1,..,N — 1, with starting values a,(D) = 0 and q,(D )

(3.6.4)

R. Mach 2189



= coth{D ) — 1/D. Technical aspects associated with the
evaluation of @, (D) and b, (D ) will be discussed in the next
section. Here, we give two alternative formulations of the
recursion, which are useful in practical applications.

It is easy to verify that the system (3.6.3) and (3.6.4) is
equivalent to the following one:

Vb.(D)=2n/[JX,(DY+D X, D)+ D

+ JX.(D)-D JX,_,(D)—D ], (3.6.6)

2na,D)=b,D)D%a,, (D)—a,_,(D)+2n/D).
(3.6.7)
The second formulation is obtained when one intro-
ducesa,(D)>0,i=1,...N + 1,byX,(D)/D = cosh(2a;(D))
and rewrites Eqgs. (3.6.6) and (3.6.7) as
cosh(a,(D)—a,_,(D))
cosh(a,(D) +a, (D))

n? 1

D cosh’a,(D)+a, (D))
Using an analogous expression for a, . , (D), one obtains
after simple manipulations a very instructive recursion
sinh(2a,, (D)) = (n/D Jtanh(a, (D) + a, _ (D))

+ ({n + 1)/D tanh(a, , (D) +a,(D))
(3.6.9)

a,(D)=

(3.6.8)

for a, (D) with starting values a_,(D ) = 0 and
agD)= —}In{tanh D /2). (3.6.10)
Taking into account Eq. (3.5.7), we can obtain from (3.6.3)
and (3.6.4) also
22 a,(0)= L tanha, (D) + &, (D)
dD D
n+1

tanh{a, , {D)+ a,(D)).
(3.6.11)

Equations (3.6.6)—(3.6.11) provide a solid basis for numerical
evaluation of a,, (D) and b, (D).

IV. ALGORITHM FOR EVALUATING a,(D) AND b,,(D)

The recursions derived in the previous section are not
very transparent and are to be investigated in some detail
before using them for computation of a,,(D) and b, (D ). Our
objective is to generate the sequences @, (D) and b,,(D),
n=1,.,N + 1, for fixed value D.

Let us start with the case of large D. It is advantageous
to rewrite Egs. (3.6.6) and (3.6.7) as

2D,
=D*— X2 | 42X, , —2a,D— (X2 ,—D)"?
X [(X,_, —2n)?+4Da, — D', (4.1.1)
a,,, =4a,_, +2na,/D?, —2n/D, n=1..,N +1
with g, = 0 and a, = coth(D )} — 1/D. In what follows, the
dependence of a,,, b,,, and X,, on D is suppressed to simplify
the notation. The expression for X, is given by Eq. (3.6.1). It

can easily be verified that the asymptotic expression (3.4.9)
for @, and b, provide an exact solution to (4.1.1) for any
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D> 0. This causes some difficulty when @, and b, are evalu-
ated numerically, since the starting value a, = coth(D) — 1/
Disverycloseto 1 — 1/D for D3 1and the asymptotic rather
than desired solution is generated by (4.1.1) for n > 1.
The problem can be solved by introducing
a,=n—n*/D+2g, and b, = (n/Dy —2d, (4.1.2)

and rewriting Egs. (4.1.1) in the form

/ g
n n n— (1— __n)+_n + - ?
(g g 1) D D (gn gn—l)

+ [(gn —gn—l)2+(gn _gn—l)]”z

271 2g 172
X[ n—— " 2+ n_ "= (1_ ) "]
(8 — 81 ) + (8 —8n_1) 5 + D

(4.1.3)
8r+1 =8n_1 +2[ng, + D(D—n)d,)/(n* —2D?d,),
n=1..N4+1,

with g, =0 and g, = exp( — 2D).

It should benoted thatg, . , >g, >0andd, > Ofollows
from Egs. (3.6.5) for D > 0. Therefore, no cancellation occurs
in(4.1.3)ifd, and g, , , arecalculated forn < min(N + 1,D /
2). The error in determining d, and g,, , , is not larger than
approximately 10~ %, where § is the number of digits carried
in the calculation. We have verified by computer calculation
that still for n < min(¥ + 1,D ) only two or three decimal dig-
its are lost if N<40, which is quite acceptable for practical
purposes. On the contrary, the recursion (4.1.3) quickly
breaks down for n > D due to enormous cancellation, which
occurs especially in the expression for d,,.

To complete the algorithm for evaluating a,, and b, we
need a method which works in the interval N + 1>n>D. In
this “small D ” region, we encounter the following difficulty.
Let us represent g, and a, _, as

7
a,=D Y c"D¥+0(D¥*?),

i=0

I

a,_, =chf."“)D2i+O(D2’+2). (4.1.4)

i=0
This can be always done in a disk on the complex D-plane
with the center at D = 0 and with a finite diameter, since @,
is an analytic function of D in the vicinity of the origin [see
Egs. (2.4), (2.9), and (3.4.4)]. Now we evaluate a,, , , using
Eqgs. (4.1.1). The error of this quantity will be of the order of
O (D *)—larger than the error of the input values. We can
conclude thatin the “small D > region the errors are accumu-
lated when we move in the recursion (4.1.1) from small to
large values n.

Unfortunately, the same is true when we move in (4.1.1)
from large values n towards small ones. This property of the
recursion remains unchanged also in the other formulations
derived in the previous section. This is the reason why we
prefer to solve the recursion in the D < n region by iterations.
The method is based on the following theorem.

Theorem: Let us consider a set .S of sequences {a!},
wherea'? | = 0fori = 1,2,...,a'" are arbitrary real numbers
such that a!!'>0 holds for n = 0,1,..., and &' > 0 holds at
least for one n. Finally, the elements a * ' are defined by
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+1

sinh(2at+ 1) = 15— tanh(@?, , + a¥)

+ —Z- tanh(@? + a¥_,) (4.1.5)

fori=1,2,.;n=0,1,..

Then the limits 0< lim, . &% = @, < « exist for all D> 0,
n =0,1,..., and define uniquely the sequence {«, }, which
satisfies the recursion (3.6.9). There exists only one sequence
fa,},a_,=0and a, >0, n =0,1,..., that satisfies (3.6.9)
and its starting value is ¢y, = — 0.5 In(tanh D /2).

Proof: We start with several simple observations. For a
sequence {a, }, a, >0, which satisfies Eq. (3.6.9), the in-
equalities

2n+1

2D
(4.1.6)

2n+1

sinh(2e,) > tanh(a,) or cosh’a,)>

hold for n = 0,1,... Further, we have

lim a, = », lim [-—1— sinh(2a,,)] =2 (D>0)
n D

(4.1.7)
and
D*
lim {n*[tanh(a, +a,_,)—1]} = -

Consider now a sequence {a'?}€S. There exist two se-
quences {@\}€S and {@?}eS with the following properties:

(i) Let @) = o, then@’>a'* ! and @7 > a'? hold for
n=0,1,.;i=12,..

(ii) Let ') > O be the first nonzero element from a'",
n=0,1,....

Wedefine@}' = a|if(2k + 1) <2Danda}’ = min(a}",
arcosh[((2k + 1)/2D)!/?] otherwise. Further, we put@!!) = 0
for n#k. Then @?<at+ " [see Eq. (4.1.6)] and @"<a'? hold
forn=0,1,..;i = 1,2,.... The limits lim, , _a? =&,
and lim, . @ = @, obviously exist, 0<a@, <&, holds, and
@, and @, satisfy (3.6.9).

Further, it can be shown from (3.6.1) and (3.6.8) that for
any sequence {a, }, a, >0 which satisfies (3.6.9),

n—1

Z cosh(2a;)

cosh(a, —a, ;)

2
n
= —tanh’(a, + a,_,)+n
D ( ! coshla, +a,_ )
n D
e + J— n
p a7
holds, where lim,___ %, = 0. In deriving the last relation,
Egs. (3.6.1), (3.6.8), and (4.1.7) were used. Therefore,

(4.1.8)

lim i [cosh(2@;) — cosh(2a;)] =0

n—o ;=0

(4.1.9)

v @ exist and define
uniquely the sequence {a,} = {@,} = (@, }, which satisfies
(3.6.9).

Let us have a sequence { 8,},8_,=0,and 8, >0,

n = 0,1,..., that satisfies Eq. (3.6.9). Since lim, , _a? =a,,
n =0,1,..., hold for {a'?}S when a!" > 0 is chosen arbitrar-
ily, the same must be true whena!’ = B,,n =0,1,....

and {&, ] = {@, }. It means that lim,
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Therefore, we have {a, } = { B, and the sequence {a, } is
the only one witha_, =0and a, >0, n = 0,1,..., that satis-
fies (3.6.9). The sequence with such properties was obtained
already in Sec. II1.6 and its starting value is

a,= — 0.5 In(tanh D /2).

For practical purposes, the iterations (4.1.5) can be reformu-
lated in terms of @??, which are defined by

X9/D = 2nt1
D

+a?%, , —a?=cosh(2a¥), a¥ =0
(4.1.10)

i=12,. .

The resulting expression is

1 —22n + 1)4 9 + (DA WY

m+1+ D7+ 2n+ I—DATE
(@.1.11)

forn =0,1,...;

aisl—aft =D

where
47 n+1

2 D+ [Dexpla?,, +al)]?

n
+
D*+ [Dexplal +a_,

and D exp(2a¥) = 0.5(/XY + D +/X? — D ) for

n =0,1,... Asopposed to (4.1.5), theiterations (4.1.11) yield a
finite result also for D = 0, and the expressions

lim, ,_(d¥,, —a®) = (a,,, —a,), the existence and
uniqueness of which is guaranteed by the theorem, enter di-
rectly the J matrix, which was defined in Sec. II.

In concluding this section, we would like to summarize
the algorithm for obtaining abscissas and weights.

(i) For n<N, = min([D ],N + 1), the coefficients a,, and
b,,n=0,1,....N,, are evaluated according to Egs. (4.1.2)-
(4.1.3).

(ii) If N + 1 > [D], the coefficients a,,,
n=N,+ 1,..,N + 1, are obtained using the iterative proce-
dure (4.1.11). In such a case, we put
XW=2n+14+Dfa,,, —a,)forali=0,1,..,and
n=0,1,..,N, — 1, where a, are those as obtained in (i).
Further, the starting values X ! = ((2n + 1> + D ?)"? are
chosen for Ny<n<N + 10and X" = Oforn>N + 10. The
rate of convergence of (4.1.11) was checked for all

FIG. 1. Roots of the polynomial P,,(D,t).
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TABLE 1. Results for moments R, (D). Underlined figures are those which disagree with the exact result.

N=2 N=4 N=3§ N=16
L 0.581370827(00)* 0.838444018(00) 0.839047460(00) 0.839047460(00)
Ry2)
P 0.839047460{00) 0.839047460(00) 0.839047460(00) 0.839047460(00)
L 0.564872965(00) 0.301756323(01) 0.319174000(01) 0.319174117(01)
R4)
P 0.310853243(01) 0.319174117(01) 0.319174117(01) 0.319174117(01)
L 0.625817255(00) 0.516232310{02) 0.900447566(02) 0.901570490(02}
Ry(8)
P 0.868697594(02) 0.90151 6209(02) 0.901 570490(02) 0.901570490(02)
L 0.783 142057(0(_)) 0.153216831 (0_5_) 0.1 25596652(06) 0.136642696(06)
Ry(16) T
P 0.131375034(06) 0.136595213(06) 0.136642762(06) 0.136642762(06)
L 0.122662294(@) 0.134972374(19) 0.306701218(12) 0.610801305(12)
R;(32)
0.587945344(12) 0.611726995(12) 0.612041268(12) 0.612041282(12)
2(02) = 10 etc.

No<n<N + 1. In fact, not more than four or five iterations
were needed in order to achieve the results accurate up to ten
decimal digits for N<40. Finally, the coefficients b, are ob-
tained for Ny<n<N + 1 from Eq. (3.6.6).

(iii) The matrix J is constructed and diagonalized. The
eigenvalues represent abscissas of Gauss rule and the
weights are deduced from corresponding eigenvectors.

V. APPLICATIONS

Now we apply the quadrature rule to several test inte-
grals. Our aim is to examine the rate of convergence of the
method as NV (the number of abscissas) increases. A compari-
son is made with the convergence rate of Gauss-Legendre
rule. The weights and abscissas needed were generated using
the algorithm given at the end of the preceding section. Dou-
ble-precision arithmetic (15 decimal digits) were used
throughout. The dependence of abscissas on the parameter
Disdemonstrated in Fig. 1, where all roots of the polynomial
P\ o(D,t) are shown.

In Table I we present the results obtained for the mo-
ments

R, (D)= %fl exp(Dt )t d, (5.1)

D =2,4,8, and 16, using the Gauss quadrature formulas
(1.5)1.6) with N = 2,4,8,16, and 32 and with w(t) = 1 and
ot ) = exp(Dt ), respectively. It can be seen that the Gauss—
Legendrequadrature (o{f ) = 1)converges much more slowly
than the quadrature associated with the polynomials P, (D,¢ )
(henceforth referred to as Gauss-P quadrature). Correspond-
ing results are denoted in Table I as L and P, respectively.
Further, the Gauss-P quadrature yields results accurate up
to ten decimal digits for D2N — 1. This is a useful check on
the consistency of the abscissas and weights.

Table I demonstrates in the same time how useful is the
Gauss-P quadrature in evaluating the optical potentials. The
classical Kisslinger potential'® or the “potential with the La-
placian”'" for pion-nucleus scattering are in fact linear com-
binations of the moments R, (D ), where N<10-=-20.

To test the rate of convergence of our method, we must
choose integrands more complicated than Eq. (5.1). The re-
sults obtained for

TABLE II. Results for 7,(D ). Underlined figures are those which disagree with the exact result.

N=2 N=4 N=38 N=16
L — 0227157369 0) ~0.188794514( 0) —0.188646335 0) —0.188644849(  0)
I,(2)
P —0.188711893( ©) —0.188684568( 0) —0.188647342( 0) —0.188644883(  0)
L —0.144553191(  0) —0.111718436( 0) —0.109380274( 0} —0.109380244( 0)
1,{4)
P —0.109296871( 0) —0.109381250( 0) —0.109380312(  0) —0.109380245( 0
L ~ 0.465429405( — 1)* — 0.704524333( — 1) — 0.585985648( — 1) — 0.585937504( — 1)
1,(8)
' P —0.585874532( — 1) — 0.585937479( — 1) — 0.585937505( — 1) — 0.585937504( — 1)
L — 0.294881876( — 2) —0.401779288( — 1) — 0.307437964{ — 1) —0.302734375( — 1)
I,(16)
' P —0.302730848( — 1) — 0.302734375( — 1) —0.302734375( — 1) —0.302734375( — 1)

(—1)=10""etc.
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TABLE III. Results for I,(D ). Underlined figures are those which disagree with the exact result.

N=16 N=32 N=40 exact
L 0.314300451(01)* 0.314177425(01) 0.314168630(01)
I,{2) 0.314159265(01)
P 0.314278144(01) 0.314175900(01) 0.314167992(01)
L 0.630446957(01) 0.628584626(01) 0.628455291(01)
L4 0.628318531(01)
P 0.629808233(01) 0.628540596(01) 0.628436775(01)
L 0.152239169(02) 0.128660592(02) 0.127186574(02)
L(8) 0.125663706{02)
P 0.138511482(02) 0.127758143(02) 0.126805656(02)
L 0.315315443(05) 0.203651013(04) 0.100273150(04)
1,(16) 0.251327412(02)
P 0.542248404(04) 0.100228118(04) 0.576163054(03)
201) = 10" etc.
e-2D (2 y scissas being determined as roots of orthogonal polynomials
I(D)= f WDy + 4)1ﬂ<—2‘)eDy dy with exponential weight in a finite interval. Properties of the
° polynomials were studied in some detail. A recursion was
_ 1 (1 —2D —e~??) (5.2) found for the coefficients of the three term recurrence rela-
4D? tion which holds among the orthogonal polynomials. The
g 8 poly

are displayed in Table II. The Gauss-P quadrature gives
again much better results than the Gauss-Legendre one
especially for D = 16 and 32. The convergence is rather slow
for smaller D even using the Gauss-P quadrature. Here, the
exponential does not dominate and the integrand exhibits
nonpolynomial behavior.

Typical corrections to the optical potentials (e.g., the
nonlocal 4,;-propagation or relativistic corrections) have
also monotone or siowly oscillating nonpolynomial behavior
and Table II provides us with some idea about the efficiency
of the Gauss-L and -P quadratures in such cases.

Finally, the limitations of our method are demonstrated
in Table III, where the results are shown as obtained for the
integral

IiD) = J.l, e sin(D\T— 17)dt = 1’22. (5.3)

Although the Gauss-P quadrature works somewhat better
than the Gauss-Legendre one, the convergence is poor in
both cases especially for large D. The reason is that the inte-
grand contains a rapidly oscillating function, the behavior of
which is substantially nonpolynomial.

Vi. SUMMARY

The quadrature procedure was developed for integrals
with finite integration range that contain the weight function
exp(Dt ). The procedure is based on the Gauss rule, the ab-
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recursion can be solved by iterations without accumulating
roundoff errors, therefore the abscissas and weights are ob-
tained (with the help of the matrix diagonalization tech-
nique) with high precision. The rate of convergence of our
quadrature procedure is very rapid for integrands that con-
tain a polynomial-like function in addition to the exponen-
tial. Such integrals are encountered in various physical ap-
plications, e.g., in constructing the optical model.

ACKNOWLEDGMENT

It is a pleasure to thank Dr. M. Znojil for his advice and
helpful comments.

'A. W. Thomas and R. H. Landau, Phys. Rep. 58, 123 (1980).

’R. Mach, Nucl. Phys. A 205, 56 (1973); A 258, 513 (1976).

*D. J. Ernst and G. A. Miller, Phys. Rev. C 12, 1962 (1975).

“P. J. Davis and P. Rabinowitz, Numerical Integration (Blaisdell,
Waltham, Mass., 1967).

°1. H. Sloan, J. Math. Phys. 21, 1032 (1980), and references therein.

SH. Wilf, Mathematics and the Physical Sciences (Wiley, New York, 1962).
’G. H. Golub and J. H. Welsch, Math. Comp. 23, 221 (1969).

®In fact only the first components of the orthonormal eigenvectors of the J
matrix are needed in evaluating the weights (see Refs. 6 and 7).

°The observation is made in the original paper (Ref. 7) that the method (ii)
yields numerically unstable results for the coefficients a, and b, in the case
of many orthogonal polynomials,

'9L. 8. Kisslinger, Phys. Rev. 98, 761 (1955).

'H. K. Lee and H. McManus, Nucl. Phys. A 167, 257 (1971).

R. Mach 2193
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We present a direct approach to investigate the existence of an exact invariant for two-
dimensional Hamiltonians, in which the potential depends explicitly on time. The method is
based on an expansion of the invariant in the velocities. The problem is solved completely for
invariants linear and quadratic in the momenta. Our results contain as a particular case the results

of Lewis and Leach on one-dimensional systems.

PACS numbers: 03.20. + i, 02.30. + g

I. INTRODUCTION

The theoretical description of nonstationary physical
phenomena often leads to time-dependent Hamiltonians. An
example of historical importance is the description of the
motion of a charged particle moving in an electromagnetic
field. The Hamiltonian of the system can, in some cases at
least, be reduced to the Hamiltonian of a harmonic oscilla-
tor, the frequency of which depends on time:

H = }[x + o?(t )x*]. Lewis' has shown that an exact invar-
iant, i.e., a conserved quantity, can be constructed for this
problem:

C=1[x"/p* + (px — px)),
in terms of an auxiliary function p(t } which is the solution of
the equation g + (¢ Jp = 1/p’. The derivation of the invar-
iant can be traced back to Ermakov? who derived it in 1880.
Gambier,” in 1910, has also analyzed the equation for p, or
rather for ¥ = p?, from the point of view of the Painlevé
property. He has integrated it by reducing it to a linear equa-
tion, which is exactly the equation for the harmonic oscilla-
tor ¥ + w?(t }x = 0, and obtained the invariant in the course
of his analysis. The importance of the result of Lewis stems
from the fact that he used the invariant in order to construct
the solution of the quantum time-dependent oscillator,* thus
reducing the solution of a PDE (the Schrddinger equation) to
the solution of an ODE (the equation for pj.

The interest in time-dependent systems has increased
appreciably these last years. Several methods have been de-
vised for the derivation of the Lewis invariant, which was
originally obtained through an application of the asymptotic
theory of Kruskal® in closed form: Leach® has obtained the
same result using a time-dependent canonical transforma-
tion. Lutzky’s’ derivation was based on Noether’s theorem.
Ray and Reid® have resurrected the old Ermakov technique,
and were able to obtain the existence of a Lewis-type invar-
iant for the case of two coupled nonlinear equations of mo-
tion:

%+ 0t Ix = (1/x%p)g( p/%),
p =+ @t = (1/p*x)f (x/p),

namely
x/p

1, . Pl
C= 7(x,o_ px): 4+ | fimdn +f gin)dn.
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In a series of papers, Ray, Reid, and Lutzky®'® have ex-
tended further the class of nonlinear equations which pos-
sess an exact invariant. They have shown how the same re-
sults can be reached using Noether’s theorem and
demonstrated that there exists a general, nonlinear superpo-
sition law for the systems they studied.

A particularly simple analysis, which provides an in-
sight into the results of Ray, Reid, and Lutzky, has been
given by Sarlet'” who has related the existence of the invar-
iant to the integrability of a certain differential one-form. In
amore recent paper, Sarlet and Ray'® have provided a classi-
fication scheme for Ermakov-type differential systems, thus
establishing some unity into the multitude of examples of
time-dependent systems with an exact invariant treated in
the literature.

In the Ermakov methodology, one derives the invariant
starting from a set of given equations, i.e., the auxiliary equa-
tion must be known in advance. However, when one starts
from an explicitly time-dependent equation of motion, there
is no simple way to guess even the existence of such an auxil-
iary equation, let alone its form. Because of this and the fact
that the method of symmetry transformations, based for ex-
ample on Noether’s theorem, can be roundabout, Lewis and
Leach'® have presented a direct approach for the determina-
tion of the invariant of the system with a Hamiltonian of the
form H = } p* + Vi(x,t).

The extension of the above results to several spatial di-
mensions presents, of course, a great interest. Some results
exist in this direction, although not as ample as in the case of
one dimension due to complexity of the problem. Giinther
and Leach?® have derived a tensor invariant for an N-dimen-
sional time-dependent isotropic harmonic oscillator. Ray
and Reid?' as well as Lutzky® have given a brief discussion
concerning the extension of their method to several spatial
dimensions. In a more recent work, Sarlet and Cantrijn®
have presented a generalization of this method which, in
principle, deals with systems of n + 1 second-order differen-
tial equations with n first integrals quadratic in the veloc-
ities. As in the case of the Ermakov systems, one of the equa-
tions plays the role of the auxiliary equation.

In the present work, we will present a study of two-
dimensional time-dependent Hamiltonian systems from the
point of view of the existence of an exact invariant. The
method used is a natural extension of our previous work on

© 1984 American Institute of Physics 2194



completely integrable (time-independent) Hamiltonian sys-
tems in two dimensions.?*> However, the explicit time depen-
dence of the potential will modify the calculations apprecia-
bly. We will use a direct approach for the construction of an
invariant polynomial in the velocities of degree 1 or 2. From
this respect, our work constitutes an extension in two dimen-
sions of the work of Lewis and Leach on one-dimensional
time-dependent Hamiltonians.

In the second and third sections of this paper, we pre-
sent the construction of linear and quadratic invariants, re-
spectively. In the fourth section, a comparison with previous
results is presented, together with our conclusion.

1l. CONSTANTS LINEAR IN THE VELOCITIES

We will consider a Hamiltonian of the form

= & 45+ Vixpt). (1)

The equations of motion associated to this system are
simply

=V, j= -V, (2)
and we can notice that, as the potential ¥ depends explicitly
on the time ¢, H is not a constant of the motion. We will first

concentrate on the search of an invariant linear in the veloc-
ities. It has the general form

C=g%+g'y+h, (3)
where g°, g, and £ are functions of x, y, and ¢.
The condition dC /dt = Oleads to the following polyno-
mial identity in terms of x and y:
X+ 80 + (8 +8&:) + (& +h )X+ (8 +h,)p
+h +g%+gy=0. (4)
This is equivalent to equating to zero the coefficient of
each distinct monomial in x and y and leads to

g =0, g +g.=0, g =0, (5)
g‘,’+hx=0, gtl+hy=0! (6)
h, +8% +g'y=0. (7)

The integration of the system (5) is straightforward and
reads

g=alty+B(t) &= —althk+t) (8)

The system (6) leads to a compatibility condition (9)
which ensures the existence of the function A:

8oy = 8ix- 9)
In terms of a, B, ¥ we get:

22'(t) =0.

Thus, since a is time-independent, we can easily inte-
grate Eqgs. (6) and obtain for A:

h= —xB'(t)—yyt) + €t). (10)

The last relation (7) reads, in terms of @, B3, 7, €,
xXB () +yy'(t)—€@)+(ay+ BV, —lax —y)¥V, =0.

(11)
Equation (11} is the linear PDE that the potential ¥

must satisfy for the system to possess an invariant linear in
the velocities.
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We will distinguish two cases.
(a) @ = 0. Equation (11) reduces to

BV, +vV, +B"x+y"y—€ =0,
or, equivalently,

Ve+V, +B"BE+7v"'yn —€ =0, (12)
with & =x/B, 71 =y/y.

The integration of the homogeneous equation ¥,
+ ¥V, = Ois straightforward and reads

V=F(—nt). (13)

We need now a particular solution of Eq. (12). For this,
we introduce the variables

u=E—m, v=m+&
which lead to the following form of Eq. (12):

2V, —Bv—Tu—¢€ =0, (14)
with

F= — %(B”B—y”?’), B= — %(ﬂ"ﬂ+y”7’)‘

It is immediate to check that
V= 1 (luv+ } Bv* + €'v)is a solution of (14), and thus the
general solution of Eq. (12) reads

V=FE—nt)+ § [+ }B)E*— (I — } By’

+ Bty + €6 + €', (15)
Let us now examine the second case.
(b) 0. In terms of the variables

§=x—y/a, 1=y+B/a,
Eq. (11) becomes
v, -V, + Ly Xy
a a
+By _Br €, (16)
a a a

Transforming into polar coordinates, £ = p cos @,
71 = p sin @, it takes the simpler form

Vv, = B—pcos<p+ Y psing + Br—By 7/_2’67 - £
a a a a
Its general solution is thus
V=F(pt)+(B"/a)psing — (y"/a)p cos ¢ + Ap,
or, in terms of £ and 7,
y—B_

a

n— ﬂg‘ + A arctan (—g—) + F(E* +7%e),
: (17)
with
A=B"y—py")/a*—¢€/a.
Formulas (15) and (17) exhaust all the possible forms of
potential for which a constant linear in the velocities exists.

ll. CONSTANTS QUADRATIC IN THE VELOCITIES
The general form of such a constant is
C=f%2+flxp+ 5 +8%+¢gy+h (18)
Following the method of Sec. II, we write dC /dt as a
polynomial of degree 3 in x and y:
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dC . Y . .
o A L)X+ (OB 15

+ (8 HSNX + (8 + S+ &)W
+ (fI+8)0 + (8 +h + 2% + )k
+ (& +h, + R+ 2P+ (h +8% +8Y).
(19)
We are thus led to systems of partial differential equa-
tions for the f;, g;, and A.
The first set of equations for the £;’s can be easily inte-
grated:
fo=ay’ +By+7,
fi= —2axy —Bx — Oy — ¢, (20)
fi=ax? +6x + L.
The functions f; have the same quadratic dependence in
x and y as in the case of a time-independent Hamiltonian.?*
The main difference, here, stems from the fact that the coeffi-
cients depend explicitly on time. The constant C (18) can also
be written in terms of the angular momentum L = xy — yx:

C=aLl?—BxL + &L + yx* — exp

+ 57 +8°% + gy +h. (21)

The remaining equations have the form
g +f1=0, & +f1+8 =0 g +/i=0 (22)
GE+U%+SfP+h, =0, g +f%+2%+h, =023
h, +8% +g'y=0, (24)

From the knowledge of the functions f;, system (22) al-
lows the calculation of the function g;, providing the follow-
ing compatibility condition is satisfied:

(fgy *f)lry +fJ2cx)r =0.

Due to the special form (20) of the functions f;, this
condition reduces to a’(t) = 0. Once the g;’s are known, a

second compatibility condition, which allows the calcula-
tion of 4, results from the system (23)

2 @+ A% L) = = (g +SE YY) 29
ly ox

That is
ﬂ(Vyy - Vxx) +2(ﬂ) _.fZ)ny + (Zf;) —'f)lr)Vx
— (=), =8 — 8- (26)

This last relation is quite similar to the one obtained in
the search of a time-independent potential V" that admits a
constant of motion quadratic in the velocities.?! The differ-
ence is only in the existence of a nonhomogeneous part in
this linear PDE. This remark will lead us to the same classifi-
cation as in the autonomous case. Before proceeding further,
let us point out that, once V is determined satisfying (26),
there remains a last relation (24) to check for the system to
possess a quadratic invariant. This was not the case for time-
independent potentials and, as we will see further, this rela-
tion strongly reduces the admissible forms of potentials.

We will distinguish three distinct cases, according to
the value of the highest power of the angular momentum L
that appears in the constant (21). In each case, we will reduce
the form of the invariant by translations and rotations of
coordinates. One can note that a rotation does not change L,
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while a translation keeps x and y invariant.

Case (a): a = 3 = 6 = 0. This is the separable case.
There is no dependence on L in the constant C.

By an adequate rotation, the coefficient of Xy can be set
to zero unless (¥ — £ )* + €2 =0.

Case (b ): a = 0,3 (or 6 ) nonvanishing. Translations of x
and y allow us to eliminate ¥ — £ and € and an adequate
rotation of coordinates allows the choice & = 0, unless
B? + 8% =0 as can be easily seen from the form (21) of the
constant C.

Case (c): a #0. Translation of x and y allow the elimina-
tion of all thelinearin L termsin(21).(8 =& = 0.) Then,bya
rotation, ¢ can be set equal to zero unless € + (y — £)* = 0.

We will now proceed with the integration of Eqgs. (22)-
(24) in each of the distinct reduced cases (a), (b), and ().

Case (a): fo = 7, /1 =0, f, = ¢. The integration of Eq.
(22) leads to

o= —VYx+6+4 g=—-Cy—6x+x (27)

In the following, we will choose A = x = 0; it corre-
sponds to an adequate translation of coordinates. However,
with @ #0, there exists no solution to the system other than
trivial harmonic oscillator: V=1 @ (¢t)x* + } ¥ (¢t >
Apparently, the condition 8 #0 imposes severe constraints
on the potential. For this reason, we will look for solutions
with 8 = 0.

The condition (25) writes

Ay =6V =0,
or
V=Fxt)+Gyt) (28)
Integration of Eq. (23) for 4 is straightforward and leads
to

h=2yF+26G+ Ly"x* + L&'y~ (29)

And finally, Eq. (24) takes the following form:
2VF+28'G+2yF, + 2G, + L V"'x* + 1 ¢"y?

= —vYxF, —{G,.

This equation separates (up to a function of time, to be
included in F or G) into the system

2¥'F + 2yF, + y'xFx = — L y"x%,

(30)

2'G+2G, +5yG, = — 1"y

In order to solve the equation for F, we look for a parti-
cular solution of the form F(x) = x*¥ (¢ ). It leads to

V' +2y /v =~ LYY
whose solution writes

” 7 \2 ”
y/(t):_ﬁi[y__i(L)]=_i‘7_,
a1y T2\ 2 o

with y = o”.

The general solution of (30) is now easy to obtain; it
writes

Fxt) = (/ylxlx/Ny) + x*¥ (1) (31)
The expression of G is similar in terms of § and y, instead of
and x.
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We will now investigate the particular case
€ + {y — £ )* = 0, where the rotation is not possible.
One obtains for £; and g;

fo=v, fi=ily=8)s Li=6
=7z g=i'z
[with the integration constants taken equal to zero as in the

case (a} above], withz =x + iy.
The partial differential equation for ¥ (26) has the form

eV, — V) —2eV,, = —io",
witho=¢ +y,e =iy — {),orintermsofzandz = x — iy,
—4dieV,; =0".
The integration for ¥ is thus trivial;
V=ilc"/8¢2” + ZF,(z,t) + G (2, ). (32)
The system of PDE for 4, in terms of z and Z, reads

h, =31 —g +igl + V.26 +2f)
+ Vi (26 — 262 — 2if1)],
hy =3[ —g —ig
+ V. (2fo — 2> + 2if}) + V3(2f6 + 23]

In this precise case, due to the values of g and f, it re-
duces to

(33)

h, = —i€"(z/2) + oV, — 2ieV;, h; =0"(z/2)— 0V},
leading thus to
h=oV + (22/2)0" — i€"(2*/4) — 2ieF. (34)
The last relation is now the following:
h, = — 0'zzZF, + G,) —p'z[(0" /4uZ + F ].

Separating the different terms according to their depen-
dence on Z in this last relation, we obtain

(co”/€) =0 (terms in Z%),
hence 00" /e = 4v (const}; (35)
o'F, + oF, + o'zF,

= — %(20’" + -GL) (terms in Z'); (36)
€

o'G + oG, + 0'zG,

= — €"(z*/4) — 26'F — 2eF, — €'zF,

(terms in 29). (37)

One recognizes readily in (36) and (37) the same left-
hand side as in Eq. {30). Integrating, we obtain for F:

F=®(z/0}— I mZ, (38)
wherem = L o"/0 — }(d'/0) + ve/o.

Once Fis known, it is easy to check that the right-hand
side of (37) is of the form nz> — 2¢'® + (1/0)(2e0’/0*
—€1z®P', wheren = —pu"/4 — 2u'm — um'.

The solution of {37} is thus the following:

G:Lw(i)+p22_3§¢(qz), (39)
o o o
where,
p= —0‘3f7702dt, g= 1y, e
o 0
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(The case of power-like @ should in principle be treated
apart).

Relations (32), (38), and (39} determine the precise form
of a potential ¥ for which a constant of that kind exists.

Let us proceed now with the search of a constant linear
inL.

Case (b ): In this case, we obtain for f; and g;:

f=f+v. fl=—=58x, =7 (40}
g=-By+rix+6y+4,
g'= —vYy+B'x*—6x +« (41)

The analysis of the corresponding case for time-inde-
pendent Hamiltonians has shown that the adequate varia-
bles were

u=p+1n v=p—1,
where
p:«x +y, ')?:}}.

Moreover, a detailed analysis has shown that thereis no
solution with nonvanishing A and « and we will thus put
them to zero in order to alleviate the presentation. In terms
of u and v, Eqgs. (23) take the following form:

hy =(—Bo+ 29V, + ji—(—ﬁ”v+y”)(u+v)

1 8'v(u+v)
+ = ——,
4 Juv

hy = {Bu+ 29V, + %(ﬁ”u+7")(u+v)

_ _1_ @ 'u(u +v)
4 Juv

The compatibility equation resulting from (42) leads to
a PDE for Vin terms of the independent variables x and v. Its
solution is straightforward:

Fuy+Gp) _ 38" 26’
V= - , 43
U+ N A CTL
as is the integration of (42):
h=BuG(u)—vF{u) +2yF(u)+G{v) i iB'uv(v—u)
u+tv u—+v 8
Lo e 3 ¥B w48
+ 7 (# + v) : B + B Juv
+ %9'(14—:;)@. (44)

There remains now Eq. (24} to be checked. This relation
will impose constraints on the form of the potential ¥ and on
the time-dependent functions f3, ¥, 8. Three different kinds of
terms, functions of u alone and v alone, as well as terms
where u and v are mixed together, are involved. These three
families of functions will give three distinct relations. After
some lengthy manipulations, it results, from the mixed term
relation, that @ and S " must vanish. In this case, this last
relation reduces to

G+ (8/8')G, +vG, =0, F+ (B/B')F, + uF, =0.
(45)
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On the other hand, the terms that depend only on « in
the relation (24) lead to the following constraint:

F+ 2y/Y)F, + uF, =0.
Similarly, we have for G-
G+ 2y/Y)G, +vG, = 0.

All these equations are compatible only if y = 8%
We recognize in (45), Eq. (30) up to the right-hand side
and we thus obtain the solution of (45):

Flut)=(1/B)®w/B), Gvt)=(1/8)¥w/B).

In conclusion, the potential

y_ 2L+ /8] + ¥ Wy~ y/B]

B + )7
B=c, +cyt (46)
is the general form of potential for which a constant of mo-
tion linear in the angular momentum exists. The particular
case where § = i3 must be treated apart.
One obtains, in this case, for f; and g;:

fo=By+v. fi= —Bx—ify= —pz,

fLa=iBx+v;

o= —BYyZ—vx, ga=Bx2—7y;
withz=x+i,Z=x—iy.

The partial differential equation for V' [(26)] in terms of z
and Z reduces to

22V, +3V, = — }(B"/BE. (47)
Integrating {47), one finds
V=2"""F@E1) + G,Et) - }(B"/B)E. (48)

It is now easy to obtain from (33) the equations for A:
h, = 3(y" +iB"2Z + (iBz + 27)V.,
h; = Y (v" —iB "2z — 2iBzV, + (ifZ + 2¥)V;.
From these we deduce the value of 4:
h=(Bz+29)V+ L (v +iB"2)2z —iBGZt).  (49)
As before, there remains a last relation (24) to be veri-
fied. It involves three distinct and independent families of

terms; namely functions of Z that multiply either z~'/2, z, or
1. We thus obtain the following three equations:

o) - drmo

2182+ VIF+ 16E + 2)F, + (¢ + 1B FEF; =0,
GoliBZ +2) + G,(iBZ + 2/) + (BF + VEG
=if'G + iBG,.

By analogy to the general case (b), we will look for solu-
tions with ¥ = 0. Indeed in that case, equations reduce to

%B'F+BF, +BZF; =0, (50)

%G, +B'G, +B'ZGz) = B'G + BG,, (51)

and we recognize the form of the Eq. (45) for Eq. (50).
The general solution for F thus reads
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F=(1/8%?yz/B). (52)

Concerning the equation for G, the change of the depen-
dent variable

H=2zG, - G
leads to the expression

B'H+ BH, + BZH; =0,
the solution of which reads

H=(1/B)2z/B),
or, equivalently,
— -
H=z—i[é¢(i)], (53)
B dzl z B
and, finally,

G=(1/B)Pz/f)+2z¥(t).

In conclusion, provided Vis given in terms of z and Z by
formulas (48), (52), and (53), a constant of the motion, linear
in L exists with the condition 8 = i8.

Case (c): The last case to examine is the case where the
constant C has a quadratic dependence in L, namely, after
the necessary reductions, the constant (21) assumes the form

C=aLl’+yi® + 50" +8oX + 80 + A

As we have seen before, [(9)], @ must be time-indepen-
dent and will be taken equal to 1.

We first examine the case y =¢.

The corresponding values of the f;’s and g;’s are

fo=Y'+r, i= =2 Li=x+y

o= —rx+iy, &= —yy—Aix

The PDE for Vis easily solved using polar coordinates
and leads to the following form for V:

V=F0,t)/p*+G(pt)—O04'(t)/2, (54)
0 = arctan(y/x), p* =x"+y>
We write 4 as

h=2p(F/p?) + 2F + 2yG — yA'0 + y"p*/2. (55)

The last compatibility relation, in terms of p, 8, and ¢
reads

he= —v,V, —AV,.

Again, three different kinds of terms appear which
must vanish separately; this leads to the following relations:

2F, —OY'A' —yOA" = A4 '/2,

(V"/2)p* + 27'G + %G, = — VG,

2vF, = — AF,.

The equation for G hasbeen encountered previously. Its
solutions is

o= Lo(2)- [ - 3(2) ]

Now, the two distinct equations for F put constraints on
yand A.
A solution

F=1%8—06k/2 (57)

exists whenever k = ¢4 'is time independent.
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The general solution ¥ is thus the following:

v ch( X+y )_ x* +y° [7_” _ _I_(L')Z]
Y 14 4 14 2\y

(58)
2
___I__(i__ — iarctan!—)— —’f—arctanl,
xX4+y2\ 8 2 X 2y x
with
,1=kf£.
o ¥

When A = 0, the solution is slightly different, because F
can be any time-independent function of 8. If ¥ = 0, one has

V= —F-/{-"—’ +Gpit). (59)

If ¥#0, one has
2 2 ” s \2
V= _ﬂ.f_) + _l_q;(p_)__ P_[l__ - i(l’_) ].(60)
P vy o \7 4ly 2\y
We have also examined in detail the case ¥#¢, but it
failed to yield any solution. Thus we will not exhibit any
calculations here. This completes the study of the time-de-
pendent Hamiltonian with an exact invariant quadratic in
the velocities.

IV. COMPARISON WITH OTHER RESULTS

As was stated in the Introduction, there exist numerous
studies on one-dimensional time-dependent systems but sig-
nificantly fewer on two- (or more-) dimensional ones. More-
over, as the Ermakov approach is most often employed, the
equations of motion are usually not Hamiltonian. Still some
comparisons with existing results can be made.

To start with, our separable case should encompass the
results for the one-dimensional systems of Lewis and
Leach.'® They dealt with time-dependent Hamiltonian sys-
tems in one dimension H = } p* + V(x,t ), and gave, in parti-
cular, conditions for which a potential V (x,? ) possesses a con-
stant quadratic in the velocity p. These conditions determine
the precise form of Vin terms of arbitrary functions of time,
namely,

Vigt)= — Flthe + — Q%1 + %U("‘”).
2 p
(61)

Here, Uis an arbitrary function of its argument and F, 22, p,
and v are arbitrary functions submitted to the following con-
straints:

P+t —k/p*=0, +02%tv=F)

In Sec. II, we examined separable potentials
V =F(x,t) + G (y,t). Thus, thetwodirections x and y decou-
ple and we have in fact two one-dimensional Hamiltonians.
The following form was found for F (x,t ) [and similarly for

Gye)):

Flxt)= iq;(i) _ X[y i(_y_’)z]
14 N 4l y 2\y
This form is identical to (61) up to a translation of x,
which would correspond to a choice of 4 #0in g,
We turn now to genuine two-dimensional systems. In a
recent publication, Lutzky® proved that the quantity
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1 x/y dA
C= — (xp — 5y J wia)
2(xy xy)+0 ()/{

is conserved by the motion described by the equations

i+ oftx =filxy), ¥+t =Lfilxy) (62)
provided that £ and f; satisfy the relation
xfo = yfi = (1/xp)¥ (x/y). (63)

This constant Cis quadratic in L and corresponds to the
case (c) we introduced in Sec. III. Moreover we have
y = £ = 0. We have found that the only form of the potential
V in that case was given by (59). In order to compare our
results to Lutzky’s, we must examine under which condi-
tions his equations derive from a Hamiltonian. This happens
if there exists a function Wsuch thatf, = W, f, = W,. Re-
lation (62) is thus equivalent to
xW, —yW, = ¥(x/y)/xy,
which in polar coordinates reads
oW _ F'(9)
a6 P’
F determined intermsof ¥. Thatis, W = F(0)/p* + G (p,t).
This result coincides with (59).
So we conclude that Lutzky’s result is identical to ours
whenever the equations of motion (62) are Hamiltonian.

V.CONCLUSION

In this paper, we have presented an investigation of
time-dependent Hamiltonians in two space dimensions from
the point of view of the existence of an exact invariant. The
method we have used was the direct computation of the in-
variant, which was employed in our previous work on 2-D
time-independent Hamiltonians, as well as in the work of
Lewis and Leach on 1-D systems. We were able to identify
the forms of the time-dependent potential for which an in-
variant linear or quadratic in the velocities exists. Thus our
results extend the results obtained previously by various
groups to the case of Hamiltonian systems. In particular,
they contain as a special case the Hamiltonians of Lewis and
Leach and have a nonzero overlap with Lutzky’s results.
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Integrals of motion for Toda systems with unequal masses
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We present new integrals of motion for the Toda lattice (chain of particles in one dimension with
exponential interaction) for two special cases of boundary conditions: the free-end lattice with
three non-equal-mass particles and the fixed-end lattice for two particles. In both cases, we use
two distinct approaches in order to identify the integrable cases: direct search of the integral of
motion and group theoretical methods. Our results are in agreement with the predictions of

Painlevé analysis.

PACS numbers: 03.20. + i, 02.30. + g, 02.20. + b

I. INTRODUCTION

The Toda lattice' is a one-dimensional system of equal
mass particles interacting via nonlinear forces: the interac-
tions occur only between nearest neighbors and are of expo-
nential type. With this lattice, we are in presence of a “small
miracle”: The system is integrable for any number of parti-
cles in the chain. (Integrability, in the case of Hamiltonian
systems of N degrees of freedom, is synonymous to existence
of N analytical, single-valued integrals of the motion, time
independent and in involution.) The integrability for period-
ic boundary conditions has been shown independently by
Hénon,? Flaschka,® and Manakov.* The first has explicitly
calculated the integrals of the motion, while the two others
deduced the integrability from group theoretical methods.

Moreover, this system is also integrable for other
boundary conditions. The integrals in the case of the fixed-
end lattice (two ends of the chain are set permanently equal
to zero) can be easily deduced from the periodic case as
shown by Hénon.? The free-end lattice (the beginning of the
chain is set to — oo, the end is set to + oo) has been dis-
cussed by Moser.” He has shown that the system admits the
Lax-pair representation and has used the latter to calculate
the N integrals of the motion.

The aim of this work is to use this twofold approach,
i.e., direct computation of the constant of motion and group
theoretical methods (i.e., search for Lax representations), in
order to study other cases of integrability in low-dimensional
and unequal-mass systems. Indeed, the great number of inte-
grability conditions to be satisfied in the general N body case
compels us to deal with particles of equal masses and equal
ranges of interaction. However, one can reasonably hope
that for systems of two or three particles, the constraints of
equal masses can be relaxed. A very useful tool for the identi-
fication of integrability candidates is the Painlevé criterion
as introduced by the work of Ablowitz, Ramani, and Segur.®
They have conjectured that integrability is intimately related
to the analytic properties of the solutions of the equations of
motion. Namely, whenever the solutions possess the Painle-
vé property, i.e., their only movable singularities on the com-
plex-time plane are poles, the system is integrable. The reci-
procal is also true and has been verified for the known
integrable systems. However recent results of Ramani, Dor-
izzi, and Grammaticos’ have shown that for two-dimension-
al Hamiltonian systems, integrability can sometimes be asso-
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ciated to some weakened Painlevé property. In the case of
the Toda system at hand, such a generalization is unneces-
sary, and the known integrable cases possess the full Painle-
vé property.

In this paper, we will concentrate on two particular
forms of the Toda system.

(1) The free-end lattice with three masses:
H= p% + P% +é+edq.—qz)+eq;—qs‘

2m; 2m,

The integrability of this system cannot be verified nu-
merically by the surfaces of section method since the above
Hamiltonian describes a scattering problem.

In a recent publication,® Bountis, Segur, and Vivaldi
have found that the Painlevé property is satisfied for three
values of the parameters:

(a) m1=ﬂ§—€;”, m, =2€ — 1, —;-<e<2,
— €

(b) ml=@, my=e—1, l<e<2,
— €

(c) mlzf(_%f:ﬂ, my=2€—1, d e 2.

2 -3¢ 2 3
The integrability of case {(a) has been proved rigorously by
Moser® and Bogoyavlenski.® Cases (b) and (c) can be deduced
from the theorem of Bogoyavlenski® and are explicitely stud-
ied in Ref. 10.

In Sec. I1, we will present a direct computation of the
constants of motion for all the three cases (a), (b), and (c)
above.

(2) The fixed-end lattice with two masses:

go b P

+ —= 4+ e~ % + et — 42 + e%,
2m, 2m,

Casati and Ford predicted integrability fore =8 =1,
m,/m, = 1, based on a numerical study.

The Painlevé analysis of Bountis ef al. suggests three
cases of integrability:

(a my/m,=1 6=€=1,
(b) my/m;=1, 6=1, €=}
() m/my=4, &6=1, €=}

On the other hand, the Lie algebra study of Bogoyav-
lensky yields two integrability candidates: case (b) above and
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() mi/my=4 6=} €=}

In fact, we find five integrable combinations of masses
and ranges: cases (a}, (b), (c), (d) listed above and

e m/my=1, 6=} e=1

Actually all five integrable cases can be predicted by the
Painlevé analysis, as was shown by Ramani.'!

Sec. IV deals exclusively with group theoretical meth-
ods. This approach leads to the identification of the integra-
ble cases listed above as can be shown in several recent
works.>'>!2 However their approaches are general and rath-
er abstract. Our aim in this section is to explicit these results
in the various cases of integrability. In particular we exhibit
the Cartan matrix for the three different cases for which the
free-end Toda lattice admits the Lax-pair representation.
This allows the calculation of the integrals in each case. The
same procedure is applied to the fixed-end case.

Il. FREE-END LATTICE

Let us consider a free-end lattice with three, non-equal-
mass, particles. In that case, the Hamiltonian governing the
system reads

LA N S T
2m, 2m, 2m,

In order to explicit the motion of the center of mass z of the
system, we introduce the following change of variable:

x=€gi—d) Yy=9:—q; z=mg, +myg,+msq,
(2.2)

The equations of motion associated to the system are
derived from the Lagrange equations:

H= (2.1)

d . d .
5; (mlql) = - GX, "a't' (mzqz) =€eX — K

(2.3}
i (msgs) = Y,
at
with
X =9~ 2 — e, Y=e2"D=¢,
From Egs. (2.2), it is obvious that
Z=mg, + myg, + myg; =0. (2.4)

One can also obtain, from (2.2), the equations of the
motion of x and y:

f= el — ) = (Y- e Tt ),
. 2 4 ! (2.5
j=ts— iy =¥ - Tt y)
m, €em,
which, after a scaling in time, read
i=Y—aX, j=X—gY, (2.6)

with

a=¢€m; +my)/m,, B=(m,+m,)/em,.

The equations for (x, y) and z are separated. So, for the
system (2.3) to be completely integrable it is sufficient that
the system (2.6) itself be integrable. It already possesses a
first integral of motion, namely the energy, obtained by sub-
traction of the center of mass energy from the Hamiltonian
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H (written in terms of x and y)
) gy 245+ ai - X+ .
2a(m, + m; + my) 27

We will then look for a second integral polynomial in x and y,
i.e., of the form
N n
C=3 3 55
n=0k=0

where f are general functions of x, y. (Only powers of the
same parity in the velocities will appear in the sum due to the
time reversal invariance of the Hamiltonian.) We will ex-
haust all the possible constants of the form (2.8) up to order
N=6.

This method has already proved to be a valuable tool in
the study of integrable dynamical systems with polynomial
potentials. In particular, in the case of polynomial potentials
of degree 3, it allows the calculation of the integrals of mo-
tion in a// the Painlevé cases.'® This will be the case for the
Toda lattice as well.

The complete details for the search of a constant of or-
ders 2, 3, and 4 with a general potential are exposed in Ref.
13. In this paper, we will just present the calculation in the
particular case of the Toda potentials.

A calculation at order 2 does not give any result.

At order 3, the form of the integral is

C=f* +fiZP+[X P + L7 +8X + 85 (29)
A direct computation shows that the f;’s must be constant.

The condition dC /dt = 0 leads to a system of partial
differential equations for the g,’s:

(2.8)

3f+h,5+ %o,

ox
2fi+2f+ %8 B
dy Ix

fE+3fy+Eioo
dy

The compatibility condition, necessary for the integra-
tion of the equations for the g,’s,

K . . aJ . ..
g (fX+3f7)— ax_ay- 2fiX+217)

+ % (3% +£17) =0, (2.10)
y

is here considerably simplified thanks to the form of the Egs.
(2.6) for X and j. Indeed, as the functions X and Y depend
only on x and y, respectively, we are led to the conditions

3fo=Bfn 3fi=af. (2.11)

One can then easily integrate the equations for the g,’s:

&=laB -1 /(X+2BL,~-1)Y,
&i=2afi—LX+(@B-1)f,Y.

It remains just to satisfy the condition
&% +gy=0.

This expression is an identity in terms of the indepen-
dent functions of x and y: X %, XY, ¥ 2. Thus the coefficients £,
and f, must satisfy three linear equations:

(2.12)
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af3—apB)+2/,=0, —2fi+Bf3—ap)=

SRe—af-1)+f28—aBf—1)=
(2.13)

This system has a nontrivial solution ( f;, /5) whenever a and
B satisfy the two equations
a3 —aB)2B—aB—-1)+
BB3—aB)la—aB—1)+

22a —af — 1) =0,
2B—aB—-1)=0,
(2.14)
or equivalently
—Blep—17=0.
The condition @ § = 1 is to be discarded because, in this
case, the change of variable (2.2) is not defined.
Thus @ = (# 1), the first equation (2.14) then reads
@— 1+ e —-2)=
Whena=8=2(f,=
__ €2e — 1)
2—¢€
the system (2.5} is integrable and admits apart from the ener-
gy a second constant of motion cubic in the velocities
C, =2+ 3% — 3x° — 2j°
+ 9(e* — 2&”)x + 9(2¢* — ). (2.15)
The associated free-end Toda lattice is then also inte-
grable. We recover thus the first case quoted by Bountis et al.
and treated independently by Moser and Bogoyavlenski.
Let us consider now an integral of order 4 in the veloc-
ities
C = fox* +f1x Y+ 5% +f3Xy +fuy*
+80%” + g1X9 + 8” + h (x, y). (2.16)
As in the preceding case, we can restrict ourselves to
constant f;’s and £, can be taken equal to zero by adding to C
the suitable multiple of the square of the Hamiltonian.
We recall the form of the compatibility condition for
the integrability of the g,’s:

9 (4 fisi+ £~
oy

—fi) or, in terms of €,

my=2—1, my=1,

1
1= — <€<L2,
2

aaa (Bf%+2/5)
QAE 43S —

3

T+ 4=
X
(2.17)

In the particular case where X and y are given by Eq. (2.5),
this last equation reduces to

(4on Bf1Y) +

a
_.I._
Jdy dx?

(f3aX)=0

thus
=0, 4f,=B/. (2.18)
Using (2.17), the equations for the g,’s can be integrated to
give
g =rfilaB—1X + 1281, —-3f)Y,
g =0Bafi-2/£K-217,
=2a f,X.

The second compatibility condition for the integrability of 4,

(2.19)

J . .. ad .. e
—(280% + 81 ) =——(8:X + 28, )), (2.20)
dy ox
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is an identity in terms of the independent functions X 2, XY,
Y2, as in the preceeding case. We obtain thus a system in

terms of £}, />, &, B:

afi—2£=0, fi—Bf=0,

fBa—aB -2 +2f(B~a)=
If the conditions

af=2 (1—-aja—2)=
hold, the system (2.21) will have a nontrivial solution ( f;, /).
We have thus obtained that whenever

(@8 a=1,8=2 or (b) a=2,8=1, (2.22)

the system (2.6) is integrable and possesses a second integral
quartic in the velocities.

The two cases (a) and (b) are related by changing € in 2¢,
1.e., a scaling on x (x in x/2). The case (b) writes, in terms of
m,, m,, m,, and €,

(2.21)

=feml) el my=1, l<e<2
2—¢€
(2.23)
In that case, the constant C, is given by
C, = x* + 4X% + 4x%? + 4(e* — &2
+ 8(2¢" — &)y + 167 + 4e”. (2.24)

So the Toda lattice related to that case is integrable. The
values of the parameters m; and € correspond to the second
case provided by the Painlevé analysis (cf. Ref. 8).

The case of a constant of motion quintic in the velocities
has been examined but does not yield any positive result.

Let us now consider the case of a constant of order 6 in
the velocities. The computations are similar but more com-
plicated.

The form of a sixth-order constant is

C = et + e %% + ey’ + ek + ey’
65 + €6 J° Sk + FEY + LAV + S
+hi b+ 8o + 815 + 8, 5+ b (229)

As in the preceding cases, the choice of constant e;’s
emerges naturally in the computation (e can be taken equal
to zero by adding to C a multiple of the cube of the Hamilton-
ian). Now, in order to equate to zero the coefficients of order
5in dC /dt = 0, we obtain a system of partial differential
equations for the f;, which leads to the new compatibility
condition (2.26). As soon as this last condition is satisfied,
one can calculate the functions f;. The problem is then re-
duced to the search of the g;’s and 4 from relations that read
exactly the same as in the previous case of constants of order
4 in the velocities.

The new compatibility condition gives

5
o tbegt + 1) = = (et 2007
3 8y3 (4exX + 3e; J) — (3e3x + 4e, j)
a’ 35
+ — EREY (2e,% + 5e5 j) — ——(esx) (2.26)
which immediately gives
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6e,=e, es=0. (2.27)
The integration for the f; is straightforward:
o=ejlaB — 1)X + (2e,8 — 5¢,)Y =AX + B,Y,
fi=(5ea — 2e)X + (3, — 4e) Y =4,X + B.Y,
fo=4ea — 3e;)X + (de,f — 3es) Y =A,X + B,Y,  (2.28)
f3=1(3e;a — 4e, )X — 2e,Y =A,X + B,Y,
Jfa=2e,aX =A4.X.

The next compatibility condition (2.17) reduces to
BB, — 4B, =0,
ad,—44,=0,
2(B,a — A4,) + 3(4sa — By) + 4(Boa — 4o) + (4,a — By)
=2(A — B,) + 3(Bia — A,) + 445 — B,)
+ (Bya — 45). (2.29)
If a, B, and the constants e; satisfy Eqgs. (2.29), it is then
possible to calculate the functions g;:
8o = 444 — A)X? + [4Byax — Ag) + (4,8 — B))IXY
+ 4[2(ByS — B))1Y *=CoX ? + D XY + E,Y?,
& =434,a — 24,X% 4+ [3(Bia — 4,)) + 2(4,8 — B))
— 4Byt — o) — (4,8 — B,)IXY + }(3B38 — 2B,)Y?
=C X>+D XY+ E,\Y?,
8, =424,a — 34;)X? 4 [(Bsa — 45) + 44,8 — B)IXY
+ 4By — By)Y*=C,X* + D, XY + E, Y%  (2.30)
Here C,, D, E;; i = 0, 1, 2 are complicated expressions in
terms ofa, fand 4;, B;,j=0, 1,2, 3, 4.
The last compatibility relation (2.20) will give four other
constraints:

aC, —2C, =0,
2(Dyx — Co) + (BCy — D) — 2(aD; — C))
—4(C8 —D,) =0,
2(D,8 — E;) + (@E, — D,) — 2(BD, — E})
— daE, ~ D) =0,
BE, —2E,=0. (2.31)

The nine equations (2.27), (2.29}, (2.31) summarize in
terms of a, B, and the ¢,’s the conditions for which the system
possesses an integral of order 6 in the velocities. They form a
linear, homogeneous system of nine equations for the six
unknown e;. It is possible to show that, in order to get a
nontrivial solution to this system, @ and B have to take the
following values (up to permutations of @ and ).

(a) @ = 2, B = 2: The integral is the square of the con-
stant C, of degree 3 found previously (2.15).

{b) @ = 2, B = 1: The integral is the product of the con-
stant C, (2.24) of degree 4, found previously, with the Hamil-
tonian.

(c)a = 4,8 = 2: This is a new case which corresponds to

3e(2e — 1) 1 2
m=———, m,=2-1 m=1 = <e<=.
1 2 3e 2 3 2< <3
(2.32)

For these values of the parameters, Bountis et al.
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found the system to be Painlevé. It is, in fact, integrable
with a nondegenerate constant of the form

C =458 + 12x%p + 13x%°% + 6x%° + x%*
+ 4(e" — 2&)%* + (14e" — 16€°)x°y
+ 10(3e* — )% + 2(de” — &)xp?
+ 49 + (— 365 + &5 + 4eP)P
+(— 4> + 6" + 4Py + ( — >
+_§_ex+y+e2yb~,2+_2.}7e3x+_?;e2x+y_ (233)
So, every case of integrability predicted by the Painlevé

analysis® was indeed recovered by the direct approach for
the calculation of the integrals of motion.

lll. THE FIXED-END LATTICE FOR TWO PARTICLES

Let us consider a fixed-end lattice with two nonequal
masses and nonequal interactions. The form of the Hamil-
tonian governing the system is then

Py b
H="2_4 2 e % et ¢ (3.1)
2m;  2m,
In order to alleviate the notations, we put
X=e % D=7 Y=¢. (3.2)
The equations of motion read (up to a scaling in time)
x=6X—eD, jp=aeD-Y) a=m/m, (3.3)
At this point, we remark that a change
a=1a &6=1/85 ¢€=¢€/6
leads to the same form of the equations of motion for
&= — 8y, = — bx. These cases are then equivalent up to

an x, y permutation and a scaling.

As in the preceeding section, we will systematically
look for a second constant of motion polynomial in the ve-
locities. We will not burden the presentation by exposing
the computations at orders 2 and 3; they did not yield any
positive result.

Let us then begin with a quartic constant [form (2.16)].
As previously, it is sufficient to deal with constant coeffi-
cients f;(f, = 0).

The first compatibility condition (2.17) reduces to

fi=f3=0, (3.4a)

fHll—a)+2f,=0. (3.4b)
To obtain this result we use again explicitly the fact that the
functions X and Y depend only, respectively, on x and y.

We integrate and find the functions g;:

go= —4fyX+D)—2af,Y=F\X + D) + F,Y,

&= —4/D +2a f,D=(F, — F,)D, (3.5)

g = — 2HLX =(F,/a)X.

Once the relations (3.4a) and (3.4b) are fulfilled, it suf-
fices to satisfy the second compatibility condition (2.20) for
the system to possess an integral quartic in velocities. In
this relation appear the independent functions of (x, y) XD,

XY, DY, D2 Thus (F,, F,) must be a nontrivial solution of
the system

(1 — a)F, + aF, = O [transcription of (3.4b)],
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and
(1 — e){{aFy — F,)la — 2¢) =0,
B—a)Ffy+(@— 1)F,=0,
(6% + 2€* — 36¢)(F, — F,) =0

(the coefficient of XY is always zero).
It is obvious that the solutions are

Fy=0, F,#0;

(3.6)

a=1 €=1, or e=};

and

8/€e=2 or S/e=1.

We finally find three distinct cases for which a quartic
integral exists:

(a) ;—= ’ 6=€=17 (3.7)
2

) ZL=1, 5=1, e=-1—, (3.8)
m, 2

@ Zr=1, 5=1, e==
m, 2 2
{equivalentto 6 =2, e = 1). (3.9)

[The classifications (a), (b), and (e} are those of the Introduc-
tion.]

The explicit values of the constants are
(@) C=x%/2+ &% —e xp+e 5

+e T2 4+ 20 e, (3.10)
(b) C=3x%7/2 4 &x> —e* =" 2%p 4 e~

— 724207, (3.11)
(6) C=x%/24 &x> — "~y 4 e~ ¥4

F T2 420 p e (3.12)

In order to find the integrals for the other candidates of inte-
grability [cases (c) and (d) of the Introduction], it is neces-
sary, as in the preceding section, to perform the calculations
at order 6. (Recall ¢, = 0.)

8o = 2E X% + 4E,XD + 4aE,XY + (YD /€)(4aE ¢ — aE, + aEy) + (D */2)4E, — aE, + a’E,) + 2a°E,Y?,

The first compatibility condition (2.25) easily gives a
first relation between the ¢;’s:

e, =e5=0,
Ey+(2—aE,+(1—a)E;+(1 —2a)E, =0
(Eo = 6eq, E, = 2e,, E; = 3e,,E, = 2e,).

The integration of the equations for the f;’s is then
straightforward:

Jo=EX +aE, Y+ E\D, f)=aE;Y+ (E,— aE,)D,
f,=2EX +[Ey+ (2 —a)E, —aE,)D + 2Ey,  (3.14
fi=EX—ED, f,=EJX.

The second compatibility condition (2.17) gives relations on
the coefficients E;:

3Eq(a — 3) + Ey(9a — 4 — 3a%) + E4(1 — 3a) =0,

(€ — DEq(1 — e)(1 — 3€) + E{1 — €)(3a€ — a — 4€?)
+ EE,(4a — dae — 3 + 4€] =0,

and

{Eq€e(5€8 — 26° — 4€%) + a€E,[ — Seba + 4€’a + 2a5*
— 46 — €)*] + ale — 8 E,(4ea — 8)}(e — ) = 0.

(3.13)

(3.15)

(3.16)
This system [(3.13), (3.15), (3.16)] is satisfied for
a=1, =1, 6=1,
a= 1, €= %, 5 = %s
a=1 e=1, 6=2,

which corresponds to the preceding cases (3.7)—{3.9).

For a = |, € = 1, Egs. (3.13) and (3.15) are satisfied and
yield

E,= —6E,, E,=27E,
In order to satisfy Eq. (3.16) for these values of ¢ and ¢, §
must take one of the following values:

5=1,431

Now, once the system [(3.13), (3.15), (3.16}] is satisfied,
the explicit calculation of the g,’s reads

(3.17)

2
g, = DT (TE, — 3aE, — TaE, + 3a°Ey) + 2 :;“ XD (aE, — E,)
2
+ %( — 4€a’E, + 3aE, — 3a°E, + 4aeE, — ak, + 252 fz)

gr=22D* XL (p 5 4aeB) + 4aEXY +28,X",
€

2

At this point, there remains a last relation (2.20) to ensure the existence of the function 4 of (2.25) and thus the existence of
the integral at this order. We can now explicit the values of g, in (3.17) for particular cases of values of g, ¢, and & solutions of
{3.13), (3.15), and (3.16) and check whether relation (2.20) holds or not.

(1)@ =1, e =14, 8 = 1 [case (c) in the Introduction]. The g; are

8XD D?

4XD — 20D+ 427",

2.X2
+ —_
3 3
g, =3D?+2XD — 6YD,

g =9D?%/2 — 6XD + 12XY — 4X?* (with 3 E, = 1).

8o =

2204 J. Math. Phys., Vol. 25, No. 7, July 1984

(3.18)
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Relation (2.20) is verified and leads to the following value of the constant:

C=x6/18_2x4y2+9x-.2y4+(e—x_2ey+e(x—y)/2)x4/3+e(x—y)/2x3)',+(6ey_3e(x—y]/2__4e—xlx2y2
_9e(x_y)/2xy3+9e—xy4+(28—2x+4e—(x+y)/2__8ey~x_6e(x+y)/2+%eX—y+6e2y) (x2/3)+(3ex—y

+ Qe —x+¥2 _ 6elX+yV2)xy + (g &Y — e x+2 + 120 — 4e—2x)y2 — 12y — 22

+ 4e*(Y+3X)/2 _ Sey—ZX _ge—Bx + 12e2y—x.

(2)a=4,e=14,6 =1 [case(d)]. Theg, are
_2X?  4XD 8XY D?
I
g, =3D*+ 6XD — 6YD,

8. =9D%/2 + 6XD + 12YX — 4X 2

—2YD+—2'+2Y2,

(3.19)

(3.20)

In this case also, one can easily check that relation (2.20) is verified and then compute the constant
C — x6/18 _ 2*4}"2 __+_ 9x2y4 + (e-x/S _ 2ey + e(x—y)/2)‘x~:4/3 + e(x—y)/lej) _+_ (6ey . 3elx—y]/2 _ 4e—x/3)x2y2
— 9e(x—y)/2xy3 + 9€_X/3y4 + (28 —2x/3 + 4ex/6—y/2 _ Sey—x/3 _ 6elx+yi/2 + %ex—y + 6e2y)x2/3
+ {3@‘)' + 6e*/6 —¥/2 68(x+y]/2).7'cj) + (gex—y + ™6~ ¥/2 + 12¢V %3 _ 4e— 2x/3)}',2 +&— ge—x — Qe —*/3

_ 4ex/6+y/2 + (Se—Zx/3 +y)/3 _ ge-—x/ﬁ—y/z.

(3) A precise analysis of the values
5=13,

and

€=}, 6=1

shows that they do not yield any integrable case.

Exactly as in the cases of the free-end lattice, we have
been able to calculate the constants of motion for the five
distinct cases for which the fixed-end Toda lattice was
found to possess the Painlevé property. At this point, we
can remark that the leading power of the velocities of each
constant of motion can be predicted from group theoretical
considerations (see Sec. III). It goes without saying that
such a knowledge is most helpful for the direct calculation
of the integrals of motion.

IV. INTEGRABILITY OF THE TODA CHAIN BY LIE
ALGEBRA TECHNIQUES

A. The free-end case

a=4,

We consider the Hamiltonian system in the six-dimen-
sional phase space p;, ¢;:

s _OH  _oH
‘ 0g; ’ ‘ op; ’
pi | P P
H=— +_‘2—+“3‘+CXP[G(41 —q,)] + explg; — ¢4).
2m, 2m, 2

After an appropriate canonical transformation we cast
it in a form suitable for the search of integrable cases by Lie
algebra theory.® The cases predicted by the Painlevé analy-
sis and already found by direct calculation of the integrals
will appear as the ones corresponding to simple Lie alge-
bras of rank 2: 4,, B,, G,.

We consider the transformation, as in Sec. II,

9 =€¢1—q) 9=6,—¢q5 g =myg,+mg,+q,
[which we complete to a canonical one by introducing the
momenta p;, p;, ps satisfying {g;, p/} = 8ij ({---} denotes
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(3.21)

|
the Poisson bracket relative to g;, p; coordinates), i.e.,

pi=(/eM)Mp, —m\P), p; =(1/M)P— M ps),
ps =(P/M),
where

P=p +p,+ps, M=m+m,+ 1

Then the reduced Hamiltonian system in the four-di-
mensional phase space reads

p’—- —_ Ea_i q'-—ﬂ
' aq; " ' ap;’
1 1 ’ ’ r ’
H =—2—( Y a.,-pfpj)+exr>q1 + exp g3,
i=1,2
j=1.2
where
eEM—1 € 14+m
a, = ( )’012—021—“_,022— + M
mym, m, m,

From now on, we will drop the primes in order to alleviate
the notations.

The above Hamiltonian system has a Lax form repre-
sentation furnishing the integrals and providing complete
integrability, once the matrix 4 = (a;) is a positive scalar
multiple of the matrix ((#,, 4;)), where &, h, constitute a
root system base of a simple Lie algebra of rank 2 and {.,.)
denotes the scalar product determined by the Killing form.
In other words, the matrix C = (c; = 2a,/a;) must be a
rank 2 Cartan matrix.’

So, one has to test the values of m,, m, for C to become
arank 2 Cartan matrix, i.e., one of the following matrices or
their transpose’*:

[2——1][2—-2][2~—l]
—1 2l -1 2] L-3 2l

In each case € disappears with time scaling. The cases
corresponding to transpose matrices are equivalent within
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TABLE L.

Lie . Squared time-
algebra Cartan matrix my, m, Hamiltonian (e-free) scaling factor
2¢ —1
, 2 —1 m, =821 . , .
2 1 N 2—¢ 2p1 — 200, +2p; +expgi texpyg, —
my=2e— 1 202 — 1)
2¢ — 1
5 2 -1 m, = S2e=1) . ) €
2 5 5 I—e Py —2pp; +2p; +expg; +expy;
m,=2—1 22— 1)
G 2 -1 my = de2e—1) 2 2 €
2 _3 2 2—3e 2pi —6ppy +6py +expq, +exp g, —
ma— 2 — 1 6(2¢ — 1)
, =
scaling of € and interchanging p, with p, and ¢, with ¢,. In P, 0 0 i, 0
fact, three distinct integrable cases appear (see Table I).
,Th . g app' ( . ) L=\, po—p , P=] -1 0 i
¢ Lax-pair form representation is obtained through
0 I —p, 0o -5, 0

an exact representation of minimal dimension of the corre-
sponding Lie algebra, i.e., the Hamiltonian system is pre-

sented in the form L = [L, P], where[L,P]=LP— PL,L,
Phbelong to the representation, and they are functions of p;,
q;-

It follows that the Hamiltonian system has integrals:
I, =TrlL*), k=1,2,...

However we have to perform a subtle search in order
to find the algebraically independent ones. In fact, the the-
ory of polynomial invariants'’ gives the values of k: In the
case of the Lie algebra A4, the algebraically independent
integrals are I, and Z;, for B,, I,, and I, and for G,, I,, and
I.. In every case I, is the Hamiltonian (up to a multiplica-
tive constant).

For each algebra 4,, B,, G,, a suitable representation
can be obtained through their correspondence to sl(3, C),
s0(5), and so(7) (see Ref. 14).

The only problem that remains is to exhibit the specific
form of the Lax pair (L, P) in these different cases. We will
follow for this the method exposed in Ref. 9.

Case A, (the classical Toda chain). After changing the
variables ¢,, ¢, to

Iy =explg,, L, =explg,
the equations of motion read
I, =hL2p,—p) b=
I, =hL2p,—p), pr= —13,
which is a suitable form for the search of the Lax pair.
Following Ref. 9 we know that the vectors
1{t) =1Lt )es +€_a,)
+ L{t)eq, +e_ o) +pihy + Dok

4 (l(t)) = ll(t)(ea, - e—a.) + l2(t)(ea2 - e—az)

satisfy the following relation in the algebra 4,: I=[L,A4()]
where the vectors (e, , 4,) are chosen from the basis of the
algebra 4,. If we now use the usual matrix representation of
A,, namely sl(3, C), we find the form of the Lax pair:
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The algebraically independent integrals are
I,=Tr(L? = H and

I, =Tr(L®) = 3ppy( py — P2) + 3( Pl — Pil3).

Case B,: With the same transformation, as in case 4,,
the equations of motion are

21 =L(p,—p,), b= —11
and

22 =L2p—p) Po= —15.
Using a 5X 5 matrix representation of B, we write the Lax
pair:

ERA 0 0 0
L pi—p W 0 0
L=]|0 [ 0 i, 0 ,
0 0 —-L p,—pm - 512
|0 0 0 -1 — D2
[0 Y, 0 O 0
-L 0 i, 0 0
P=}0 -1, 0 -4, 0
0 0 i, O — il
| 0 0 0o I 0

The algebraically independent integrals are

I,=Tr(L? = 2H,
and

I, =Tr(L*) =2(p, —pa)* +2p5 +21%(p, —po)

+2p2%2 +2p21%2 421315 + 135

Note that /, = Tr(L 3) = 0.

Case G,: The Hamiltonian system under the transfor-
mation /, = explq,/2), I, = explq,/2) reads

21 =4L2p,—3p) P1= — 1,

L=0L6p,—3p) b= —13,
and using the 7 X 7 matrix representation of the exceptional
Lie algebra G, we obtain the Lax pair
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B 0 (v2/2)l, 0 0 - 1,v2 0 0
V21, 3pi—2p, 0 3 0 0 0
0 0 D1 0 0 0 - 1,72
L= 0 L/2 0 p—3p 0 1,72 0 ,
— (v2/2), 0 0 0 2p,—3p, 0 — 1,72
0 0 0 I3 0 — D1 0
L 0 0 -1 0 -3 0 3p,—p1
B 0 V22, 0 0 0 V2l 0 T
— V2l 0 0 0 3/, 0 0
0 0 0 0 0 0 -~ 172
P= 0 -5L/2 0 0 0 1,/2 0
— (v2/2)l, 0 0 0 0 0 —1,/2
0 0 0 -/ 0 0 0
L 0 0 I3 0 -3, 0 (U

The algebraically independent integrals are
I, =Tr(L? = 6H and I = Tr(L9).
B. The fixed-end case

We consider the Hamiltonian system in the four-di-
mensional phase space p;, ¢;:

’ dq, x ap ’
H=L(i+£)
2\m;, m,

+ exp( — 8q,) + exp €(g; — g,) + €xp ¢,.

After the canonical transformation ¢; = g,vm, p;

= p,/\Jm, and dropping the primes for convenience of no-
tation, the system is written

_oH . _JH
dq;, ' op

i

1
H=7(p? +p3) + eXP(—

)

_‘._CXPL.

9>
Jm 2) Jm,

Considering more recent works,'? in order to find
completely integrable cases via a Lax-pair form, we have to
keep in mind an extension of Bogoyavlenski’s theorem pre-
sented in Ref. 9, within the framework of Kac-Moody alge-
bras.

We will give a brief description of the concept of these
algebras based on Ref. 16 so as to provide the necessary
tools in order to obtain the Lax-pair forms.

So, consider a complex simple Lie algebra g and an
automorphism o of g of finite order d (i.e., the least positive
integer d such that 0? = identity) induced by a symmetry of
the root system of g. The order d can take the following
values:

6
m;,
+ exp e(—ql— -

m,

d =1, o =identity, case of all simple Lie algebras,
d=2, caseofAd,, n>2, D,, n>4,E,,
d=3, caseofD,.
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Elen one has the following decomposition of g into a direct
sum of subspaces: g = g, + g, + -+ + g, indexed over
the integers modulo d [g, is the eigenspace of o corre-
sponding to the eigenvalue €*; € = exp(2i/d )} with the
property [g:,8;] C&:. ;; i»J,  +Jj are integers modulo d.
Especially, g, is a simple complex Lie algebra (see Table II),
and because of the relation [g,, g, ] ©g;, we have a represen-
tation of g, on each g; which is irreducible. Then, the gener-
alization of Bogoyavlenski’s result consists in considering
— 6, the opposite of the highest weight & of the representa-
tion of g,on g, relative toa basisa, ..., a, of roots of g, with
respect to a Cartan subalgebra h, of g, (# is the rank of g,)
and the analog of Bogoyavlenski’s important “admissible”
set of roots is the set ay, ..., @,, @, , = — @ (@ being the
highest weight of the representation of g, on g,, when /; are
nonnegative integers with at least one of them nonvanish-
ing, 8 + L,a, + La, + -+ + 1, a, isno more a weight of this
representation). This is indeed a generalization, since, in
cased = 1, g = g, = g,, the representation is the adjoint
one and the highest weight is the highest root.

Consider now, asin Ref. 9,e,,e_,;i=1, ..., nvec-
torsingg, e _,ing_,, e, ing,, (thereis a duality between the
representations of g,ong, andg_ ) and abasis &, ..., 4, of
h,, that satisfy, among other relations

[e/l’e-/l]=19 /1“—"(11, o 8y gy
[hk, e,{] =(hk,/1)e4, [hi! hj] =O,

where the scalar product (x, y) = Tr(adx ady),
adx(z) = [x, z], zeg, and

[ea,de—aj] =0, l#]’ l,.]= L2,.,n+1

TABLEIL
14 4 Ay (n31) Ay, _((r32) D, (n>3) Eg D,
d 1 2 2 2 2 3
8o g B, C, B, F, G,
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Then Theorem 1 in Ref. 9 holds, i.e., if
a;= Y dyh, i=1.,n+1,
k=1
the Hamiltonian system
P =— oH g, = 9H
‘ dq; , ' op; '

n n+1 n
H=Y (b, hy) pibm + 3, CXP(Z djqu>
k.m 7 k

has a Lax-pair form.
We present the equation of the Lax pair into a different
form due to Manakov'”:

I=[1,4(),
n n+1 n+1

l: zpkhk + 2 ljeaj + z e—aj)
k J J

n+41

A(l)= Z ljeaj, = exp(z djqu>,
7 3

and any linear representation 7 of g determines the matrix
pair T'{l), T (A ().

Applying this theorem in the fixed-end case of the
Toda lattice with two movable particles, we obtain com-
pletely integrable cases for those values of the parameters
m,, m,, 8, € for which the vectors

Byi= — th’ ﬁzz_l_hz, 53=6(L — L)

Jm, Vm, m,  m,
form the ““admissible” set of roots and weights of a rank 2
simple Lie algebra g, which is the o-invariant subalgebra of
asimple Lie algebra g with respect to an automorphism o of
g (hy, h,, constitute an orthonormal basis of the Euclidean
two-dimensional space).

Instead of using directly generalized Cartan matrices
or extended Dynkin diagrams, we will find the values of the
parameters m,, m,, 8, € that provide integrable cases by
visualizing the “admissible” sets of roots and weights. To
begin with, we exclude the A '’ system because it contains

- ——— e ———

{b) {c}

- ———————

/
/

¥

1
1
]
1

\j

{d) {e)

FIG. 1. Identification of a basis of roots (heavy lined arrows) and the
opposite of the highest weight (dashed arrow) of the g, subalgebra of the
simple Lie algebra: (a) B,, (b) G, {c) 4,, {d) D,, and (e) D,.
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TABLE III.

Conditions on 8,, B,, B, Hamiltonian
Values of the parameters €, 8, m;/m,

Lig| =8l Bi+B:+28,=0 WPl +p)+e @
5, 1,1 + o\9 — 972 + e®

23181 =18)% 3B +B+B=0 WPt +pis) e 07
5, 31»’31 + el — 42 + &%

2bis. 318, = B, Bi+3B,+B,=0 Wpi/3+p3) e
%’ 3,3 + N - a2 + %

3218\ =18 2B, +B,+8;,=0 pi +pi)+e 07
%’ %» 1 + e ~q./2 + e

3biS.2lﬂ2|2=|ﬁ||2, Bi+28,+B,=0 5(Pf +P§)+eizq'
1,2,1 ERPL Rl AL

418, =1B|, Bi+B+B,=0 ot +pi)+e ™
1, 1,1 FRPL R NPT

538\ P=18l% Bi+B:+28,=0 Wpi/3+pi)+e @

i’ 1, 3 + el — a2 + e
5 bis. 3|Bz|2 = |B||2» Bi+B:+26,=0 i(Pf +p3/2)+e®
5’ 1'5 + 9 — 1)/2 + e%

no pairs of orthogonal vectors as required by the orthogon-
ality of 8,, B,. We consider the systems B, G, 4P, DY
(notation of Ref. 16) (Fig. 1). We, then, find the cases listed
in Table III. Case 2 is equivalent to 2 bis by the transforma-
tion g,— — 3¢5, ¢,— — 3¢,, plus a scaling in time. Case 3 is
equivalent to 3 bis by ¢,— — ¢,/2, g, — ¢,/2 plus a scal-
ing in time, and 5 to 5 bis by ¢,— — ¢,, g,— — ¢q;.
Lets now give the Lax-pair form representations for

each of the nonequivalent above cases and the indication of
the algebraically independent integrals.

Case B]): We consider the Hamiltonian
H =(p} + p3) + exp( — 2q,) + exp(q, — ¢2) + exp(2q.)

(after a scaling). The equations of motion after the transfor-
mation,

I, = exp( — 2q,),
are written

I, = exp(2q,), !, =explg, —q,)

?1= —2p,, p=2l-1
'lz = 20,p,, pa=1, =21,
Ly =15(p, —py)

Using the standard representation so(S) of B, and, identify-
ing the matrices corresponding to a basis of the roots and
the opposite of the highest root, we obtain the Lax pair

— (P +p2) l 2
2 Pi— P2 Iy -2
L= 2 —1 ,
L -2 p—p -1
) -2 ptp
L
h
P= — 1
L -1
__[2
Dorizzi et al. 2208



The algebraically independent integrals are
L =Tr(L*=8Hand I, =Tr(L")
Case GV: The Hamiltonian is

H=Yp?/3+p3)+ exp(—

6q,) + exp 3(¢; — g2)

(1 = —Iipy,
I =1p,

The equations of motion are

pr =61, =3,
Py =13l 21,

)3 =11(p,—3p,),

+ exp 29,
(after a scaling) and with the transformation and the Lax pair, provided by the 7 X 7 matrix representa-
[, =exp( — 6q,), [, =exp(2q,), I5=exp3lg;—q) tion of G, is
|
(pr—p/2 14 3 1
3 s V2
ly — (P +P2)/2 -1
L= V2 —L,V2
L (p1+p)/2 -3
—V2 -p2 -1
-1 -1 (P2 —pP1)/2
Iy
LvZ
l,
P= —LVZ
IS
A
-1 =1
|
The algebraically independent integrals are b, b, b b,
I,=Tr(L?*) = 3H and I, = Tr(L ). by by, b b
Case A }: The Hamiltonian is M= b, b, by —byl,
H = pi +p3) + exp( — 2¢,) + exp(q, — g2) + €Xp g5, bay by —bn by
with the transformation: /, = exp{ — 2¢,), I, = exp ¢,, by  — by by —by

I, = explg, — ¢,) the equations of motion are

}1 =2p, py =21, 22 =Lpnpr=5—1,

23 =L(p, —p,).

We will use the standard 5 X S matrix representation sl(5) of
A,. An automorphism of order 2 (involution) induced by a

and the one-dimensional subspace of the matrices corre-
sponding to the opposite of the highest weight of the repre-

sentation of g, on g, are the matrices (a;) 1 <7, /<6 with all

symmetry of the root system of 4, is given by is
a,, 42 a3 G4 G4y
Q1 Ay Q3 Ay dps
31 Q3 433 Q34 Q3s L=
Q41 A4y Gqz G4y Gys
ds; Qs; ds3 Qsq4 Qs
— Qss a4s —d3s s — s
- Qsq —~ Q44 Q34 — Qy4 Q4
- — a3 a4 — 433 ay; —dai3, P=
as; —dgp a3 —dxp a;
—ds; a4y —axn a  —dapn

and the matrices belonging to the B, (o-invariant) subalge-
bra are easily identified as the ones of the form

2209

J. Math. Phys., Vol. 25, No.

7, July 1984

entries 0 except as,.
So a Lax-pair for the considered Hamiltonian system

2
L
1 — P2
1
L
2
Iy

Dorizzi et al.

The algebraically independent integrals are
IL,=Tr(L*)=4Hand I, = Tr(L*).
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Case D'}: The Hamiltonian is and the one-dimensional space of matrices corresponding
H=p} +p? +exp(—q,) + explq, — q,) + X ¢, to t.he.: oppo_site of the l}ighest‘we‘ight are the matrices (a;);
with 1<i, j<4 with the entries vanishing except a,, = a,,.
The Lax pair for the Hamiltonian system is
li=exp(—q)), L=expq, I;=explg,—g,)

The equations of motion are —h—h I 1
I, = ‘“2111’1’ l.71=11*13, L= : Pr—p kL ! ,
iz = 20p,, =51, L 2 P2 h h
232213(P1 —pa). & : s
We use the 4 X 4 standard representation sl(4) of the D;~4, /,
with the automorphism of order 2, L
Q. 4 Q3 4y, F= L I3
1 Qyp Gy Oy, L

The algebraically independent integrals are
Qa1 Gar Gas dag I,=Tr(L})=4Hand I, = Tr(L 4.
Case D }): The Hamiltonian is

— Q44 3y —Qy a,
i Q53 —as; Q3 —ap , Hei(3p 452+ 5 B 5
—a,, 4, —ay 4L i3 pi +p2) + exp( — 2q,) + explg; — g,) + exp 2q,,
G —dy 421 —dn and the equations of motion are
to identify the matrices-elements of the o-invariant subal-
gebra of type B,. These matrices have the following form: I,=3lp, =2 -1,
by by, by, b {2=12p2, pr=5—12,
b, by by  —by; L=33p—p.).
b3, by, —by bi|’ We consider the 8 X 8 standard representation so(8) of D,
by, —by, b,y —b, with the automorphism o of order 3:
)
a1 a; a3 uw —by —b, —by;
as, ay; A3 dyy  —by  —by by,
ay as; as3 4y — by by, by,
a4y a4 Q43 Quy by, by, by,
— €y — €2  —Cy3 —Qyy T Qzy  —dyy —dy
—Cy T Cxp Ciz  —d43 —a33 —dy  —dg
— €3 € Cip —dy —Gzp —d;p —dp
€3y € O T4y —ay —a4y  —day
aj, by, — by by — by —b, —bj;
Ci3 ax ay3 — a3 — Ay —dayy by
— €12 as ai; a —dsz, a4 by,
i n —das a, gy a3y a4 by,
— , ;
—Cxp Ty —dy — Qi — 4y a3 — by
— €1 Ay a3 — Qy —ai — a3 by
— €3 a4 a; as, —a3; —dap — by,
€3y €2 €2 —Cn by, —by;  —aj

where a}; = }(@y; + @y + @33 — ua), @3, = 3@y; + G2 — G35 + a44), @33 = Ya, — A + @33 + a,), and ag,

= —} —a,, + a5, + @33 + a4). Following Ref. 16 we exhibit corresponding to the four basic roots of D, i.e., matrix X,
X,, X3, and X, with nonvanishing elements of the matrix a,,, @55, @54, and b, respectively. Then, the matrices correspond-
ing to basic roots in the o-invariant subalgebra of type G, are X, and X, + X, + X, and the one-dimensional subspace

corresponding to the highest weight is spanned by [X,,[X,,X;]] + €[X;,[X,,X,]] + €*[X,,[X,,X,]] (so the space correspond-
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ing to the opposite of the highest weight is spanned by the transpose of this matrix) where € = exp(2 i/3). Finally the Lax

pair for the Hamiltonian system is

— P2 h 1
1 (—~p2—3p1)/2 L
3 Bpr—p/2
I 1
L=|_g, —1
—€l, 1
el,
él,
L
L,
L =1
I, A
P=1_a —1
— €l
— €l
el —1,

The algebraically independent integrals are
I,=TrL})=12H and [I4=Tr(L9).

V. CONCLUSION

In this work, we have presented some new integrable
cases for systems which are restrictions of the Toda lattice to
chains of two or three particles, interacting exponentially
with their nearest neighbors. This restriction of dimensiona-
lity leads to new integrable cases as it allows the choice of
unequal masses and unequal ranges of interaction. The Pain-
levé analysis of Bountis et al. and of Ramani has identified
the different values of parameters for which the above sys-
tems could possess a second integral of motion apart from
the energy. The integrability of all these cases has been dem-
onstrated in this work through two distinct approaches: di-
rect computation of the integrals of motion and group theo-
retical methods. The first method, whenever practicable,
allows at the same time the identification of the integrable
cases and the exact calculation of the integrals of motion.
The Lie algebra approach can be used independently from
the direct search. It allows easily the identification of inte-
grable cases and can, in principle, be used for the computa-
tion of the constant of motion although the latter calculation
becomes sometimes pretty involved.

What emerges from our work is the use of different,
independent approaches, such as Painlevé analysis, direct
search for the constant of motion, and group theoretical

2211 J. Math. Phys., Vol. 25, No. 7, July 1984

_e
-1 e

I €
—1 -1’
=1 (py—3p))/2 -

(p2+3p)/2 —1,
1y —1 D>
_[2

|
methods, can be a most powerful tool for the investigation
of integrability of dynamical systems.
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The Liouville-Backlund transformation for the two-dimensional
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We describe the Liouville-Bécklund transformation for the two-dimensional SU(N ) Toda lattice
with free end points. Integration of this transformation gives us the general solution of this
equation, which depends on the N arbitrary solutions of the two-dimensional Laplace equation.

PACS numbers: 03.20. + i, 02.90. 4+ p

I. INTRODUCTION

The last decade has shown the exciting prospect of tack-
ling the classical solutions for the Yang—Mills field theory
for the different gauge groups. The well-known Belavin e?
al. instanton solution for the SU(2) gauge group' has been
extended by Witten? to the spherically symmetrical instan-
tons solutions for the same group. Next, Leznov and Save-
liev® generalized the Witten construction to the arbitrary
compact gauge group. Their construction, more precisely
the self-dual equations for the SU(N ) gauge group, is reduced
to two-dimensional Toda lattice with free end points.

On the other hand, the one-dimensional periodic Toda
lattice has been extensively studied in the last decade® by
many authors. It was shown that this system describes a
completely integrable Hamiltonian system and can be solved
by the inverse scattering transformation® or by Bicklund
transformations.® The one-dimensional Toda lattice with
free end points was considered by Kostant’ and by Olshan-
etsky and Perelomov.?

Moreover, there were proposed several different kinds
of generalizations®'" of the Toda lattice. Here we will con-
sider those proposed by Leznov and Saveliev, which we call
the SU{N ) Toda lattice with the free end points in the two-
dimensional space-time, [hereafter referred to as the SU(V)
Toda lattice]. We will use a slightly different terminology
than that used in the Yang-Mills field theory. Our SU(V)
Toda lattice corresponds to the SU(N + 1) spherically sym-
metrical instanton solutions.

The two-dimensional periodic Toda lattice has been
solved by Mikhajlov'? by the inverse scattering transforma-
tion and by Fordy and Gibbon'? by the Bicklund transfor-
mation. For the SU(¥ ) Toda lattice, Leznov and Saveliev
proposed two different methods for the solutions.'*'® One
of them uses the representation theory of the compact group.
The second is pure algebraic and uses the differential calcu-
lus only. In both cases they obtained the closed formulas on
the solutions of the SU(V ) Toda lattice as a functional of N
arbitrary solutions of the two-dimensional Laplace equa-
tions.

On the other hand the SU(/V) Toda lattice for ¥ = 1
reduces to the Liouville equation for which there is known a
Bicklund transformation which relates this equation to the
two-dimensional Laplace equation. In this paper we genera-
lize the Backlund transformation to arbitrary N. This trans-

= Permanent address: Instttute of Theoretical Physics, University of Wro-
claw, ul. Cybulskiego 36, 50-205 Wroclaw, Poland.
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formation we will call the Liouville-Béacklund transforma-
tion in order to distinguish it from the Backlund trans-
formation for the periodic Toda lattice found by Fordy and
Gibbon.'? Our transformation joins A arbitrary solutions of
the two-dimensional Laplace equations with the SU{NV ) Toda
lattice. Moreover, this transformation contains one arbi-
trary constant. Integrating transformation, we obtain the so-
lutions of the SU(N ) Toda lattice which can be reduced to
those proposed by Leznov.'® Therefore, we establish the cor-
respondence between the Liouville-Backlund transforma-
tion method and with Leznov’s method.

The paper is organized as follows. In the second section
we describe a method of finding the Liouville-Backlund
transformation for the Liouville equation which is different
from that proposed by Lamb.'” From this we find the Liou-
ville-Béacklund transformation first for the SU(2) case,
which is described in the third section and then for arbitrary
N which is described in the fourth section. The last section
contains concluding remarks.

Il. THE LIOUVILLE-BACKLUND TRANSFORMATION
FOR THE LIOUVILLE EQUATION

In the last century, Liouville'” found the solution of the
nonlinear partial differential equation

92 24
== h=e”, (1)
9z Jz

wherez = x 4 it and Z = x — jt, depending on two arbitrary
functions

=1 g(f+87% (2)
where f = f(z) and g = (Z) are arbitrary functions of their ar-
guments. In order to check formula (2), let us assume that

h, =Ae" — F,, (3)

h. = Be" — G;, (4)
where F = F(z)and G = G (z) are arbitrary functions of their
arguments and 4 and B are unknown functions which we
want to find. We can determine these functions from the

integrability conditions and from the assumption that # sat-
isfies Liouville equation. These two assumptions give us

h

A, —AG; =B, — BF,, (5)
AB=1— (4, — AG;)e " (6)
In order to find the Bicklund transformation, let us assume
A, — AG; =0. (7
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Solving Egs. (7) and (5), and introducing the solution to (3)
and (4), we obtain
h,=ae"*°~F_F, (8)
h; =(1/a) "+ F~ ¢ —G.. (9)
This is our Bicklund transformation. Here a is an arbitrary

parameter different from zero. Now we can integrate Egs. (8)
and (9), and we obtain formula (2) in which

afe—"dz'= _f (10)

0

LJ -4 = _g. (11)
a Jeo

Ill. THE LIOUVILLE-BACKLUND TRANSFORMATION
FOR THE SU(2) TODA LATTICE

Let us consider the following generalization of the
Liouville equation which we call the SU(2) Toda lattice:

hyz = exp(2h, — hy), (12)

h,z = exp(2h, — h,). (13)
Let us assume similarly as in the previous case that we have
the following form for the derivative of A;:

3,(h, + ¢') = Ae™, (14)
3;(h, + 7'} = Be™, (15)

where ¢ ' = ¢ '{z) and ¥ = ¢/(Z) are arbitrary functions of
their arguments and A and B are unknown functions which
we determine from the integrability conditions and from the
assumption that A, satisfies Eq. (12). The integrability condi-
tion with (12) gives us

X=03,A-A4y,=3,B— B¢, (16)

AB=e¢ " _Xe ™. (17)
On the other hand, the formula (17) can be computed direct-
ly from (12) and (14), (15). Indeed introducing e ~ "= H,we
obtain

e”"=H, H, — HH; (18)
then, computing H,, H;, and H; with the help of (14) and
(15), we obtain (17). Now with the help of (17) or (18) and (14},

(15), we can compute the derivatives d, 4, and d;/4,:
3,(h,+In(X)+ @)= —(3,4-B— ABJ, In(X)) €,  (19)
3(h, + In(X) + ¢) = — (4-9.B — AB3, In(X)) ™. (20)
Let us assume that

dzInX=0. (21)

This assumption is a purely heuristic assumption, which can
be motivated, that we would like to consider the symmetric
form of (19) and (20) to the formula (14) and (15). As we show
this assumption does not contradict either the integrability
of (19) and (20) or the assumption that 4, satisfies (13).
Indeed introducing exp{ — 4,) = G we have

e "=G,G;, — GG,. (22)

Next differentiating Eqgs. (19) and (20) with respect toz and z,
respectively, and computing G,, G;, and G ; with the help of
(19) and (20), we easily check the integrability of (19) and (20),
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and next we easily recognize that h, indeed satisfies Eq. (13).
Now we can easily solve Eq. (21) which gives us, with
the help of (16),

A= [fef~fdz'+x(z)} e Y, (23)
Bz[fze¢2‘¢'dz’+x(2)] er e (24)
X=e"*" =F(5)K2), (25)

whered 2 = ¢ }(z)and y* = y*(Z) are the arbitrary functions of
the arguments. Here we use the special notation on the func-
tion X which we will use in the next sections. The functions
yl(z) and y (z) are unknown functions which we determine in
the following manner. Substituting the formula (18} into (22),
we obtain

H, H, H

zz

1= —det| H;,, H; H,]|. (26)
HEZ’ HEEZ’ Hzﬁ?
Using Eqs. (14) and (15), Eq. (26) reduces to
0, —A4, —4,
—1=det] —B, X, X, 1. 27)
- B, X;, X

z z zz

Introducing (23), (24), {25)-(27) after algebraic manipula-
tions, we obtain

3:x(2) A, x 2) = exp( — 267 — 27 — @' — 7). (28)

Equation (28) we solve by separation of variables, which
gives us

x(z)=ﬂj emt " az, (29)

¥ = ﬂife—”—z*‘df'- (30)

Here u is the arbitrary nonzero separation constant. By in-
troducing (23) and {24) with (29) and {30) to (12}, (13) and (19),
(20) these equations become the Liouville-Béacklund trans-

formation. Carrying out the integration of this transforma-
tion, we obtain the general form of the solutions of the SU(2)
Toda lattice. These are

"z vz’
e M= —e””“(f e“’z""dz’;zj et "2 gy

+ f e?’*fdi'if e V-7 dz"
n

+jef~fdz'fe¢“¢'dz'). (31)

e~ " can be computed by formula (18).

In this way our solutions depends on the two arbitrary
solutions of the two-dimensional Laplace’s equations and on
one arbitrary constant different from zero. These solutions
can be reduced to those proposed by Leznov.'

IV. THE LIOUVILLE-BACKLUND TRANSFORMATION
FOR THE SU(V) TODA LATTICE

Let us consider a more complicated generalization of
the Liouville equation, which we call the SU(N ) Toda lattice,
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proposed by Leznov and Saveliev,?

hy, = exp(2h, — hy), (32)
oz = exp( — hy + 2k, — hy), (33)
howz =€Xp(—hy_ +2hy —h, ), (34)
My =exp(— hy_ | + 2hy). (35)

In order to see the connection of Egs. (32)-(35) with the
Toda lattice, let us write down the equation of motion for the
two-dimensional Toda lattice in the following form®'®:

82 N
—é;—;;;g" = agl K.z expgg. (36)
Here K = {Kz} is the Cartan matrix for the SUN + 1)
group and has the following form:
2, -—1, 0, 0,
-1, 2, -1, 0,

K= 0, —1, 2, —1,

(37)

Assuming that g, =g, ., = — « and transforming g, to
8. =2 _, K, hs Egs. (36) reduce to Eqs. (32)(35).
Now let us introduce the following notation, e ~ M=H.
Then, as one can easily find, we have
exp( — h,)=H,H; — HH,, = — det,(H). (38)
Using Eq. (33), we find
H, H, H,,

-— exp( - h3) = det HE) HE:! Hizz

H.., H., H;,,
= det,(H ), (39)
and in the general case
exp(—h,)=(—1)"*~V2det,(H), 1<a<h, (40)
exp(— Ay, )=(—1)"W+ V2 dety_ (H)=1. (4]
Now let us assume, as in the previous sections, that
h,=Ae" —¢!, (42)
h;=Beé" —yl, (43)

where ¢ ' = ¢ !(z) and y' = y'(Z) are arbitrary functions of
their arguments and 4 and B are unknown functions which
we want to determine.

Due to the formulas (38)~(41) and the assumptions (42)
and (43), we can write down exp( — A, ) as a functional of H,
A, B, ¢', v/, namely, we have

0, —4
exp( — h,) = HX — det B —4) (44)
X’ XZ
exp( — h;) = — H det X, X,
0, — A4, —A,
—det| — B, X, X,
- BE’ XZ’ Xiz
= — Hdet,(X) — det;(4,B,X). (45)

For arbitrary a, 1 <a<N, we have
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exp( — h,)=(—1)"*" "2 H det, _,(X) — det,(4,B.X),
(46)

where we use the following notation:
X=A; —yA. (47)

We can expand exp( — A,) in the slightly different form also
using the following formula:

1, 0
exp(—-hz):Hdet(_B, —Bz——B¢;)
dt( 0 _A>
- —B, —B,)’ (48)

Here we use Eq. (43} instead of (42). Then comparison of (44)
with (48) gives us

X=B,—Bé.. (49)

Equations (44) and (47) guarantee us the integrability of (42)
and (43). To obtain the explicit form for the derivatives of the
h,, a> 1, let us differentiate (46) with respect to z and Z,
respectively, and use (42), (43), and (46) again, obtaining

(ha + ln deta~ 1 (X) + ¢ ’)z
=(—1)%e="2x g det, ,(X)e"
- (¢ ’ + In deta— 1 (x))z deta (A’BX)
X e + 3, det(4,B,X) ™, (50)
(ha + ln deta— l(X) + 7/')2
={— 1)~ "2 Bdet, ,(X)e"
— (¢ + Indet, (X)), det,(4,B,X)e"™

+ 9, det(4,B,X ) e". (51)

It will be very useful for us to introduce the special notation
for the derivative of A

(hy +Indety ,(X)+ '), =C, "™, (52)

(hy +Indety_,(X)+ ), =Dy €™, (53)
where Cy, and D, can be computed from (50) and (51}, re-
spectively.

We are now prepared to find the equation from which
we determine the functions A and B. First, as one can easily
notice, it is possible to define exp( — 4, ) successively as a
functional of exp( — A4 also, in the reverse order to (38)-
(41). Indeed, introducing exp( — A, ) = G, we obtain

exp( — Ay _ 1) = G,G; — GG; = — det,(G), (54)

exp( — h,) = (— 1)~ "2 det,(G). (55)

Asin Sec. III, we would like to have the derivative of 41y
a symmetrical form to the derivative of 4,. Therefore, we
assume it and that it can be denoted by

(hy +d+ ). =Cine™, (56)
(hy +y+¢' ) =Dye", (57)

where ¢ = ¢ (z) and ¥ = y(Z) are the arbitrary functions of
their arguments. Moreover, we assume that

¢, =3, Indety,_,(X) (58)
¥, =3d; Indety_ ,(X) (59)
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Cy=Cy, Dy=Dy, (60)
b= 3 80 1= 3 1@ 1)

We can assume that ¢ and y have the form (61) because ¢ and
y are arbitrary functions. As we show, the assumptions (58)-
{61) do not contradict the integrability of (56) and (57). In-
deed differentiating (56) with respect to z and using (57), (59),
and (54), one can check that A, satisfies (35). Now we can do
the same with Eq. (57) and obtain that &, satisfies (35) again.
Therefore, we prove the integrability of (52) and (53). Be-
cause &, _ , is the function of 4, or ,, we immediately con-
clude that the integrability of (50) and (51) is the direct conse-
quence of the integrability of 4, and 4,. Equations (50) and
(51) define for us the Liouville-Bécklund transformation for
the arbitrary N in the SU(N ) Toda lattice. To obtain the ex-
plicit formulas on this transformation, we should find the
functions 4 and B. Equations (59), (60), (47), (49), and {41) are
our basic equations from which we find these functions.

Preparing the first integrations of the (58) and (59), we
find

N

N
detN_l(X)=exp(z ¢+ Y y‘). (62)
i=2 i=2
In this way we obtain the similar but not identical equation
[Eqg. (62)] to that found by Leznov.'* We solve it in a similar

manner to Leznov. Namely, we assume that

N-—1
X="3 FiaKE) (63
a=1
then (62) becomes
dCtN_l(F)'detN—l(K)=e¢+r9 (64)
where
E_’i = Fi,z,...,z’ K.J = Ké,i,...,i N

j—1 i—1
Let us now assume by induction that the functions F, _ , and
Ky _,, 1<a<N — 2, satisfy Eq. (64) for the SU(N — 1) Toda
lattice. The first step in this construction corresponds to the
SU(2) Toda lattice considered in the previous section. For
this first step we have

Flzy=¢*", Kl =e". (65)

Due to (65) we immediately obtain one particular solution
for the functions F* and X © in the SU(3) case.

Fl=(— l)e"’}”j e*’ dz,

K1=(_1)e7”/2f e’ d3, (66)
F2 — e¢ 3/2’ K2 — 873/2. (67)

Therefore, the continuations of this procedure give us that,
for arbitrary N in the SU(N ) Toda lattice, we have

'z
N —
Fe— ( l)a e? - 1)J- e¢” AN—2 dz

Xf f e eds, (68)
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N
FN-] =(_ l)N—le¢ /(N—l),

(69)
KV-'=(— -t w—n
kem(ctp e [ gz
)(f .“faefﬂ/adz—a-yl' (70)

Substituting these formulas into (63) and next substituting
into (47) and (49), we obtain

A=(N§;Fafe—7‘1<ad§+x(z)) e, (71)

N-1 (2 . .
B:( S | Fee? ds-K"—i—x(E))e"’. (72)

Here the functions y(z) and y (z) are unknown functions

which play the role of the constants of the integrations. We

determine them in the following manner. Preparing the inte-

grations of our Bicklund transformation for 4,, we obtain
N+1

e =3 Fox (73)
a=1
where
7ﬂ=e¢‘f e—* Fads, (74)
./C{/".—_-e"lf e " Keds, (75)

for 1<a<N — 1 and
FN+1 e"l, YN — e”l, (76)
FN= e"’lJ‘ e~ ylz) dz,
] (77)
FNHI =e7’1f e~ y(@) dz.
Now we determine the functions y(z) and y(z) in such a way

to satisfy the condition (41). Substituting (73) into (41), we
easily recognize that this formula reduces to

(—l)N‘N+1’/2detN+1.7det~+1ﬁ/=1, (78)
where
y_ij=‘?-i,z ,,,,, z3 ‘z/‘ﬁ=‘z/‘é,i ..... z*
j—1 i—1

By introducing the explicit form of F# * and %" to (78), this
formula reduces to

(— [VN+b2 ot + 7 det,, Fdety K = 1, (79)

where F; and K; for 1 <i,j <N — 1 are the same functions

as in Eq. (64) and

Fyi =X(2hs... (80)

i—1

Kiv = x@;,. . (81)
i—1
Equation (79) is similar to Eq. (64), and, using this equa-
tion, we obtain
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>4 z' z"
NN 2 4
xz)=e"""w ”f J‘ e’ dz”f e dz”,

. 5 (82
X(E) — ( _ 1)N+le7~/(N—l)f "'f eyz dzn‘f eYodEm’
(83)
where
_ . N l¢‘
—ho=¢'+ 3 A, (84)
ey &
Yo=v + 2,2 Ty A, (85)

where A is an arbitrary constant. This constant can be ab-
sorbed by the redefinition of ¢ ? and 2. Then this constant
will not appear in the solutions of the SU(V ) Toda lattice, and
therefore these solutions are reduced to those found by Lez-
nov.

V. CONCLUDING REMARKS

Here we have found the Liouville-Bécklund transfor-
mation for the SU(NV ) Toda lattice. This transformation re-
lates the &V arbitrary solutions of the two-dimensional La-
place equation with our equation. Moreover, let us notice
that this transformation is invariant under the Weyl group.
Indeed notice that the arbitrary permutation of ¥ © together
with arbitrary permutation of 7"* in (73) is also the solution
of Eq. (78) and hence is the solution of our equation. But this
invariance, as was pointed by Leznov, corresponds to the
invariance under Weyl group in the SU{V + 1) gauge theory.

Finally let us notice that it will be very interesting to
extend this transformation to an arbitrary compact gauge
group for the self-dual equations. In this case we have slight-
ly different Toda lattice in the two-dimensional space-time.
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For the classical compact gauge group Leznov solved this
equations by the same method as for the SU{N ) case,'* and
hence probably the Liouville-Biacklund method can be ex-
tended too.
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General equations are formulated to determine all potentials for two-dimensional systems of the
type L = }( p} + p3) — V(g1s92:¢ ), which admits invariants of the form I = a, + a,£; + Ja,;£:£),
ij=12,whereé, =2=q, +ig,, §, =2 =4, — ig,, ay, a;, a; are arbitrary functions of ¢,

z=q, + iq,, and Z = q, — ig,. Simplifying restrictions reduce the general equation to a tractable
form. The resulting equations are solved for a special class of time-separable potentials and derive
(i)thevander Waals-typelong-rangepotential, ¥ (r,t ) = B(¢)(b /r* + d )and (ii)thequark-confining
logarithmic potential, ¥ (r,t) =B (¢ )A (In 7 + b,/7* + d,). Invariants I for the resulting dynamical
systems are found. Some observations on the present method in the context of Katzin and Levine

and of Lewis and Leach analyses have also been made.

PACS numbers: 03.20. + i, 03.40. —t, 11.30. —j

I. INTRODUCTION

Recently, considerable activities in constructing exact
invariants for time-dependent classical dynamical systems
described by the Hamiltonian H = §p* + ¥(q,t) or the La-
grangian L = Jp*> — ¥ (g,t ) have been initiated.!-® Such stud-
ies have a lot of bearing in plasma physics, time-dependent
Kepler and harmonic oscillator motions,* a-decay, time-
dependent gravitational constants, time-varying mass for ac-
celerating dynamical systems, and time-dependent magnetic
monopole problems.” So far, the analysis is mainly directed
towards one-dimensional dynamical systems.* Katzin and
Levine have, however, discussed this problem for the re-
stricted class of Kepler, harmonic oscillator, and their lin-
early combined potentials in two dimensions.>® Following
the recipe of Ref. 5, we reexamine the classical Lagrangian
system,

L=}z -V(zZt), z=q,+iq, z2=p, +ip,

and restrict ourselves to the determination of the constants
of the motion of the form

I=a, +a,¢; +%‘7ij§i§j, & =32 §2=Z:_,

where the coefficients aq, 2;, 4, explicitly depend on time 2, z,
and Z and g; = g;;. Our material is arranged as follows.

In Sec. I1, we consider the Lagrangian,
L =}|2|* ~ V(zz,),and, requiringthatd/ /dt = Oand using
the ansarz (2.35), we obtain a second-order differential equa-
tion for the potential (2.36). The potentials satisfying such
equations are derived, and the corresponding invariants are
constructed. In Sec. 111, we restrict our analysis to the poten-
tialoftheform ¥ (z,2,¢) = ¥ (|z|,t) = B (¢ )u(|z|)and derive two
important class of potentials, namely, case { 1),
V(zl,t)=B(t)b/r* +d), and case (2),

* Department of Physics, Ramjas College, University of Delhi, Delhi-110
007, India.

V(|z|,t) =B () (Inr + b,/r* + d,). The corresponding invar-
iants for these two cases are constructed. In Sec. IV, we re-
write the invariant / in the form

I= iofmn(zjyt)grggr glzj’ §2=‘2’

and the corresponding Hamiltonian H = §£,£, + V(z,2,t ).
Ondemandingd! /dt = 3l /3t + [I,H ], = 0, we obtain a re-
cursion relation for the coefficients f,,,, . On restriction of
m,n, i.e., 0<m + n<2, and properly identifying f,,, with q,,
a;, ya; of Sec. II, we establish the correspondence with the
Lewis and Leach approach* and our analysis. In Sec. V, we
examinethepotential ¥ (zZ,¢) = 8 (r)|z]*and from thepoten-
tial equation fix o, and o,. On substituting o,, o, and by
suitably fixing other parameters, a,, a;, a; can be determined
which in turn yield the invariant 1.

We summarize our discussions in Sec. VL.

Il. CONSTRUCTION OF THE POTENTIALS AND
CORRESPONDING INVARIANTS

A. The method

We consider a dynamical system described by the La-
grangian

L=z~ Vizz1) (2.1)
with the concomitant equations of motion,
.. av - av
f= 220 7= _29" .
gz oz 22
Let us consider the constants of the motion of the form
I=ay+af; +a,;€&, ij=12 2.3)

The coefficients a,, a,, a,; explicitly depend on ¢, z, and Z.
Using dI /dt = 0, we find from (2.3),

(@0 + @) + (@0, + &, +a ) )E;
+(a;; + 5%)5;5; + ia.‘j,kgrgjfk =0. (2.4)
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Taking into account the proper symmetrization of the coeffi-
ciants a,, a;, a; we obtain from (2.4)

@y + Ay + 8y, ; =0, (2.5)
a,; +a;,;= —ay (2.6)
Qo = —a; —ay&;, (2.7)
and
ao= —a;,. (2.8)
Since a,, = a,,, Eq. (2.5) yields
da,,
%an _o, 2.9
9z 29)
da,,
%2 _ o, 2.10
= (2.10)
da da
2% L Fu g, 2.11
dz + oz @10
and
2% | 98 _ (2.12)
oz oz
whereas Eqs. (2.6)—(2.8) and (2.2) yield
da, da,,
da, _ _ 9% 2.13
9z at 2.13)
208 _ 9y (2.14)
Jz or
da,  da, _ _Jay (2.15)
7 Oz at '’
da, da, av av
T LA , 2.16
oz a g Ty, (2.16)
da, da, av av
—~+4+2,—+2a , 2.17
= o TPt (2.17)
da, av av
— = — + 2a, — 2.18
a ' oz + oz 2.18)

Now, we solve Eqgs. (2.9)+2.18) for determining a,, a;, and

a;.

B. Determination of g,

From Egs. (2.9) and (2.10), a,, = a,,(z,¢) and
a,, = ay,(z,t ). Sinced %a,,/320% = 3*a,,/z3z,Eqgs.(2.11)and
(2.12) yield

é;—;;”— = —ngﬁ =20,(t) (say). (2.19)
Solving for a,;, a,,, we have

a,, = 0ot 2% + 0,(t 7 + 0(t) (2.20)
and

Ay, = Oyt )22 + 04t )z + T4(t). (2.21)

Substituting for a,;, a,, in (2.11) and (2.12), we obtain

ay(z.2,t) = a;,lz,Zt)

= — 0y(t )2z — Jo,(t )z — Jo(t )2 + Julz),
(2.22)

[(t) being the integration constant.
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C. Determination of 4,

Substituting for a,,, a,, from (2.20) and (2.21) in (2.13)
and (2.14), we get

a, = —{[6o(t %z + 0,(t )2z + G5t 2] + d7,(3t) (2.23)
and

ay= — 0ot )2Z + 64(t )2Z + G,(t 2] + §rafz,t); (2.24)
using (2.23), (2.24), and (2.22) in (2.15), we have
30o(t)2Z + Oyt )z + 0,8 )2 — Jalt)

=0. (2.25)

Differentiating (2.25) w.r.t. z, then Z, we get

a"o(t) = O, i-e.,

0olt) = ¢, (some constant independent of time). (2.26)
Substituting for o, in (2.25) yields
. .- 1. 1 ar 1 or
Oz + 02— —pt)———"2—-——"2=0. 2.27
o2 = At) % 2 o (2.27)
Differentiating (2.27) w.r.t. z, we have
1 &7,
- =0. 2.28
7277 o (228
Solving for r,, we obtain, from (2.28),
Ty =Togt) = 0t )2 + o5(t )z + ot ); (2.29)

similarly, differentiating (2.27) w.r.t. Z, and solving for 7, we
find

7 =TZt) =0\t )2 — 4t F — os(t ]2 + ooft).  (2.30)

Substituting for 7, 7, from (2.29) and (2.30) and o, = ¢, from
{2.26) in (2.23) and (2.24), we obtain

a; = —{[65(t | + 05t )]z + Jo,(t )72
—4[le) + o1)]Z + Jorlt) 2.31)
and
a; = — 404tz + Guft)1Z + §oalt )12°
+ 4los(t)]z + foelt). (2.32)

D. Determination of a,

Differentiating (2.16) and (2.17) w.r.t. Z and z, respec-
tively, and using

62V=82V
3202 9zz’
we obtain
a 8(11) da,, IV *V da,, AV
(& 2 98u 97 4, L %2 97
32(3t+ z Z E T g &
_ _i(%)“ff_a.ﬂ
dz\ gt Jdz Oz
;v da,, AV
2 et R 2.33
+ o az* + dz Jz 233

Substituting for a,, a,, a,,, a,,, a,, from (2.31), (2.32), (2.20),
(2.21), and (2.22), we have from (2.33)
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e + ot +0di)) Th + 320+ 0yt)) S

3z
+ { — 3020t )z — os(e) — 4l )}
32

=2{c,Z* + oot Z + 03(t )} 2

+ 3{2c,Z + o4(t)} L4

adz
+ { - %&1(1 )E}

Let us make the ansatz

(2.34)

i) =0, Gt)=0, o,=G=03
and
O3, =0,=0, (2.35)

Then,

Os=c, (say)
Using (2.35) in (2.34), we find

(92 av FV =V
B 1 c=4
822+ 82+ Ve Jz

=@lt) (say)

(2.36)
where
A =2{c;2> +o\lt)z + o(t)},
B=3{2cz+ a,(t)},
C= —30,(t).

(2.37)

Equations (2.36) are called “potential equations,” and solu-
tions of (2.36) give a class of potentials. Before we consider
some special cases for solving (2.36), certain remarks are in
order. Katzin and Levine,’ in order to solve the time-depen-
dent Kepler problem, had assumed 4 =0, &, =, =0,
o3 = 04, 05 = const, g, = 0, = 0, 0, = const. In our case,
we resorted to the ansatz (2.35), so that we can reduce (2.34)
into a pair of conjugate equations for the potential equation
(2.36). Secondly, our Eq. {2.34) in its general form when sup-
plemented with Egs. (2.16)2.18) provides an explicit form
for the invariants for the time-dependent Kepler,® harmonic
oscillator,” and their linearly combined potentials. '°
Solving for the potential V' from (2.36), we fix the coeffi-
cient a,, which in turn together with g;, a; determine the
invariant [ (2,2t ).

lll. SOME SPECIAL CASES

Here, we consider the potential

Vizzt) = V(|zl, )=B(t(z]) (say). (3.1)
Thus,

3 22 djg|’

FV _Ble)z| [ dv d%
o7 | 4z [ 21 T T ] (32

Substituting (3.2) in the potential equations (2.36),
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PV B L c—op),

az2 9z
FV =V (2.36)
_ LA
PR +B =+ C=gl)
we have
g, 0|8 dzv]
{c‘+z+z2] "[ d|]+lz|d|z|2
alB g 3,
+3f2e,+ 2] £ g ee=el) B3
and
d2
{c‘+ t2 ]ﬂ”[ d||+|z|d|zl|)2]
+3{2c1 ]B||d|| %&,E:Mt). (3.3b)

In order that (3.3a) and (3.3b) be simultaneously satisfied by
v(|z|), we must have

o,=0;=0 and ¢g,=0. (3.4)
Thus, (3.3) reduces to
d* dv
z|? + 5|z =A,
2] FIRE 2] a1z
where
~2l) (3.5)
B1)

Note A is a constant independent of time.
We consider the following two interesting cases.
Case (a): A = 0: Eq. (3.5) reduces to the form (|z| =)
d* dv
r—+ 5r —=0.
dar
Thus, we have the nontrivial solution for v:
b/r) +d, (3.6)

where b, d are some arbitrary constants. (3.6) is the well-
known van der Waals-type potential. Now, using the ansatz
(2.35) and (3.4) in the expressions for a,, @,, a5, a,,, 4,5, and
a,,, we obtain
a, = — iz,
a,=c¢2,
a,= — 2c,bB(t)/1r,
where B(t)= fB(t')dt' and o5 = 0, = 0is assumed.
Finally, the invariant (2.3) can be written in the form

v=1o(r) =

a, = ic,z,

— 2
Ay, =0y = — CZZ, Ay =Cy2°, 3.7

I=a(t)/r* +a,(t)L +a,L?, (3.8)
where

alt)= —2c,bB(t), a,= —2ic,, a,= — 8¢,

(3.9)

L =g,p, — qp, = (1/4i)(§Z — §2).

Case (b ): A = A,#0: Eq. (3.5) yields

ﬂ%+ 5r d— =, (3.10)
Solving for v in (3. 10), we obtain

v(r) =Mollnr+ b,/r* + d,). (3.11)
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The invariant for this case turns out to be

I=46,t)+ 8,(t)/r* + 6,L + 6,L2, (3.12)
where

Solt)=1ic,B(t), 6,(t)= —2c;B(t)b,,

62 = - ZiC2, 53 = — 86‘1.

iV. CORRESPONDENCE WITH LEWIS AND LEACH
METHOD*

In this section, we extend the method of Lewis and
Leach* to two dimensions and show that up to quadratic
terms in momentum, the recursion formula method yields
the same set of equations for the coefficients and determines
correspondingly the same invariant 7.

Consider the Hamiltonian of the classical dynamical
system (2.1),

H=1(pi +p3) + V(g:91)
=£.6, + V(zZt). (4.1)

Let the invariant I for (4.1) be expressed as a double power
seriesin &, £,, i.e.,

> ofmn (2.2,1)67E 5. (4.2)
Using the equation for the invariant 7,
ar_al dl JdH  JdI JH
dt ot z(%_ ap; :9;5%)
O (2 Ao o 30O 3H)
at dz3f, dzoE, G FzZ FE, Oz

=0,

and demanding the coefficients of £ "4 5 to vanish, we obtain
the following recursion relation for f,,,,:

y afm~ln afmn—l aV
: ol 1
fmn+ az + az m+ )fm+1n az
~2n+ Wopr =0 @3)
dz

If we restrict our analysis to the case 0<m + n<2, then

I=foo + forba + frob1 +/ubrba + ff s + ok 1. (44)
Equation (4.3) then yields

. av av
foo“zflo_‘zfm—=0,
a v
f01+ g;_o ZfHEE‘—‘*ﬁ)z =0,
; oo av
—2 2 —‘4 — =0,
Jo+ %2 f11 % Y20 S
y aﬂ)l y aflo
———=0, ———-=0’ 4.5
Jo2 + 5 S0+ 9 (4.5)
y aﬂ)l aflo
Lo 4 10
Jut dz t az
a.fZO =0, aﬂ)z =0’
Jz Jz
i, oo oo, Fu _
oz & C e &
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We note that (4.5) coincides with Egs. (2.9)—(2.18). In the
method of Lewis and Leach, the symmetry is built in and this
gives a general method of constructing invariants involving
higher powers of momenta.

V. TIME-DEPENDENT, UNCOUPLED HARMONIC
OSCILLATOR (TWO-DIMENSIONAL) MOTION
Let us consider V' (z,z,t) = B (¢ v(|z|)=48 (¢ ) |z|*. Then,
?Kz_l_ﬁ(t)lz!z oV _ 13(’ 122,
T g

dz 2
(5.1)
v _ v _
ar B
Thus, Eq. (2.34) reduces to
3{2ciz + 0\t )} [B(e)/2]|2]7 — §8,(t )z — o5(t ) — 4jidt)
=3{2¢c,Z + oyt )} [B(t)/Z]|z|* — 36, 2. (5.2)

Using the ansatz o5 = ¢,, 65 = 0, ji = 0, Eq. {5.2) reduces to

BU) gy + S B 5y 4 Gk (eay)
V4 V4 V4
(5.3)
For k, =0,
oty +B(t)o(t)=0, (5.4a)
Guit) + Bit)o,it) =0. {5.4b)

The solutions of (5.4a) or (5.4b) are given by*

[0‘=p sin 7, pcosT, T=fp‘2(t’)dt’], (5.5)

where p satisfies the auxiliary equationp + B(tjo =p>.

Substituting for o, o, in the expressions for a,;, a,,, a,,, a;,
a,, and a,, the invariants can be found out.

VI. CONCLUSIONS

Our analysis has the following features:

{1) It establishes the correspondence with the Katzin-
Levine and Lewis—-Leach methods when / has terms up to
quadratic in momenta.

(ii) Writing I = 2%, _o /€ 765, 61=2, &, =7, we
have extended, in fact, Lewis—Leach analysis to double series
expansion in £, &,. The suitable convergence of the series is
assumed. Our prescription, in principle, can be used to deter-
mine analytic potentials and the corresponding invariants.

(iii) By restricting 0<m + n<2, i.e., considering / in the
form: I = a, + a,£; + ja;£.§;, and using the ansatz (2.35),
we have derived two interesting types of potentials, namely,
(1) the van der Waals-type long-range potential and (2) the
quark-confining logarithmic potential, which are both time-
dependent. The later potential can have a lot of applications
in string models of quark confinement,'' particularly when
the coupling coefficient becomes time-dependent.

1J. R. Ray and J. L. Reid, J. Math. Phys. 20, 2054 (1979); 23, 1042 (1982};
Phys. Lett. A 71, 317 (1979).

2H.J. Korsch, Phys. Lett. A 74, 294 (1979); R. S. Kaushaland H. J. Korsch,
J. Math. Phys. 22, 1904 (1981).
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Leach, J. Math. Phys. 22, 465 (1981); N. J. Gunther and P. G. L. Leach, J. I°F°f time-dependent harmonic oscillator motion, see Sec. V.
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5G. H. Katzin and J. L. Levine, J. Math. Phys. 23, 552 (1982). U)(z2)~'"*in Eq. (2.34), and, using Eqs. {2.16}2.18), we find o, = k, U 2),
¢G. H. Katzin and J. L. Levine, J. Math. Phys. 18, 1267 (1977); 24, 1761 0, =k U(t),03,=0,=0,05= — UU/p* + ky,0s =0, =0, = U/l

(1983). and k,, k,, k; being some arbitrary constants. On substituting these values
"H. Arodz, Phys. Rev. D 27, 1903 (1983). for a,, a;, the invariant I can be obtained.

UsingV (22t} = V(|z},t) = — B(t)/r= — B(t)/(zZ)'/* Coulombcase, we ligee, for example, H. J. W. Miiller-Kirsten and S. K. Bose, J. Math. Phys.
obtain from Eq. (2.34) 3, = 0, 5, = 0, 05 + 4ii = 0, 03 = 0, = 0. Differen- 20, 1878 (1979) for the discussion on logarithmic potential and H. H. Aly,
tiating partially Eq. (2.16) w.r.t.  and Eq. (2.18) w.r.t. z and using 9 *ay/ H. J. W. Miiller-Kirsten and N. Vahedi-Faridi, J. Math. Phys. 16, 961
0t-9z = Fay/dz-dt, we finally obtain 0, = 0,0, =0, 8= (at + b) ™, and (1975) for 1/#* potential.
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General prolongations and (x, t)-depending pseudopotentials

for the KdV equation
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Given an exterior differential system on a manifold M, we study general prolongations of the
system on a locally trivial fiber bundle (M, 7, M ) by a Cartan—Ehresmann connection. We
characterize such prolongations for the system associated with the KdV equation without any
assumption of “(x, ¢ ) independence.” The partial Lie algebra discovered by Wahlquist—Estabrook
[J. Math. Phys. 16, 1 (1975)] appears by this way as an intrinsic tool. Simple analytic

pseudopotentials are classified up to diffeomorphism.

PACS numbers: 03.40.Kf

I. INTRODUCTION

Differentiability is assumed to be C =.

Following Wahlquist-Estabrook,’ we consider M = R?
with coordinates (x, ¢, u, z, p) and the projection 7: M—R?
defined by 7{x, t, u, z, p) = (x, ¢ ).

On M, we consider the following exterior differential
system (EDS):

a=duldt —zdx ANdt =0,

B=dzAdt —pdxN\dt=0, (1)

y= —duldx +dpAdt + 12uzdx Adt =0.

A submanifold S of M is an integral manifold of (1) in
the sense of Cartan? iff the induced forms ay, Bs, ¥ vanish.
We denote by # the ideal of differential forms on M which is
generated by a, 3, y. From the point of view of integral mani-
folds, the EDS (1) is completely determined by the associated
ideal .#". Moreover, we will observe that .# is closed, that is
tosay,df C.7.

Let 5: R>—M be a section of 7. We denote s*u(x,?)

= u(x,t);s*z{x,t) = z{x,t );s*p(x,t) = p(x,t ). Thentheimage
S = s(R?) is an integral manifold of (1) iff one has

Zix,t)=wu,(x,t) and plx,t)=u,lx, 1),

where u(x, ) is a solution of the KdV equation
U, + ., +12uu, =0. (2)

Il. PROLONGATIONS BY CARTAN-EHRESMANN
CONNECTIONS

Let us consider a locally trivial fibration 7: M—M, with
Fastypical fiber. A Cartan—-Ehresmann connection on (ﬁ'{ , T,
M ) is a field H of horizontal contact elements on M which is
supplementary of the field V of the #-vertical contact ele-
ments. Moreover, one assumes that H is complete, that is to
say, every complete vector field X on M has a complete hori-
zontal lift X on M.

Let S#°* be the set of 1-forms on M which vanish on the
field H. The ideal .7 of differential forms on M, which is
generated by 7#*.#U%"*, determines on M an EDS.

If, moreover, the ideal .7 is closed, that is to say
d# C .7, then we will say that the connection H is adapted to
(1). In this case, the EDS on M defined by .# will be referred
to as the prolongation of (1) on (M, 7r, M) by the Cartan—
Ehresmann connection H. (See Ref. 5.)
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The geometrical interpretation is the following one: if
the connection H is adapted to (1), then each integral mani-
fold S of (1) admits horizontal coverings in M which are
integral manifolds of the prolonged system defined by .7

Example: Let us consider the case where M is the trivial
bundle M X R? with global coordinates (x, ¢, u, z, p, ", ..., ).
Moreover we assume that the connection H is defined by the
system.

CI)iEdyi_Aidx_Bidt:O, i= 1;---s q9 (3)

where 4/, B' are functions of (x, ¢, u, z, p, y', ..., }).

Then, if H is adapted to (1), it defines a multiple pseudo-
potential in the sense of Ref. 1. Wahlquist-Estabrook stud-
ied such particular prolongations, assuming moreover that
A, B' do not have explicit (x, ¢ ) dependence.

Our purpose is to study general prolongations of (1) by
Cartan-Ehresmann (CE) connections without any particu-
lar assumption.

Besides, it is interesting to observe that the (x, ¢ }-inde-
pendence assumption has not an intrinsic signification: it is
essentially related to the choice of a particular trivialization
M~MxRe.

Ill. FOLIATED STRUCTURE AND ADAPTED
COORDINATES INM

From now on, (ffl , 7, M ) is a locally trivial fiber bundle
with F as typical fiber; H is a CE connection on (M, 7, M)
which is assumed to be adapted to (1).

Let us observe first that the submanifolds in M defined
by

x = const, ¢ = const

are integral manifolds of (1). Hence, the CE connection in-
duced by H over such a submanifold is integrable and defines
a horizontal foliation.

By this way, we define on M an H-horizontal foliation
Z, the leaves of which are sections of M over the submani-
folds defined by x = const, ¢ = const.

Now, let us consider local coordinates (x, ¢, u, z, p, y',

.., %) in M such that the foliation .7 is locally defined by

dx=0, dt=0, dy'=0,..,dy?=0.
We will say that such local coordinates are adapted to the
Sfoliation & .
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With respect to such Z -adapted coordinates, the con-
nection H is defined by equations like (3):

dyy=A'dx+B'dt, i=1,..,q. 4)

Moreover, if we denote by 4, B, U, Z, P the H-horizon-
tal vector fields on M whose respective projections in M are
0/3x,8/dt,3/du,d /dz,d /dp, then,in F -adapted local co-
ordinates, we have

~ 3 a . 3 ~ d & i 0
A=— A'—, B=—+ B'—,

ax M =t oy at i;l ay' (5)
g9 7.9 p_9

du az dp

Of course, these vector fields define completely the con-
nection H.

IV. THE CLOSURE CONDITION 0.9 C.¥

" If, in local & -adapted coordinates, H is defined by (4),
then the closure condition d.# C.# gives

A=Al =0, B\=—Al,

S B, B
~ (6)
+B. —A' +zB' +pB! + 12uzd}, =0
i=1,..,q9
In order to simplify conditions (6), we define
(U,4)=4,, [(Z,A1=4, [PA]1=4,
(U,B1=B,, (ZBl=B, [PB]=B,

Then (6) becomes
ZZ=ZP=O’ Zu._——ﬁp,
[4,B) +zB, + pB, + 12uzd, =0.

By a calculation which is essentially the same as in
WE,! we obtain

A =2X, + 2uX, + 3u*X,,
B=(—-2p— 121X, + (— 6up + 322 — 247X, (8)
- 42}7 + 4u2X6 + 8“}5 + 83’4,

where coefficients in A are introduced in accordance with

(7

notations of WE, and where vector fields X 1 - » X, have to
satisfy the following conditions:
Xy, X3, X0y X5, X are ir-vertical, (9a)
X,, X, are 7-projectable, respectively, on

1 4 1 d,

—-— and — 9%

2 ox 8 at %)
X’,, s X’, commute with U, Z, 13; {9¢)

[1?1:/:"3] = [X’ziis] = [Xlzy I’(,] = [1?1»/?4] =0,
X, %)= X, X, %]=X, [XX]=X, 9
[X, X5] + [X,, X,] =X, + [X,, X,] + [X,, Xs] =0.

We observe that the vector fields X, X 3 X. s> X’(,, 3’7 are
precisely the vector fields X,, X3, X, X, X7 introduced in
WE, while X, X, have horizontal components, the introduc-

tion of which allows us to avoid the (unintrinsic) assumption
of (x, ¢) independence.
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V. GENERAL PROLONGATIONS OF (1) AND
GEOMETRIC REALIZATIONS OF THE WE PARTIAL LIE
ALGEBRA

Let us denote by L a seven-dimensional R-vector space
with basis {£}, ..., £&;} and partial Lie algebra structure de-

fined by
[51»§3] = [£5 3] = [£2, 861l = [£1, €41 =0,
[§1’ §2] = "‘57’ [51, §7] =§5, [§2» §7] =§6s (10)

[§1,&5) + 162, 8l =67+ [63:. 6a] + [61, 861 = 0.
We will say that L is the WE partial Lie algebra. We denote
by 4 the subspace generated by {£,, £,} and by B the sub-
space generated by {&,, &3, &5, £, £} Thesubspace 4 hasthe
structure of an abelian Lie algebra.

If M, is a C © manifold, a pair (.£, @) is a geometrical
realization of L in M, if the following hold.

() & = o & 4 is a transitive Lie algebra of vector
fields in M, where &/, % are subalgebras whose values at
each point of M, define supplementary contact elements,
with [.«/, Z]C Z.

(ii) @: L—.Z is a R-linear homomorphism compatible
with (partial) Lie algebra structures, and such that

kergnd = {0}, ¢d)=<, @B)CH.

(iti) Vector fields in . are complete and linearly inde-
pendent.

Now, returning to the situation in Sec. III, let us denote
by (M,, 7y, R?) the locally trivial fiber bundle on R? induced
from (M, #, M) by the section s,: R*—>M defined by

Solx, t) = (x,1,0,0,0).

The projection of M onto M, along the leaves of 7
allows us to identify

M = My xR, (11)
where coordinates in R’ are (4, z, p).

Moreover, X, ... , X, induce vector fields X,,, ... , X5o0n
M, whose knowledge completely determines X, ... X 5, thus

H.

If 4 is the Lie algebra of vector fields in f!o generated by
X Y100 X.w, % the Lie algebra of 7,-vertical vector fields,
% = o © &,  the R-linear homomorphism L—.Z deter-
mined by

Py =Xg, i=1,..,7,
then (.2, &) is a geometrical realization of L and we obtain
the following theorem.

Theorem I: Each prolongation of (1) by a Cartan—
Ehresmann connection determines a geometrical realization
of the WE partial Lie algebra L. Conversely, every geometri-
cal realization of L corresponds to such a prolongation.

In order to prove the second part of this result, let us
consider a geometrical realization (&, @) of L on a manifold
M, If ¥ = o & %, orbits of the subalgebra % define a
codimension 2 foliation % (#) on M. Moreover condition
[, #1C % implies that =/ is a Lie algebra of commuting
foliate vector fields. Hence % (4 ) is a R-Lie foliation in the
sense of Fedida.® From Ref. 3 one knows that the pullback
F () of F(#) on a covering manifold M, of M, is a simple
foliation which (in accordance with completeness of foliate
vector fields in ) corresponds to a locally trivial fibration
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ro: My—R? such that (£, and @(£,) define 77,-projectable
vector fields on M, whose respective projections are 19 /dx
and {d /dt.

From (.7, ) we obtain a covering geometrical realiza-
tion (.Z, @) of L in M,,. Now, if M = M, X R?, where R? has
(4, z, p) as natural coordinates, we denote by 7: M—RS the
projection

= ﬁ’OX ]‘R"

If 7 = (g, m)eM, X R?, one has a natural identifica-

tion
T -M=T,M,oT,R’ (12)
and we will define vector fields U, Z, P, X, ..., X, in My
’t7,~"=0+i . Z=0+49], B= o+i ,
Ou lm 3z ap im

horizontal vector ﬁelds, then H is adapted to (1) Q E.D.
Remark 1: {X’l, ;1"4, UZP } define on (M, 7, M) on
integrable connection. Thus they determine on (M, #, M) a
global foliate trivialization.
Remark 2: Results of Wahlquist-Estabrook in Ref. 1

correspond to the following particular case: Let X, ..., X, be
vector fields on a manifold F such that
[X), X5] = [X2, X5] = [X, Xe] = [X, Xo] =0,
X, X)= —-X, X, X]=4X, (X, X7 = X(»
(X X514 [Xo, Xo] = X5 + [X5, X] + [X), Xe] =

Now, letusconsider M, = F X R? with the natural iden-

tification
— 2
T nMo=TFoT, R

We will define vector fields ¢(&,), i = 1, ..., 7 on M, by
1 4
x,t) — X +
‘P(gl)(f ) trr 5x (x”
1 d
x,t) — X +
¢’(§4)(/ ) st at {”
P ) =Xy +0, i=2356,T.

If 7,: My—R? is the second projection and & is the Lie
algebra of ,-vertical vector fields, we will denote by ./ the
abelian Lie algebra generated by {@(£,), @(£,)} and by .7 the
Licalgebra o« @ % . Then (., @) is a geometrical realization
of L in M,,. Moreover, we have

( , & )) ( » pl&; ))_O i=1.,7.

This fact corresponds to the assumption of “(x, ¢) indepen-
dence” of the prolongation with respect to the trivialization
M,=F XR%.

From an intrinsic point of view, the existence of such a
trivialization is equivalent to the existence of two-dimen-
sional Lie algebra .7’ of vector fields which commutes with
. and such that values of &’ and # at every point define
supplementary contact elements.

Remark 3: Let us give an example of (x, ¢ )}-depending
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prolongation: M = M X R with global coordinates (x, ¢, u, z,
D, y) and we consider the vector fields

v=2., z=9, p=9,
du 9z dp
»_1 4 »_ 14
X =———-—, =,
T2 T8 ar 1)
)~(2= — Zx-é—, X3ESt—‘i, j’,Ei, X’SEX’t;EO.
dy dy dy
By this way, we obtain the (x, 7 }-depending potential

dy = (— xu + 6u’t )dx

+ (px + 6u’x — 12upt + 62°t — 48u’t — z)dt.  (14)
VL. CLASSIFICATION OF SIMPLE ANALYTIC
PSEUDOPOTENTIALS

In this section, differentiability will be assumed to be
real analytic. We study the case F = R (simple pseudopoten-
tials).

In this case, by analycity, vector fields X, ..., X, on M
are real analytic. Classification will be done by the following
arguments (see details in Ref. 4)

(a) If X, 0, let 2 = {ReM/X,, #0}, where 2 is an
open dense set in M.

If meM, , there exist, in a neighborhood of m, F -adapt-
ed local coordinates (x, , %, z, p, y) such that X,=3 /dy.
Equation (9d) gives

i__ a h [4a2_at=o’
2=[a(t)x+ﬂ(t)]5;i wit 4af — B, =0.

— 1/4{t — t,), B =xo/

(15)

Thus, eithera =0, =Aora =

4t — 1,).
If a = 0, B = A, we obtain relations
X,=1X, X =X=X,=0,

which are true in £2, thus, by analyticity, in M. Now, using
the integrable connection whose horizontal elements are
generated by {X wX, U, Z,P }, we obtain global F -adapted
coordinates such that H is defined by

dy = @( Y)l(2Au + 3u’)dx
+ (=24 p— 12u°4 — 6up + 32> — 24u°)dt],  (16)
where A€R and @ is an arbitrary analytic function.
Ifa = — 1/4{t — t,), B = x,/4(t — t,), we obtain rela-
tions
4t — o)X, + (x — x0) X, =0, X;=X,=0, 8(r — tolX, =X,
which are truein 12, thus in M. By the previous argument, we
obtain global .# -adapted coordinates such that H is defined
by
dy = p (D[ — ulx — xo) + 6u(t — t)}dx
+ [(p + 6u)(x — x)
+(— 12up + 62° — 48u’)t — t,) — 2z)dt }, (17)
where A€R and g is an arbitrary analytic function
(b) If X,=0, X2$0 let2 = {meM/ - #0}. Here, 2
is an open dense set in M. If mef, we use 7 adapted local

coordinates in a neighborhood of 7 such that X,=03/dy.
Then, by (9d), we obtain
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Fi=t O 4 Lo, 11 + Bt + 1m0 2, (18)
2 ox dy
with either a=f ==0 or a=}.
If @=pB =0, we have X;=X,=X,=0 and by the pre-
vious argument we obtain global Z -adapted coordinates
such that H is defined by

dy = @{y)2udx + (— 2p — 12u7)dt]. (19)

- Ifa=},bya change of local coordinates of the form
¥ =y + B(x, t), we obtain the local reduced expressions

» 1 4 1 d - 5 Jd = ]

Xj=—— (—-— 2 A)—,Xﬂz—-,X: -,

=5 Bx+ 2)’ + o 2=A¢ » 7 yay

% 14 Jd = 1 )

=19 4y uz—,XE(—— 2+,1)—-,

4 83t+(y + )ay 5 2}’ Ew
(20)

and a slightly more sophisticated version of the previous ar-
gument (see Ref. 4) shows that there exist global F-adapted
coordinates such that H is defined by
dy = @ (Y24 + 2u)dx + ( — 2p — 8u” + 8ud + 164 %)d¢]
+ @y ) — 4zdr ] + @3( y)ldx + ( — 4u + 84 )dt], (21)

where A€R and X; = @,( y)d/dy are analytic vector fields on
R such that

X, Xo] =X, [Xn Xi]= 2X,, [X, X3] =X

Finally, we obtain~the following theorem.

Theorem II: Let (M, 7, M ) be an analytic locally trivial
fiber bundle with R as a typical fiber. If H is an analytic CE

connection on (ffl, #, M ) which is adq_pted to (1), then there
exists a global analytic trivialization M = M X R such that,
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in the corresponding coordinates (x, ¢, ¥, z, p, ), H is defined
by one of the following equations.
) dy =@ (PI[Aw + 40" + A5( — ux + 6u’t )Jdx
+ [A( = p — 6u%) + A, — 2up + 2% — 817
+ Asf px + 6u*x — 12upt
+ 62°t — 48u?t — 2))dt },
where A,, A,, A;€R and @ is an arbitrary analytic function on
R.

(i) dy=e@pl24 +2u)dx +(—2p — 84’
+ 8ud + 164 3dt ] + @, y)[ — 4zdt]
+ @5 W)ldx + ( — 4u + 84 )dt ],

where A€R and X; = @,(y)3/dy, | = 1, 2, 3 are analytic vec-
tor fields on R such that

[Xl: XZ] =X, [XI»X3] =2X,, [XZ’ X3] =X,

In the case (i), if ¢{ y)=1, we obtain a potential with
three independent parameters.

In the case (ii), if @, y)=1, @,( y)=y, and @,( y)=y>, we
obtain essentially the pseudopotential discovered by Wahl-
quist-Estabrook.’

'H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 16, 1 (1975).

2E. Cartan, Les systémes differentiels extérieurs et leurs applications géomé-
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*P. Molino, “Simple pseudopotentials for the KAV equation,” in Lecture
Notes in Mathematics (Springer, Berlin, 1982), Vol. 926.

R. Hermann, “Geometric theory of nonlinear differential equations, Bick-
lund transformations and solitons,” in Interdisciplinary Mathematics,
(Math. Sci. Press, Brookline, MA, 1976), Vols. XII and XIV.
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The sine-Gordon equations: Complete and partial integrability

John Weiss
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The sine-Gordon equation in one space-one time dimension is known to possess the Painlevé
property and to be completely integrable. It is shown how the method of “‘singular manifold”
analysis obtains the Bicklund transform and the Lax pair for this equation. A connection with the
sequence of higher-order KdV equations is found. The “modified” sine~-Gordon equations are
defined in terms of the singular manifold. These equations are shown to be identically Painlevé.
Also, certain “rational” solutions are constructed iteratively. The double sine~-Gordon equation
is shown not to possess the Painlevé property. However, if the singular manifold defines an “affine
minimal surface,” then the equation has integrable solutions. This restriction is termed “partial
integrability.” The sine-Gordon equation in (¥ + 1) variables (N space, 1 time) where N is greater
than one is shown not to possess the Painlevé property. The condition of partial integrability
requires the singular manifold to be an “Einstein space with null scalar curvature.” The known
integrable solutions satisfy this constraint in a trivial manner. Finally, the coupled KdV, or
Hirota—Satsuma, equations possess the Painlevé property. The associated “modified” equations

are derived and from these the Lax pair is found.

PACS numbers: 03.40.Kf, 02.30. + g

I. INTRODUCTION

In Ref. 1 the Painlevé property for partial differential
equations was defined. Briefly, we say that a partial differen-
tial equation has the Painlevé property when the solutions of
the pde are “‘single valued” about the movable singularity
manifold. To be precise, if the singularity manifold is deter-
mined by

@ (21,2302, ) = 0, (1.1)
and ¥ = u(z,,...,z,) is a solution of the pde, then we require
that

u=9* > up, (1.2)
j=o

where u#0, ¢ = @ (2,...,2, ), 4; = u;(zy,...,2,) are analytic
functions of (z;) in a neighborhood of the manifold (1.1) and &
is a negative, rational number. Substitution of (1.2) into the
pde determines the allowed values of @, and defines the re-
cursion relations for u;, j = 0,1,2,... . When the anzatz (1.2)
is correct the pde is said to possess the Painlevé property and
is conjectured to be integrable.

In Ref. 2 Biacklund transformations were obtained by
truncating the expansion (1.2) at the “constant” level term.
That is, we set

u=up V4w VT4 fuy, (1.3)
and find, from the recursion relations for u;, an overdeter-
mined system of equations for (@,u;, j = 0,1,...,N ), where u
will satisfy the (original) pde. Upon solving the overdeter-
mined system it was found, for those equations considered,
that g satisfied an equation formulated in terms of the
Schwarzian derivative:

v O (P 1 (P Y
o) = 5 (%) 2 (rpx ) (4

The invariance of (1.4) under the Moebius group,
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p=lap+b)/(cy+d)
motivates the substitution

p=V/V, (1.6)
where V', and V, satisfy the same linear equation. From the
resulting Wronskian relations the Lax pair may be found.

In Ref. 3 it is shown how study of the Caudrey—Dodd—-
Gibbon equation leads to the formulation of a class of equa-
tions, in terms of the Schwarzian derivative, that identically
possess the Painlevé property. This class of equations con-
tains the higher-order KdV, Caudrey-Dodd-Gibbon, and
Kuperschmidt equations.

In this paper various equations of sine-Gordon type are
considered. These equations are somewhat different from
those studied previously in that they have a symmetric de-
pendence on the independent variables (under Lorenz trans-
formation). Only the (1 + 1) sine~Gordon (one space-one
time variable) equation is found to identically posssess the
Painlevé property. The method of “‘singular manifold” anal-
ysis, i.e., Backlund transform and formulation in terms of
the Schwarzian derivative, obtains, for this equation, the
Lax pair. In addition, a connection to the sequence of higher-
order KdV equations is found. That is, the (1 + 1) sine~Gor-
don equation is formulated in terms of “minus one” func-
tional of the Lenard recursion relations, where positive
functionals determine the sequence of higher-order KdV
equations. For the sine—-Gordon equation we define a system
of “modified”” equations that identically possess the Painlevé
property. These “modified” equations are related to the
“characteristic” initial value problem. Furthermore, we
find, using the discrete symmetries of the modified equa-
tions, certain rational solutions of the sine-Gordon equa-
tion.

The double sine-Gordon and (N + 1) sine—-Gordon
equations are found not to possess the Painlevé property.
This would seem to answer various questions concerning the

{px] = [¥x], (1.5)
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integrability of these equations.*'® However, if the “singu-
lar manifold,” @, in the 4nsatz (1.2) is restricted (to satisfy a
subsidiary constraint) a type of ““partial” integrability can be
defined for these equations. The known, exact solutions ap-
pear to satisfy the appropriate constraint in a more or less
trivial manner. We conjecture that the class of exact solu-
tions (for these equations) is more general. Hopefully, study
of the “constrained” dynamics wil lead to their discovery.

In a recent paper, Oevel'® states that the coupled KdV,
or Hirota—Satsuma, equations “do not seem to be ‘complete-
ly integrable’ in the usual sense.” Analysis reveals that these
equations identically possess the Painlevé property. Thus, if
these equations are “partially integrable” it is in a different
sense from that defined above. The Painlevé (“singular mani-
fold”’} analysis is presented in the Appendices.

We note that “partial” integrability (of various types)
for ordinary differential equations has been considered by
several authors, i.e., Segur'? and Tabor and Weiss.'?

Il. THE (1 + 1) SINE-GORDON EQUATION

An interesting discussion of the long history of the
(1 + 1) sine-Gordon equation

u, =sinu (2.1)
can be found in Chap. 1 of Ref. 14. Suffice it to say that the
original Bicklund transformation'® was defined for this
equation, while the Lax pair is contained in the inverse scat-
tering transforms of Zakharov and Shabat'® and Ablowitz et
alV’

In Ref. 1 the sine~Gordon equation was shown to pos-
sess the Painlevé property. For reference, we present part of
the analysis here.

Since the nonlinearity of (2.1) is nonalgebraic it is con-
venient to transform Eq. (2.1} into a different form. That is,
let

V=¢", 2.2)
and find
V., —-V.V, = 2(V3 — V) (2.3)

By a leading order and resonance analysis this equation has
an expansion

V=973 Ve, 2.4
j=o0
where the “‘resonances” occur at
j=-12 (2.5)
and
Vo=4¢.p,, V= —4dg,. (2.6)

The compatibility condition at j = 2 is satisfied identically
(u, 1s arbitrary) and (2.3) and (2.1} possesses the Painlevé
property.’

To proceed further, we now define the transform

V=@ " WVy+@ 'V, + V,, (2.7)
or, using (2.6),
2
V= —4 In V,. 2.8
dx dt AL (2.8)

Substitution of (2.7) and (2.8) into Eq. (2.3) obtains an
overdetermined system of equations for (@,, V). This system
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arises from the recursion relations for the V; and the require-
ment that

Vo,=V,=V,=Ve,=0,
where V, and V, are defined by (2.6) and the condition
V¢ = O requires ¥, to satisfy Eq. {2.2). There is no condition
when j = 2 since this is a resonance of the recursion rela-
tions.

To effect the reduction of the system (2.9) of four equa-
tions in two unknowns to the Lax pair for Eq. (2.2) involves
extensive calculation. To simplify the calculation it is con-
venient to let

Y,=W+oiL/p.0. (2.10)
The reason for this is as follows. Under the inversion,

(2.9)

@ = 1/9, (2.11)

V,=—4 c?x28t Inyg+ ¥, (2.12)
and the form

W=V,—¢’/p.0 (2.13)
becomes

W=V—y.,/ /0.9, (2.14)

This invariance of Wunder (2.11) is a useful check on the
calculation.

We then recast the overdetermined (2.9) in the variables
(W, )into a form that is, insofar as possible, invariant under
the transformation (2.11). The resulting equations involve
W, W_, W,, etc. and the expressions

J

3
02, + @, — 2, 2.15
i Gl el (2.15)
and
0,0, (2.16)
where
2
.Ol— ¢xlt . ¢)!t¢xt . i ¢);t, (2.17)
@x PP 2 ¢;
2
0,= Prxe  PaxPu 1 q‘oxz,‘ 2.18)
@, PP 2 @;

The forms 2, and £2, are similar to the Schwarzian
derivative (1.4} in that they are invariant under the Moebius
group (1.5).

Now, from the system (2.9) we find the “reduced” sys-
tem of equations

2
W=0 or V,= 22X (2.19)
¢X¢I
Pr o+ 9, 2 0, =0, (2.20)
and
0.0, =1, (2.21)

The system of two equations [(2.20) and (2.21)] in one
unknown (@) can be reduced further by using the identity

a a
=g, =
P T
Thus, there results.

Q, (2.22)
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£y=a, 2,=5, (2.23)
where

af =1 (2.24)

We now let

Z=g9. /9, (2.25)

W2=g,/¢,., (2.26)
and find

2, ={pt)+2Z,,/Z =q, (2.27)

2,={pix} +2W, . /W=5, (2.28)

where aff = | and {@;x}, {@;t ] are Schwarzian derivatives.
To find the Lax pair we now assume that

p=Y/1, (2.29)
where Y, and Y, satisfy

Y. =aY,
and (2.30)

Y, =bY, +cY.
By the condition

Yo oo=Yo (2.31)
it is found that

2, +b,,=0, (2.32)

a, = —b,../2+2ab, +ba,. (2.33)
By the Wronskian relation for (2.30),

W?=Z ?*=b, (2.34)
and

{px} = —2a. {2.35)
Evaluating Eq. (2.28), we find

a=-1-(b"—"~ib’2‘)—ﬁ, (2.36)

2\ b 2 b? 2

and substitution into Eq. (2.33) obtains

a, = —pb,. (2.37)

On the other hand, evaluation of (2.27 obtains

b, +bb,, —bb,/b—1b2 —2b%a=a. (2.38)
Using Eq. (2.36),

by, —~bb./b=a—pb> (2.39)
We now let

a=—A"'4, B=—1, b=A"1/20, (240
and find that @ satisfies the equation

0,/60—-0,0,/0>=460-0"7", (2.41)

which is Eq. (2.2).
Now substitution of (2.36) into (2.37) produces

b
P (bx, ~ b,b,) . _,(bx, _b _b'_) — 2,

ax \ b b2 b\ b * b2
(2.42)
or, by {2.39),
b b.b,
%(f - = e +Bb) —0. (2.43)

Thus, Eqgs. (2.39) and (2.37) are consistent, and (2.30), (2.36),
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and (2.40) define the Lax pair for Eq. (2.41) or (2.2).
Having reduced (2.9) to the Lax pair for Eq. (2.2) and,

thus, effectively defining the Béacklund transform (2.8), we

next consider some consequence for this reduction.
Taking into account the various scalings,

1 ( O 1 @i) A
a= —|—= - -] 4+ 2,
e 2 2 2
In the scattering problem (2.30) 4 is the spectral param-
eter and

1(@u 101)
d= — (== _ 17=x)
2\ @ 2 @2

where lim, ., d =0, is the (in general, complex) “poten-
tial.”
From (2.45),

(2.44)

(2.45)

200, — 0O -4dO* =0, (2.46)
and differentiating with respect to x,
O,...—4dO, —24d.60=0. (2.47)

Now formally, the Lenard recursion relations'® are

¢n +1x — — '/’n,xxx + 4 d'pn,x + 2 dan’ (248)
where
Yo=1, ¥=d, ¢p=—d, +3d° (2.49)
are obtained from the generating function ¢, where
2, — 2 —4dP + 247 — 24 =0, (2.50)
and
= Y,
v= 3 —. (2.51)
n=0 A
From (2.48) and (2.47),
O=y_, (2.52)
and the sine-Gordon equation is, with the scaling employed,
a
d=—19y_, 2.53
g ¥, (2.53)
The sequence of higher-order KdV equations are
d
d=—1,, 2.54
o ¥ (2.54)
forn=0,1,2,....
It seems appropriate that
J
d=—Y¢_, 2.55
o ¥ (2.55)

for n = 1,2,3,4,... be termed the higher-order sine-Gordon
equations. The results of Ref. 19 demonstrate that the flows
of (2.54) and (2.55) “commute” in the sense of Hamiltonian
systems. This result is essentially equivalent to that found in
Ref. 20.

Next, we note that Eqs. (2.27) and {2.28) are, in effect,
the “classical”” Backlund transformation for the sine-Gor-
don equation. Let

H2=‘p:2:r/¢x¢n
then
2, = WH, - HW, —§W2H2=a,

(2.56)

(2.57)
0,=ZH, —HZ, —\Z'H*=p.
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With
a= —le~ ™,
B = - ieiwn’
(2.58)
H2 — eiu,
W?= PSP, = e,
the Eqgs. (2.57) become
(“__“:ﬂ) = e~ iwo/2 gjn (l"'_“’“‘”_“’o), (2.59)
2 ¢ 2
and
(___._“ tot “’0) = ¢ sin (—-——“ —o- “’0), (2.60)
2 x 2
where
u,=sinu, (@+ oy, =sine + o). (2.61)
Now, Egs.(2.57) may be reduced by the substitution
o= _H_ _ %« o _H__ P« e
w @ z Px
to the form
1 A G
O, + —60P+ —— =0,
+ 29
{2.63)
-1
&, +Loo 4 ’1—2——3 =0,
where
V=e=0®, a=A/2, B=A1"'/2. (2.64)

We term Eqgs. (2.63), the “modified” sine~Gordon equations.
(See Appendix B.)

lll. THE DOUBLE SINE-GORDON EQUATION

An extensive discussion of the physics of the double
sine-Gordon equation,

u,, =4asinu/2) + 4sinu, (3.1)
is contained in Chap. 3 of Ref. 14.

To apply the Painlevé analysis we set

V=e"? (3.2)
and find

W, —V.V,=alV*—V)+ V*—1. (3.3)

The expansion about the singular manifold takes the form

V=¢ ! z V;cpf, (3.4)
j=0
with resonances at
j= —12. (3.5)
From the recursion relations
Vo=@ (3.6)
1 Pxe a
Vi=— — V,— — 3.7
1 2 o0 0T 2 3.7)

The compatibility condition at the resonance j = 2 is
not satisfied identically. Instead, there is found the following
“constraint” on @:
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172 172
a[-a—(fi) + i("") ] =0 (3.8)
It \ g, ax \ g,
Thus, unless @ = 0, Eq. (3.3) does not possess the Pain-
levé property. However, if

V=Ff(x+ct)
condition (3.8) is satisfied and the resulting ode for f(¢),

ﬂee_f?é:a(f:;*f)'i'f%—.l! (310)
is identically Painlevé; and can be solved by quadrature. So
far as we have been able to determine, this is the only known
exact solution of Eq. (3.1). Concerning this problem, we note
the following observations.

(1) If @ is a solution of (3.8) then y = f'(¢ ) is a solution of
(3.8) for arbitrary (differentiable) f.
(2) Condition (3.8) is

(3.9)

(3.11)

%t \Vop.9. ox \Jp.o.
which is the “Euler equation”?® for the functional

Lig)= ff V@@, dx dt.

However, the identity

(3.12)

(o N, (_ &
o\ Jp? +¢? ox \ Jp2 +o:

(3.13)

=i( Px )+i( @: )=o
o \Jo.p.) 9% \Jp.o,
demonstrates that conditions (3.11) or (3.13) are simulta-
neously the Euler equations of

He)= [ wTreiana
D

Since the “minimal surfaces”’ are the “minima” of the
functional

L= ff,/l+¢zi+<p§ dx dt.
D

we term the solutions of (3.13) “affine minimal surfaces,”
i.e., affine in the sense that (3.13) is invariant under the scal-
ings

(3.14)

(3.15)

p—Ap, x—ax, y—ay. (3.16)
(3) The similarity solution of (3.3),

v =fle), (3.17)
€ =Xt

fee —~€fc +fe=alf>—fl+/*—1 (3.18)

is not Painlevé (a#0) since ¢ = @(x¢ ) does not satisfy (3.11).

(4) Letting

b=g,/p., (3.19)
condition (3.11) becomes

b, =bb,, (3.20)

which is the inviscid Burgers equation. The well-known the-
ory of this equation®' demonstrates that general, analytic
initial data becomes singular “multiple-valued” in a finite
time (loss of regularity). Consequently, smooth, “global” so-
lutions of Eq. (3.11) do not exist.
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The simple {Painlevé), traveling wave solution (3.9) cor-
responds to the trivial, & = const, solution of (3.20).

(5) Condition (3.8 can be linearized by a Legendre
transformation and the complete solution found. That is, we
write (3.8) as

PP — 200 + PiPs =0 (3.21)

Then, the Legendre transformation??

E=@., x=W, n=¢, t=W, (3.22)

@xy)+ Wien) =xe+ 1y, (3.23)
obtains from (3.21) the linear equation

W, +2enW,, +7°W,, =0. (3.24)
Letting

%=6§€+1}£7, {3.25)
we find

d? d

== w. (3.26)

The complete solution of {3.26) is

W=W,+ W, (3.27)
where

4w, =0,

ds
and (3.28)

4 W,=W,.

ds

Here, W, and W, are “homogeneous” functions of de-
gree zero and one, respectively. Their general representa-
tions are??

=Gle/n), W,=nHe/n), (3.29)
where G (z) and H {z) are arbitrary {(smooth) functions. Thus,
W =Gle/n)+nH (e/7) (3.30)

represents the general solution of (3.26). We find, from the
above, that

@ (xp) = — Wolen), (3.31)
and
ex + nt = W (€,n). (3.32)

The Legendre transform is inverted by (3.22). We note
that the above goes through when

D=9, ¢, —¢u#0. (3.33)

If 2 = 0, (3.21) implies

@ =flx+ct); {3.34)
or, the Legendre transform is defined when ¢ is not a travel-
ing wave.

A few simple solutions can be easily found. For in-
stance,

W, =0 (3.35)
obtains

xX@, + g, = 0, (336)
or
2230 J. Math. Phys., Vol. 25, No. 7, July 1984

g =rfx/t),
and

(3.37)

(3.38)

where f(z)is arbitrary and b is a solution of (3.20), the inviscid
Burgers equation. From

b=, /@, = —x/t,

Wo=¢e/n, W=7/, (3.39)
it is found that
plor)= — £ = = Lo _por LRV
P 2x
(3.40)

Obviously, algebraic solutions of the inviscid Burgers
equation can be constructed by the above method. In a sense,
Eq. (3.26) is the linearization of Eq. (3.20). At this point,
however, it is not clear how these specific functional forms of
@, i.e, (3.37) or (3.40), relate to (possible) exact solutions of
the double sine-Gordon equation {3.3).

However, it is possible to define a Backlund transfor-
mation for Eq. (3.3) by letting

V=g W, +V, (3.41)
where
Vi=0.9, (3.42)
V= - L ey 8
2 9.0, 2

There is obtained an overdetermined system of three
equations in one unknown g:

(l) a[i(¢x )1/2 + —a—(&)l/Z] =0
at\ @, ax \ g, '
172 172
i) ("’) —‘9—n,+( ) 9 0,
@, ax @, dat

1 8 (9
+ ——n+——0 —_—
a[ ' 2 2 Bx( )
(20
@
172
W 3[2) 2z 0)
8 [\g, ox \ @,
172

+(¢_x) i(i’f_gz)]

¢t at ¢x

2

1 a a?
_loao 1_-—(4——)=0, 3.45)
7 i+ e 5 (

where {2, and (2, are defined in Sec. 1L

When a = 0 these equations reduce to (2.20) and (2.21).
When a0, we conjecture that integrable solutions of the
double sine—~Gordon equation correspond to the solutions of
the system (3.43)—(3.45).

IV. THE (N + 1) SINE-GORDON EQUATION

Herein, we consider the N space-one time (N + 1) di-
mension sine-Gordon equation (SGE). For the (2 + 1) SGE
explicit soliton type solutions were obtained by Hirota,’
while a Bicklund transform was found by Leibbrandt.” Basi-
cally, the n-soliton solution found by these authors consists

(3.43)

(3.44)
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of a superposition of 7 plane, traveling waves.® The param-
eter (directions) of these waves (soliton) are required to sa-
tisfy a certain set of compatibility conditions for the solu-
tions to exist.>>%° For the (1 + 1) SGE these conditions are
trivial. For the two-soliton solution of the {2 + 1) SGE, Gib-
bon and Zambotti® have shown the compatability conditions
to be trivial; while, for the three-soliton solution, the area of
the triangle formed by the three plane waves is time invar-
iant. All the known exact solutions of the (¥ + 1) have an
infinite energy since they are constructed from plane waves.
It is not known if there exist exact solutions with finite ener-
8y

In what follows we apply the Painlevé analysis to the
(N + 1) SGE and find that (for N > 1) this equation is not
identically Painlevé. In addition, it can be shown that the
directions of the n-plane waves must lie in the same plane if
the compatibility conditions are to be satisfied for solutions
of this type. Hence, these solutions can be obtained by a
Lorenz transformation of the solutions of the (1 + 1) SGE.

Without loss of generality and for notational conve-
nience, we consider the (N + 1) elliptic SGE

— Ou =sinu, (4.1)
where
O=3, =Vv, (4.2)
and
v
ox;
By the substitution
V=e", (4.3)
we find
— VOV + VWV =4V —v). (4.4)
The Painlevé representation
V=923 V¢’ (4.5)
j=o
with resonances at
j=-12, {4.6)

will be valid if @ = @(x,,...,x,, , , ) satisfies a compatibility
condition. Using the expressions

Vo= —4VepVp, V,=40g, 4.7)
the compatibility condition is found to be
where
N+1N+1 ,
Dii = 121 Zl (¢) im — PuPmm )’ (4'9)
e
m#i
and
N+ 1
D; = kz (@yPrx — PacPic)- (4.10)
=1

We note the following observations.

(1) The matrix D is symmetric (D; = D;;) and Eq. (4.8)is
trivial when N = 1 [(1 + 1) SGE].

(2) Equation {4.8) is invariant under the change of varia-
bles, x,—ix; (hyperbolic SGE).
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(3) Equation (4.8) is translation invariant, i.e., x;—x;
+¢.

(4) Equation (4.8) is invariant under orthogonal changes
of independent variables,

V =BV, (4.11)
where

B'=B".

Observation (4) follows from the orthogonal invariance
of (4.4) and (4.7).

Therefore, consider the hypersurface M defined by

M= {x:p (%)= @o}, (4.12)
where X = (x,X,,....x, , ) and Vo |M.

By translation and rotation we may locate the origin of
the coordinate system at a point X, € M so that

J d

x,” " ax, .,
provide an orthogonal basis for the tangent space of M at %,
Since M is a hypersurface there is a unique normal to M at X,,:

Px,
2 I (4.13)
0
By observations (3) and (4) and (4.13), Eq. (4.8} reduces
to
5 N4+ 1N+
¢ x, Z z (¢ ?m - ¢ll¢mm) = 0! (414)
=2 m=2

at the “arbitrary point” X,,.

In terms of the hypersurface M, Eq. (4.14) states® that
the elementary symmetric function of the principal curva-
tures of M vanishes. That is,

KK, +KK,++K, K,=0, (4.15)

where K}, j = 1,...,n are the principal curvatures of M. In
effect, Eq. (4.14) is the sum of the principal minors of order 2
of the second fundamental form of M.??

Now, let N = 2 [the (2 + 1) SGE] and find

KK,=0 (4.16)

or K = KX, (the Gaussian curvature) vanishes, defining a
“developable surface.”?* Condition (4.8) becomes, in the var-
iables (¢,x,y),

PP <Py — P o) + 9L Py —P3)
+ ¢§(¢tt¢xx — ‘Piz)
+ 2¢x¢7t (¢ty¢’yx - ¢xt¢yy) + 2¢y¢t (¢’tx¢xy - ¢yt¢xx)

+ 2¢x¢y(¢xt¢yt - ¢xy¢t:) = O (417)

Asnoted in observation (1), Eq. (4.17) is trivial when @ is
a function of two variables, i.e., ¢ = (t,x).
Now, let @ be a product of plane, traveling waves:

p= H filat +b;x + ¢y —d)),
j=1
where the f(z) are arbitrary.
If m = 2 (two waves), a rotation of the coordinates can
be devised so that ¢ depends (effectively) on two variables,
and condition (4.17) will be trivial.®

4.18)
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For any m a similar argument demonstrates {4.17) will
be satisfied identically if a// of the wave directions, &,
= (a;,b;,c;), lie in the same plane. Furthermore, the necessi-
ty of this condition can be proven by direct substitution of
(4.18) into (4.17) and using the requirement that the f;(z) be
arbitrary.
For three waves the co-planar condition may be written

a, b, ¢
a, b, ¢c,] =0 (4.19)
a by o

This is the condition found in Ref. 6 for the existence of
the three soliton solution. It indicates that the area of the
triangle formed by the plane waves is time invariant.

From the above it appears that the class of known, exact
solutions for the (2 + 1) SGE is trivial in that they can be
reduced to solutions of the (1 4 1) SGE. If nontrivial solu-
tions of (4.17) (developable surfaces) correspond to exact so-
lutions of (4.4) this class may contain solutions with nonre-
ducible behavior.

As in Sec. I1I the compatibility condition (4.17) may be
“linearized” and the complete solution found by a Legendre
transformation. That is,

6=¢, =W,
&=@, x=W_, (4.20)
&=¢, y=W,,
@ (X)) + W (€1,€,€) = t€, + X6, + pe; (4.21)

obtains from (4.17) the linear equation {with summation con-
vention)

az

€€ W=0. (4.22)
0€; de;
Letting
4 _e 9, (4.23)
ds Je;
we find
2
4’ W= 4 W. (4.24)
ds* ds
The complete solution of (4.24) is
W=W,+ W, (4.25)
where
w0, Lw=w, (4.26)
ds ds

Here W, and W, are “homogeneous” functions of degree
zero and one, respectively. (See Sec. II1.) Again, we find

¢’(t’x’y)= - 0(61962’63)’ (4'27)
and
(4.28)

We note that the Legendre transformation is defined when ¢
depends, effectively, on three independent variables.

te, + x€, + ye; = Wile,,€,,€5).
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APPENDIX A: THE COUPLED KdV, OR HIROTA-
SATSUMA EQUATIONS

The Hirota—Satsuma, or coupled KdV, equations?*

u, = —‘96;(—3wz+au” + 3au?), (A1)

o, +o,.,, +30,u=0 (A2)

have a Lax pair®® and an infinite sequence of conserved
quantities.'' Although this strongly indicates their “com-
plete integrability,” Oevel'! states that (A 1) and (A2) are not
“completely integrable” in the usual sense since the “sym-
metries” of these equations are not “dense” in the “space of
vector fields.” We note that the fourth-order scattering the-
ory associated with the Lax pair for the KdV equations has
not been developed. {See Ref. 4.)

In this Appendix we find the CKdV equations identi-
cally possess the Painlevé property if and only if @ = §; con-
sistent with the results of Refs. 24 and 25. Additionally, the
“singular manifold” analysis is applied to obtain the Back-
lund transform/Lax-pair structure.

{i) There are found to be two types of singularities.

Branch 1:

u=¢"3 ug, (A3)
i=o

o=@ ! i w,@’, (A4)
j=0

with resonances

j = - 1:0y1’49576- (AS)

(ii) Branch 2:

u=@ Y wepl (A6)
ji=o

=93 o (A7)
j=o0

with resonances
j=—2,—-1,—-346,8. (A8)
Calculation obtains that both branches have the Painle-
vé property if and only if
(A9)
Branch 1 depends on six, and branch 2 on five, arbitrary

functions. In what follows, we consider only branch 1, and
define the Backlund transform

a=1

uUu=uy/@>+ u/p+ uy (A10)
0 =0y/p + 0, (A11)
where
Uy = — Z‘PJZ(’
(A12)
ul = 2’¢xx'
Hence,
u=2iln:p+u2. (A13)

Ix?

The resulting overdetermined system consists of six equa-
tions for four unknowns (@,u4,,00,0,). The somewhat tedious
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reduction of this system is facilitated by the substitution {see
Sec. II)
u,=V—lpl/9% (Al4)

and reformulation of the system of equations in terms of
Schwarzian derivatives. Eventually, we arrive at the follow-
ing consistent reduction:

@+ Prxx + 3@ 12 =20,0, (A15)

/9. —Mox) —H* =0, (A16)

wo =@, H, (A17)

0=+ 0YH? (A18)

o, = — oo /p. —} (A% + 60, (A19)
and

H, + i(Hx, + 2 omy i{(p;x}H) =0.

ox 4 2
(A20)

From (A 16} and {A17)

05 = @@, — P2/ @} — @1 0. (A21)

The relevant equations in the above system are {A16),
(A18), and (A20). These equations define, implicitly, an
equation for @, invariant under the Moebius group. From
this, we can, as in Ref. 2, find the Lax pair for (A1} and {A2)
from the Wronskian relations. However, here it is more con-
venient to proceed differently. That is, we let

W = ¢)x x / ¢x b4
and find the “modified” Hirota—Satsuma equations

(A22)

H, + ai[HxX«{» 1H?+ OH + 3{W, —-%Wz)H] =0,
x

(A23)
1 d [ w3 ( WH)
W=——IW,6 - — +3|H, + —
2 oOx 2 + + 2
XH+20, + W@)], (A24)
where

O, =1*+03Y"H.

We intend to find the Lax pair by “linearizing” the
Miura type transformation relating (A23) and (A24) to (A1)
and (A2). From (A15) to (A19) and (A22), the “Miura trans-
formations* are

~2u, =W, +i{W*+1H?*-30, (A25)
—20,=H, + WH+}i>+ 60 (A26)

were (u,,w,)satisfy (A 1)and (A2) and (H, W} satisfy (A23)and
(A24).

Now letting

W+ H=2¢./y, (A27)
and

@ = Asinh a, (A29)
we find from the above that

a = In(y/B), {A30)
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H=a,, (A31)
and

Vex + U+ o)y = —(A1/3)B,

Bix + (U — w)B=(A/3). (A32)

Equations {A32) are the spatial {scattering) part of the
Lax pair® for (A1) and (A2). The time-dependent operator is
found from (A23), (A24), (A27), and (A28). That is,

Y, + Muy, — 20, )¢ + (U — 20\, = — $AB., (A33)
B+ Muy, + 20,08 + (U2 + 20,08, =34¢,.  (A34)

We now consider the singularities of the modified Hir-
ota-Satsuma system, i.e., Egs. (A16), (A18), and (A20). It is
convenient to use the substitution {A29) with

H=a, =h/h, (A35)

to obtain the system
2
o
oy (h) + L(h—")}+ ENC {@x}
h h/x 4\h 2 h
A 1\ A,

P -

A leading-order analysis with

/P =ale, h./h=b/¢, (A38)
discovers the following possibilities:

i) =0, a= —2; (A39)

(i) b>=1, a=1or —3 (A40)
and, if 4 #0,

(iii) b= —2, a=0,—2; (Ad1)

(iv) b=2, a=0,—2. (A42)

We proceed to investigate in detail singularities of the
form

=3 @€, h= 3% hel™}, (A43)
j=o0 j=o0
where we employ the “reduced” Ansitze,’
e=x—yYt), @ =glt), h =hlt) (Ad4)
and
¢,=0 (A45)

is required by the condition ¢, = 0. A calculation finds the
resonances to occur at

j = - 2, - 190’0’214,

which corresponds to the “arbitrary” functions
Por€,P2,R0,@ 414, TESpPectively. Nontrivial compatibility con-
ditions occur when j = 2,4.

A direct calculation determines that the compatibility
conditions at j = 2 and j = 4 are satisfied identically. Thus
Eqs. (A34) and (A35) have the Painlevé property about sin-
gularities of form (A42). Although we have not checked all
the singularities of Eqgs. (A36) and (A37), it is probably true
that they identically possess the Painlevé property. How-

(A46)
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ever, it is interesting to observe that the modified equations
for the Hirota—-Satsuma system [(A23) and (A24}] do not
seem to have any discrete symmetries (other than the trivial
H— — H). A connection between the discrete symmetries
{or modified equations) and the Painlevé property of se-
quences of higher-order equations is examined in Ref. 3. (See
also Appendix B.) In Ref. 26 it is shown how Miura-type
transformations from modified (to original) equations allows
the definition of, among other things, the recursion opera-
tors producing the sequences of higher order equations. It is
possible that, when the modified equations (defined in terms
of the “singular manifold” Backlund transformation) are
“missing” discrete symmetries, the associated Hamiltonian
structures are *“degenerate” (e.g., Ref. 27).

APPENDIX B: THE MODIFIED SINE-GORDON
EQUATIONS

In Sec. II we have defined the modified sine—-Gordon
equations to be

1 A 6@
O, + =0+ _— =0,
2 + 2 @
(B1)
1 A'®
D+ —OD+ — — =,
+ 2 * 2 @
where
V=e"=0®, a=A1/2, B=41""'/2. (B2)
These equations have singularities of the form
O~0Oue®, D~D, {B3)
where
) a=B= -1, O,=2, P,=2%,; (B4)
ii)a=—1, B=1 0O,= —2, P,=A41/2,;
(B3)
(iii) a=1, B= —1, Oy,=1/24¢,, DP,= — 2¢,.
{B6)
The resonances, in all cases, occur at
j=—11 (B7)
Equations (B1) have the following discrete symmetries:
Q) O=(1/1)@ ", &= — &, (B8)
i) O= -0, G=Ad " (B9)

Thus, by composition of (B8) and (B8), the following four
solutions of (B1) are related:

(0,2],[(1/2)0 7, — @],
(B10)

[-O@AD ',[ - (1/A)@ 7, —A® ']
Direct calculation obtains the Painlevé property for singu-
larities of the form (B4), while the above symmetry implies
that (B5) and (B6) are Painlevé as well. Thus, (B1) has the
Painlevé property.

Now, let

O=(A/2V(b/b), ®=(A"'2)V(h k), (B11)
and, using (B2), find
blt + (VI/V)bx ‘+‘/l _lb = 0;
{B12)

hoo +(V./V)h, +Aih =0,
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where
Vit /h)b/b) =4,
and V satisfies Eq. (2.3).
The pair of linear equations (B12) (essentially Schro-
dinger equations) would seem to be related to the “character-

istic” initial value problem for Eq. (2.3). The initial condi-
tions for a problem of this might be

V(x,0),

(B13)

O<x< o,
(B14)
V{0,),

where it is required to find ¥'(x,z).
We recall that the modified sine~Gordon equations
(B1), are obtained from the equations

0, ={@g:t)+22Z,,/Z)=4/2,

O<t< o0,

(B15)

2, = {px} +2W,../W)=1/24,
where

ZP=W7=9/p, (B16)
by the substitution

0= _¢)xt/¢1’ D= —¢)xt/¢)x' (B17)
Equations (B15) allow three types of singularities:

i o=c"'3 ¢ ¢, (B18)

j=o0

(il) @ =@olt) + @3 + @5 + ...y (B19)

(iil) @ = @o(x) + @16 + @s€ + . (B20)
These are all of the Painlevé type.

Now, with

O= —p. /b, D= —v./V, (B21)
the symmetries (B8)—(B10) become

. ¢xt (th 1

(1) =— Y@, =1 (B22)

b o A
i) L P 4 g~y (B23)
x Px
(i) L e X N (B24)
wl ¢)t ﬁ’ ¢x wx

These, along with the invariance under the Moebius group,
¥=(ag+b)/cp+4d). (B25)

constitute Backlund transformations for Egs. (B15). For in-
stance, consider (B23), which is equivalent to

¢t:¢t_ly ¢x = —(l/i )(¢)§1/¢)?¢x)
The consistency condition

‘ptx = lﬁx[ 14
requires @ to satisfy Eqgs. (B15). We note that (B23) is sym-
metric in (@,¥). Thus, (B23) implies that both (@,)) satisfy
(B15).

Following the method of Ref. 3 we iteratively construct
the ‘“‘rational” solutions of the sine~-Gordon equation (using
the symmetries of the “modified equations”). In this case, by
rational, we mean rational in (x,z,¢* ,¢’). To proceed let the

(B26)
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“meromorphic” functions (¢,@) be expressed as the ratio of
entire functions

v=P/Q, ¢=R/S, (B27)

and substitute into, say (B23). The resulting expressions may
be reduced to the equations

ST, — RS, =Q7,

QP, — PQ, =S?, (B28)

o*(QP, — PQ,)(SR, — RS,) =4{SQ, — 05, }* (B29)
where A = — ¢°. Equations {B28), {B29), and (B27) define
solutions of (B23), consistent with the assumption that
(P,Q,R,S) are entire, if the terms (QP, — PQ, ) and (SR,
— RS,) “divide” the term {SQ, — QS }*. For instance, let
it be required to solve (B29) for (P,Q ). Then we must have

{SQ. — 0S.}* = alSR, — RS, ), (B30)
where a is entire. Using (B15), (B23), and (B26)—(B28) it is
found that

4a = Y /¢,)S > {B31)

Since S is entire, singularities of @ can only occur when [see
(B20)]

Y= tolx) + ¥h:€ + . (B32)
By (B27), locally, with € =t + f(x),

P=yx)+ P +.., 0=1+0,+ .., (B33)
and, by (B28)

S?=QP, —PQ,. (B34)
Thus,

4a = 0 (€% (B35)
is entire.

We now compose (B23) iteratively with the transforma-
tion

o— — 1/, (B36)
which is to, effectively, identify

Y=P, . \/P,_\, o= P, ,/P, (B37)
thereby obtaining the recursion relations

P, P, ,.,—P, P,_,, =P, (B38)
and
Py 1 Pyiig =Py P WPy Po — PP, )

=4{P,_\P,, — PP, _.}* {B39)
From Eqgs. (B15), with A = — ¢?, the simplest nontrivial so-
lution seems to be

@o = e T, (B40)
By (B25}, the solution

o x
@, = tanh (7 t+ 70—) (B41)
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is found. From (B38) and (B39), we find

= — |sinh ot + —) + 0t — |,
¢2 02

(4 o

o ol 2) - (o)

x\? o x
t — =~ | tanh (——t+ —)},
+ (U 0) 2 20

which define “rational” solutions of the sine-Gordon (modi-
fied sine-Gordon) equations.

We note that Eq. (B38) is identical to that found in Ref.
3 for KdV equation [Eq. (B39) here determines certain con-
stants of integration]. However, unlike for the KdV equa-
tion, there are no solutions rational in (x, ) only, since in Eqs.
(B15) the limit when A—0 is not defined. Of course, the
Bicklund transformations (B22)-(B25) may be iteratively
applied to create different sequences of “‘rational’’ solutions.

(B42)
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An exact solution (up to quadratures) of the Einstein-Dirac system is presented for cosmological
models that depend only on one temporal and one space coordinate. Four solutions to the Dirac

equation, all with zero helicity, are given.

PACS numbers: 03.40.Kf, 04.20.Jb, 04.40. + ¢

I. INTRODUCTION

Plane symmetric cosmologies have been the subject of a
number of studies.' These models have a particulary sim-
ple type of inhomogeneity that leads, in many cases, to field
equations in which there is a “key”’ equation that is linear
and easily soluble. The remaining nonlinear equations then
can be solved by quadratures; their integrability is assured if
the key equation is satisfied. A number of “folded” versions
of these cosmologies are known, in which points a certain
coordinate distance apart in certain directions are identified
to give the manifold a cylindrical or toroidal topology. The
cylindrical topology corresponds to the Einstein—-Rosen® so-
lution, and the toroidal topology to the Gowdy model.” Any
results in any one of the above models can be directly trans-
ferred to the plane-symmetric models and vice versa pro-
vided proper attention is paid to the effects of the different
boundary conditions dictated by the different topologies.
Taking into account all work on this subject regardiess of the
topology chosen, there exists a large body of results for var-
ious types of matter in the plane-symmetric case. For in-
stance, there exist a number of results valid for the Gowdy
model® which can with minor modification be transferred to
the plane-symmetric case.

One possibility that apparently has not been considered
is that of a classical spinor field in these cosmologies. Classi-
cal spinor fields have a number of strange properties that
make it worthwhile and interesting to consider models filled
with this type of matter. Most interesting is the strong ten-
dency for simplified metrics to allow at most “ghost® solu-
tions in which the spinor field is nonzero, but the stress-
energy tensor vanishes. This feature arises, for instance,
when homogeneous spinor fields are introduced in the ho-
mogeneous-isotropic Robertson—-Walker cosmologies. It
seems in large part to be due to the existence of a spinor
momentum flux 7, which cannot in many cases be put equal
to zero without forcing the rest of T, to vanish. As a result,
since the Robertson-Walker cosmologies require by symme-
try that G,; = 0, nonghost homogeneous neutrino fields are

* Permanent address: Centro de Estudios Nucleares, Universidad Nacional
Autbénoma de México, Apdo. Postal 70-543, 04510, México, D.F., Mexi-
co.
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excluded in them. (There do exist non-Robertson-Walker
cases where T, is automatically zero as a result of the Dirac
equation.) To avoid ghosts then, the major requirement for
those cases in which T, does not automatically vanish by the
Dirac equation is that the geometry admit nonzero G,,. This
is exemplified in the Bianchi type IX cosmological models;
in the diagonal and FRW cases the fact that G,,, is zero forces
the models to allow only ghost solutions,'®!! while the sym-
metric case'” in which G, #0 allows nonghost solutions.
Isham and Nelson'' suggest that allowing inhomogeneity
would help considerably in finding nonghost solutions. In
this paper we show that even inhomogeneous models impose
strong restrictions on the spinor fields that are allowed. In
the plane-symmetric case there are nonghost solutions, but
for which G, is nonzero, so it is not clear that the inhomoge-
neity alone is sufficient to allow nonghost solutions. The ex-
istence of ghost solutions certainly adds interest to the study
of spinor fields in cosmology. Realistically, one must admit
that the existence of ghost solutions is almost certainly an-
other indication of the fact that Dirac theory is a quantum
theory with no real classical limit, and the attempt to force it
into a classical mold results in strange behavior."?

In this paper we will solve the Dirac equation in the
metric of a plane-symmetric model subject to the constraints
imposed by the fact that some of the G, are zero while the
corresponding 7, are not automatically zero. The equa-
tions for the metric components then reduce to the same key
equation as found in the vacuum case, and a set of equations
that, in principle, can be solved by quadratures. The integra-
bility conditions for this set of equations are one that is satis-
fied if the key equation is satisfied, and another that we show
is satisfied given the solution of the Dirac equation. In this
way we have an exact, nonghost solution to the problem up
to quadratures.

The paper is organized as follows: In Sec. IT we give the
equations of motion for the metric and the spinor field. In
Sec. I1I we solve the equations up to quadratures, and in Sec.
IV we give conclusions and discuss some of the properties of
the solutions.

li. EQUATION TO MOTION

We write the metric of a plane-symmetric model in the
form (see, for example, Ref. 5)
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ds? =" "YW —dT? + dZ?* + e dX? + T?e~2dY?,

2.1)
where ¥ and ¢ are functions of T and Z only. Matter in this
model will be described by a Dirac spinor ¥ which is also a
function only of Z and 7. The spinor ¥ obeys the Dirac
equation in curved space,

iy, —m¥=0, (2:2)

where the ¢ are the flat-space ¥ matrices in the standard
representation, that is,

4 0 o' 1 0 ]
! = == ’ 23
v [ —o' 0 ] 4 [o _I 23)
where the o’ are the Pauli matrices. Note that ¢ + »*
¥ = — 29*” since our metric has signature (— + + + ).

The use of the flat-space y matrices implies that Eq. (2.2) is
written in an orthonormal frame, which we choose to be
defined by the following one-forms:

W’ =e""VdT, o*=e'dX,

w¥=Te YdY, w?=e"""dZ (2.4)
In the notation of Misner, Thorne, and Wheeler,* Y. is
V.¥ — I, ¥, where V, means ¢f,, 3/3X * with {e,, ] the
basis vectors dual to the {w°}, where I',, is a spin connection
defined by'? I, = 1T,,,7°7", and where the I',,,,, are the
connection coefficients of the orthonormal basis (2.4), again
in the notation of Misner, Thorne, and Wheeler. In our case

Lo= — {ly—9e="""V% L= — {(r— o7

Ty = J(—de = 9pp% — gre= =9y,

Ty = 4 [ = (/T — g~ =9y 4 yre =92y,
(2.5)

where a dot means d /9T and a prime is @ /3Z. For our signa-

ture of the metric the stress-energy tensor associated with ¥

is

T, = — /NP, ¥ — V70 ¥) (2.6)

where the components are in the orthonormal frame defined
by (2.4), ¥ =%, and the parentheses mean symmetriza-
tion on & and v. For the metric (2.1) 7, becomes

Too = Ago, (2.7a)
Tox =Aox — } (Trys¥)y — 2¢)e=— 7=, (2.7b)
Toy =Aoy + %(‘?/YXVSWWG_W—'”» (2.7¢)
Toz = Aoz, (2.7d)
Tzz =43z, (2.7¢)
Tox =Azx — }(PYYs¥)ly —29) e~ =¥, (2.71)
Tzy =Azy — } (WYY ¥)I/T—jle==¥,  (2.7g)
Tyy = e "= 9[(1/T — 29)(# %y ¥)

— 200y ¥)), (2.7h)
Tyy =0, (2.7i)
Tyy =0, (2.7j)

where 4,,,= — (i/4)[¥y,V,¥ — V,, ¥, ¥ ], and
¥s=iY’y*¥*¥%. For the metric (2.1) the Einstein equations
are
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b+ W/ T—y =12T(T*, —TY,), (2.8a)
Y =T %+ 2Ty, (2.8b)
y= —T %+ TW+¢?, (2.8¢)
=y =y = —(UT)T Yy, (2.8d)
0="Ty— Tpzz. (2.8¢)

[Here 7*#, = Te*"~¥T*, and indices are raised and
lowered with 7,,,..] In addition there is a set of conditions
that come from the fact that G, = O for some values of 1
and v, namely

Tox =Toy =Tzx =Tzy =Tyy =0. (2.9)
Equation (2.8¢} is a result of our choice of Eq. (2.1) for the
form of the metric. It restricts us to consider only neutrino
fields. For, supposing we have satisfied T, — T, =0, the
final equations of motion for the Einstein-Dirac system will
be (2.8), (2.9), and the Dirac equation and its conjugate.
These latter are

WPV + PV, W+ (i/2)e 1 O (y — o) yF

+(/T+y—9p°1¥ —m¥ =0, (2.10a)
and
VWY + iV, 0% + (i/2¥ [y — 9)'7”

+(/T+7—9pPle "~ Y  m¥=0. (2.10b)
Calculating 7,,, and using Eqs. (2.10), we find that

Too— Tz = } imPW. (2.11)

So the condition Ty, — Tz, = 0 means that m must be zero,
which is consistent with the behavior of other massless fields
that are plane symmetric with equal T}, and 7,,. Hence-
forth we consider only massless neutrino fields.

HI. A PARTICULAR SOLUTION

To find a particular nonghost solution to (2.8)—{2.10)
with m = 0, we begin by imposing the conditions (2.9) on ¥.
We use the Dirac equation or its conjugate to express Z de-
rivatives in terms of 7" derivatives and vice versa. For in-
stance, T, = 0 and 7, = 0 give

d = J =
a—Z(V’VYVSWTe‘”)= ﬁ(WryrsWTe‘”) =0, (3.1)

or
PyYysW=(B/T)e ",

and the T,,, = T, = 0 condition gives
By*ysW = (4 /T?e’, (3.3)

where 4 and B are constants independent of T and Z. In
order to reduce these equations and the condition T, = 0
to conditions on the components of ¥ we write

(3.2)

a,e’

w_ a,e’® _ [c:z]
b,e® br
b,e'*

(3.4)

where & and b are two-spinors, and (3.2) and (3.3) become
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2a,a, cos(0; — 0,) + 2b,b, cos(d, — ¢,) = (4 /T e,

(3.5a)
2a,a, sin(@, — 0,) + 2b,b, sin(¢, — ¢,) = (B/T)e Y,
{3.5b)
while T, = 0 gives
(/T —2¢)(a} —a} + b} —b3)
= —4¢/(a;b, + a,by)cos(0, — 4,). (3.6)
The Dirac equation takes the form
i (TI/Ze(l/ZNr— l//J[z) + o“ i (TI/Ze(l/ZNV— IIJ)B ) =0,
or iz (3.7a)
__a_ (Tl/Ze(]/2)(yf 11/'5 ) + O,Z i (Tl/Ze(l/Z)(y— ¢]5) =0.
ar 9z (3.7b)

Ifweletd, =6,=¢,=¢,=06and take§ = 0(Z + T)and
a, =ag, T~ V2%e-V20=9 p —p T-12%—0/20r—9
where 4 = 1,2 and a,,, and b, are constants, Egs. (3.7) re-

duce to

Ay = F by, Gy = +by,. (3.8)

Inserting (3.8) and the fact that all the phases are equal into
(3.5) we find that these solutions correspond to4 = B = 0.
Equation (3.6) becomes

4+9¢ +¢—1/2T)(a® —a2) =0. (3.9)

The coefficient of (a7 — a3 ) in this equation is the shear of
the hypersurfaces @ = constifd = § (Z + T'). Thisquantityis
not zero unless the metric is isotropic, so we can take the
solution to (3.9) tobe ¢, = + a,. We now have four possible
solutions to the Dirac equations: (1) 8 =6(Z — T},

a=b =a,=—b0;(2)0=0(Z—-T),
a=b=—a,=0b;3)0=0(Z+T),
a,=—b,=a,=bjand4)0=0(Z+T),

a,= —b,= —a,= — b,. InSec. IV we will discuss these
solutions in more detail.

We must now return to Egs. (2.8) and show that the
solution to the Einstein equations with the above spinor solu-
tions can be reduced to quadratures. We find 7%

=¥, =0. Thus Eq. (2.8a) for ¢ reduces to a linear equa-
tion that is the same as that of the vacuum metric. This equa-
tion is the key equation mentioned in the Introduction. Since
¥y =0, and since T*’ = 0 by the Dirac equation, (2.8d) is
automatically valid if the key equation is solved for ¢. For
Eqs. (2.8b) and (2.8c), we must check the integrability condi-
tion. They can be integrated if the partial derivative with
respect to T (2.8b) equals the partial derivative of (2.8a) with
respect to Z. If the key equation is satisfied this condition
reduces to (7 %,)* — (7%) = 0. It is not difficult to show
that this condition is satisfied for the four solutions given
above.

We now have the complete solution, at least up to qua-
dratures. The solutions for ¥ given above are complete ex-
cept for the functional values of ¢ and ¥ which can be ob-
tained from (2.8). Since .7 ¥y = 7Y} = 0, there exist
solutions for (2.8a),> and these solutions can be inserted in
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(2.8b) and (2.8c¢) to give ¥ by quadratures. As we will show in

the next section T°; and T4, are proportional to (y — g)~ ",
$0 7%, and .7 % have no explicit dependence on metric
terms, so (2.8b) and (2.8c) are integrable directly, without the
need of an integrating factor which would be necessary if
T and 7%, contained ¥ explicitly. This solution is the
solution mentioned in the Introduction.

IV. DISCUSSION AND CONCLUSIONS

We need first to show that our solution is not a ghost,
that is, that 7, is not identically zero. It is easy to show that
for all four of the solutions given above

Too = 2¢ ~ 7= Y524, (4.1a)
Ty, =2~ ~¥20, (4.1b)

where a = a,, so our solution is not a ghost. We can use these
expressions to show that 7%, and .7 %, do not depend expli-
citly on the metric components. Taking .7, as a paradigm,
we find that

T =T =979,

= 2T —¥lg—(r— '/J)a(Zn T le—r—vg= _ 242, 9’
(4.2)

where the constant a,, is defined in Sec. III.

We conclude our discussion of ¥ by classifying the four
solutions given in Sec. III according to current and helicity.
We calculate #* = ##W for our four solutions, and find that
for (1) and (2), #* = (4a?, 0, 0, 4a%), while (3) and (4) give #

= (44% 0,0, — 4a?). Since the momentum of these solutions
is obviously in the + Z direction, the helicity operator is
proportional to 2,, where

£ (] )

and if we calculate & 2,¥, we find that it is zero for all four
solutions. According to the notation of Schweber, '® the solu-
tions (1) and (3) are positive energy, and (2) and (4) are nega-
tive energy, and all of the solutions are the appropriate sums
of states of helicity + 1 and helicity — 1 to give zero heli-
city. The final classification is (1) positive energy, current in
the + Z direction, zero helicity; (2) negative energy, current
in the + Z direction, zero helicity; (3) positive energy, cur-
rent in the — Z direction, zero helicity; and (4) negative en-
ergy, current in the — Z direction, zero helicity.

The solutions for ¥ and solutions of Eq. (2.8a) and the
integration of (2.8b) and (2.8c) give us the exact nonghost
solution to the Einstein—Dirac field equations promised in
the Introduction. There should exist other solutions to the
problem if the condition that all the phases in (3.4) be equal is
relaxed.
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The aim of this paper is to compare the members of Cohen’s class of phase-plane distributions
with respect to positivity properties. It is known that certain averages (which are in a sense
compatible with Heisenberg’s uncertainty principle) of the Wigner distribution over the phase-
plane yield non-negative values for all states. It is shown in this paper that the Wigner distribution
is unique in this respect among the members of Cohen’s class that have correct marginals or that
satisfy Moyal’s formula for all states. The subset of members of Cohen’s class (not necessarily
satisfying one of these two conditions) with positivity properties comparable with those for the

Wigner distribution is shown to be rather small.

PACS numbers: 03.65. — w, 02.30. + g

I. INTRODUCTION

In this Introduction we present in a rather informal way
some known facts about Cohen’s class of phase-plane distri-
bution functions, and we indicate what we are aiming at in
this paper. Cohen’s class is parametrized by means of a func-
tion @ of two variables': for any such @ we have the family of
phase-plane distribution functions

CI®) gp) = J f f expl — 2milfq + 7p — 6u)]  (6,7)

Xflu+137)flu—1ir)d6drdu [(qp)ER?],
(1.1)

where fis an arbitrary state (all integrations are over the real
line, unless indicated otherwise). Of course, in order for this
definition to make sense certain assumptions on @ as well as
on fshould be made. In Sec. II a convenient mathematical
setting for dealing with rather general @ ’sin (1.1} is present-
ed. Any family C®' ( farbitrary state) can be used to give a
formulation of quantum mechanics in the phase plane of
position g and momentum p. In fact, it can be shown that any
bilinear map f—C,, mapping states fonto functions C, of the
phase-plane variables ( ¢,p), satisfying

CAg+ap+b)=Craslqp [(gp)R’] (1.2)

for all states fand all (a,b J€R? can be brought into the form
(1.1). Here T, and R,, are the shift operators, defined, respec-
tively, by

(Tf)(q)=S(g +a)

(RN g)=e"*"f(q) (geR),
for all fand all (a,b JeR>. It is easily verified that any
C; = C{® asin (1.1) satisfies (1.2) for all fand all (a,b JeR".
The choice @ (6,7) = 1 in (1.1) yields the Wigner distri-
bution? of £, viz.

(1.3)

Wf(q,P)=fe_2”ip'f(¢1+—l—t) f(q——l—z)dt

2
[(g:p)eR?]. (1.4)
In a way one can consider the Wigner distribution as the
basic distribution of Cohen’s class from which all others can
be derived®: one has
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CP?\qp) =ff¢(q —a,p—b)Wa,b)da db

[(g.P)eR?], (1.5)
where @ is the double Fourier transform of @, given by
¢lgp) = J J e~ 2%+ P\ (0,r)d@ dr
[(g.p)eR?]. (1.6)

This @ must be treated as a generalized function, e.g.,
@l g.p) = 8 q)6 { p) for the Wigner distribution case, whereas
@ is usually smooth.

The class of all possible phase-plane distributions can
be restricted considerably by imposing certain ‘“‘natural’ re-
quirements. We consider in this paper four additional condi-
tions.

(a) C'®' yields the “correct” marginal distributions for
all states f [see (1.7)].

(b) C4® has finite support properties [see (1.11) and
(1.12)].

(c) C ' is such that Moyal’s formula holds for all states
Jfand g [see (1.15)).

(d) C®'is a non-negative distribution for all states f.
Each of the requirements (a}, (b), (c), and (d) has conse-
quences for @ (and ¢); it is well known that not all four
conditions are compatible. However, the Wigner distribu-
tion satisfies (a), {b), and (c), while also certain positivity
properties hold.

The condition (a) means that for all states f we should
have

J C®lqp)p = f(q)* (geR),
(1.7)
f C®qpidg=|(FfNPI* (peR).

Here .# denotes the Fourier transform, given for all /by

(Ff)p) = f e=2™2f(g)dg (peR). (L8)

It can be shown'>* that (1.7) holds for all states fif and only
if
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@ (0,7) = P (6,0)=1

or, equivalently,

[etapa=510) (gem),

[(6,7)eR?], (1.9)

(1.10)
[etapaa=s1p (pei
For condition (b) it is required” that for all states fand
all (Q,P)eR?
fla=0 (lg|>Q=>CPqp)=0 (lg|>Q), (1.11)
and

(FAp)=0 (lp|>P)=CP qp)=0 (lp|>P()i .

It can be shown? that validity of (1.11) for all fis equivalent to

f e~ %P (0,1d6 =0 (|q|> |7]/2) (1.13)

for all 7R; similarly, validity of (1.12) for all f'is equivalent
to

fe‘z”"’¢(6,f)dr=0 (lp| > 6 172), (1.14)
for all 6eR. That is, D (-,7), P (6,-) are functions of the Paley—
Wiener kind® with type <|7|/2, <|8|/2, respectively, for
(6,7)eR? when the finite support properties are satisfied.

For property (c) to hold, we must have that Moyal’s
formula®®

jf C®(q.p) CPYq,p)dg dp = |(fg)]?

is valid for all states fand g. It has been shown® that validity
of (1.15) for all f and g is equivalent to

@67 =1 [(6,7)eR’],

(1.15)

(1.16)
or

(@*@)g.p)=58(q8(p) [(gp)R?], (1.17)

where &( g,p) = @(— q, — p), and * denotes convolution
over R2. A further result® is that validity of (1.15) for all fand
g, together with validity of (1.7}, (1.11), and (1.12) for all £,
implies that @ takes the special form

D (0,7) = D, (0,7) = exp(2miabr) [(6,7)eR?]
for some a€R with |a|<]. In that case ¢ is given by

@ (4:p) = @.(q.p) = a™" exp( — 2migp/a) or 5 g)5( p)
[(g.p)eR?] (L.19)
according asa7#0or a = 0, and C|®’ takes the special form®

C qp) = C(gp)
femfoniine)

xXf (q - t(% + a))dt [( g,p)eR?]. (1.20)

It is interesting to note that for any state f and any
(a,b )eR? the global spread

” [(g—af+(p—bP1|C™ gp) P dgdp (1.21)

(1.18)
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of C 'f"’ around (a,b ) is minimal for a = 0, the Wigner distri-
bution case. Choosing for (a,b ) the center of gravity® of C'f"',
which is independent of a and equals®

@s)=( [ atar da. [plFipIP o).

we see that the Wigner distribution behaves, in some sense,
best with respect to spread among the members of Cohen’s
class that satisfy conditions (a), (b), and (c). This is some indi-
cation that the Wigner distribution is to be preferred over the
other members of Cohen’s class. One may find this argument
not entirely convincing yet, for one has to restrict oneself to
distributions satisfying the strong condition that Moyal’s
formula is satisfied and this excludes, for example, the family
of distributions ( farbitrary state)

Re[e™ f(q)(Ff)p)] [(ap)eR?],

which was considered by Margenau and Hil
We finally discuss condition (d). This condition says
that for all fit should hold that"!

C®(gp)>0 [(gplR?]. (1.24)

It has been shown'? that validity of (1.7) and (1.24) for all
states fis not possible. This does not contradict the result of
Ref. 13 where to every state a non-negative function of ( ¢,p)
with correct marginal distributions is assigned in a nonbilin-
ear way.

With respect to positivity properties only the Wigner
distribution has been studied in some detail'*'¢ as far as we
know. It is exactly the purpose of this paper to compare the
general phase-plane distribution functions on this point with
the Wigner distribution. The best known positivity property
of the Wigner distribution'’~*! reads: for all states f; all y > 0,
8> 0 with ¥6<1, and all (a,b }eR* we have

f f expl — 2/ g — a2 — 278( p — b PIW, g,p)dq dp>0.
(1.25)

This paper concentrates on finding out for what & and what
7, 0 inequality (1.25) still holds for all £, (a,b ) when W is
replaced by the more general phase-plane distribution C {*'.
In connection with (1.25) we note that the following has been
proved for the Wigner distribution. Hudson'” has shown
that W, takes negative values unless fis a Gaussian. The
argument used by Hudson was augmented?' to show that, if
¥8 > 1, any f for which (1.25) is non-negative for all (a,b JeR?
must be a (possibly degenerate) Gaussian (in Ref. 21 certain
generalized functions are allowed; we turn to these in Sec.
II). It is not clear how a result of similar strength can be
shown to hold generally for the distributions of Cohen. We
have, e.g., with @ (6,7) = cos 7w0r [which yields (1.23)] that
C?'(q,p)>0for f( g) = cos 2mq. Nevertheless the following
results will be proved in this paper. Assume that & is such
that (1.7) is satisfied for all f. Under a mild smoothness and
growth condition”® on @ we have the following.

(1) If ¥6 > 1, then there is no @ such that (1.25) (with
C{®! instead of W,) holds for all f and all (a,b JcR%.

(2)If ¥8 = 1, then the only @ for which (1.25) (with C /!
instead of W;) holds for all fand all (a,b eR? equals
@ (6,7) = 1 (Wigner distribution case).

(1.22)

(1.23)

1.10
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We shall prove that a similar result holds when validity of
(1.7)is replaced by validity of (1.15) for all fand g. Weshall in
addition show that validity of (1.25) (with C *’ instead of W)
imposes severe restrictions on @ if 8 < 1 and (1.7) is satisfied
for all f; or if ¥6> 1.

The further plan of this paper is as follows. In Sec. II we
give a mathematical setting that allows us to consider func-
tions ¢ with mild restrictions on growth. We furthermore
recall in Sec. II the main results of Ref. 16, and we extend
these results somewhat. In Ref. 16 conditions for a function
K ( g,p) are given that ensure that

f f K (q.p)W/{ q.p)dg dp

is non-negative for all £ It is clear that these results will be
useful, since (1.5) and (1.25) show that non-negativity of
(1.25) [with C|® instead of W, and (a,b ) = (0,0)] for all fis
equivalent to non-negativity of (1.26) for all f, where K is the
convolution of ¢ g,p) and exp( — 27yq* — 278p?). In Sec.
ITI we consider the case that no other condition than non-
negativity of (1.25) [with C {*'instead of W, and (a,b ) = (0,0)]
for all fis imposed; in Sec. IV we require in addition correct
marginals or validity of Moyal’s formula.

Il. MATHEMATICAL SETTING AND RESULTS ON
POSITIVITY FOR THE WIGNER DISTRIBUTION

As we have to discuss rather general functions @ it is
convenient to restrict the states f/ to a certain space of test
functions. We consider the space .S of smooth functions; this
function space has been proposed in Ref. 8 as a setting suited
for doing Wigner distribution analysis. It is the same space as
the one used in Refs. 16, 21, and 23. To describe it briefly we
denote, for n = Q,1,..., by ¢, the nth Hermite function,

(—1)72"/%" (d /dg)"e >
n\(4m)?

the normalization has been chosen in such a way that

eﬂq1727114* wf 2*1/4 N (Zw—‘/;)"_ ¢n( q) ( qe]R,weC).
!

n=0 \/;_
(2.2)

The space S consists of all functions f whose Hermite coeffi-
cients ( f;,) satisfy an estimate

(f¥,) =0~ ") (n=0,1,..), (2.3)
for some & > 0. It can be shown that the space S'is identical to
the set of (restrictions to the real axis of) entire functions g for
which there are M > 0, 4 >0, B> 0 such that

lg(x + )| <M exp( — 7Ax* + TBY?) [(xy)eR?]. (2.4)
A sequence (f, ), in § is said to converge to zero when, for

some @ >0, sup, _ o, €| (fx,¥,)|-—0 when k— 0.
The space S * consists of all continuous linear function-
als on S. It can be shown that for FeS*

(F,)=0(") (n=0,1,.), (2.5)

for all @ > 0. The smoothing operators N, with Re a > O play
an important role; they map S * into S and are defined by

(N F)q) = i (Fapp)e "+t (q) (FeS *,qeQ).
"= (2.6)

(1.26)

Y.(q)=

(geR);  (2.1)
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As an integral operator of L ¥R), N, has the kernel K, given
by

K 1 )1/2 ( "
a\ P = . (23 -
(4.p) ( sinh a P sinh a

X[(4" + pleosh @ — 24p )

= 3 ety (g (p)

n=0
[( g.p)eR?]. (2.7)
The identity in {2.7) is just one way to write Mehler’s formula

2 172 2 5 1_+_w2 gpw
(1_w2) exp(—n'(q +p)1—w2+4ﬂ. 2)

1 —w

=3 w,(qi.(p) [(gp)eC?lw]<1]. (2.8)

n=0
The spaces S ? and S ?* of smooth and generalized func-
tions of two variables can be defined in a similar fashion. An
important formula, relating smoothing operators and
Wigner distributions,?* reads

(Non VN gp) =V ap) [(gp)eR’ Rea>0] (2.9)

for feL *(R). Here N, is the smoothing operator for func-
tions of two variables [whose kernel X, , ( g,p;x.y) equals
K.{(g:x)K.(py)], and
_ 1 qg P 2
far = W,( L2 ) [(gplcR?] (210
for feL *(R). We note? that V. (and hence W) can be defined
for FeS * and that V.S %*.

Another useful formula?® is

Wy ap) = Wigcos6 +psinbpcosf —gsin o)

[( ¢.p)eR?], (2.11)

which holds for all real 6 and all f&S.

In spite of the rather heavy machinery we have devel-
oped here, we shall usually manipulate with generalized
functions in a rather carefree manner; we shall give details
only in cases where the verification are not straightforward.

We now turn to positivity properties of the Wigner dis-
tribution. We have, for n =0,1,...,%

W, (gp)=2— 1) exp[ —27(q* + p?)]

XL,[4m(¢* + )] [(gp)ER?]. (2.12)
Here L, is the nth Laguerre polynomial,
Liw="3 (”) = esom=0,1,.), (213
j=o N 7
for which a generating formula®® is given by
(1 —w) 'exp[ —xw(l —w)™']
= S wL,x) (jw|<1x>0) (2.14)

n=20

Formula (2.12) can be used to show the identity®’
[ [ whapx 2at g+ pdg dp

= i (— 1)”I(ﬁ¢n)|2Lw e 'K(r)L,(2r)dr,  (2.15)

n=20
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where feS and K: [0, 0 )—>C is measurable and satisfies

f |K{x)|?e”“dx< o (€>0). (2.16)
0

Now positivity properties of the Wigner distribution result
on taking non-negative functions K with the property that

(— 1) Lm e~'K(PL,(20dr>0 (n=0,1,.). (2.17)

In Ref. 16 alarge number of examples of such X ’s have
been given. We mention in particular the choices

K{)=re—" (0<p<l, n=0,1,.), (2.18)

Kin=r (az-—1). (2.19)

The following positivity property is new as far as we
know.

Theorem 2.1: Let X: [0, 0 }—[0, o) be nondecreasing,
and assume that X (x) = O [exp(ex])] for some € < 1. Then
(2.17) holds.

Proof: It follows from Bonnet’s theorem™ that for all
A >0 there is an x,(4 )€[0,4 ] such that

(— 1) f e~"L, (27K (ndr

=(—1yKd~)]| e L,@2rdr

Xofd)

It is easy to check from formula (2.14) that

(2.20)

(—wfﬁﬂamm=&m+&HM(»m
’ (2.21)

where
S.n=3 (- 1)'e ~"L(2r) (n» — 1,r>0).
k=0
Since in Ref. 28, Problem 100, p. 392, shows that S, ()0 for
n> — 1, r>0, it follows that

(2.22)

(—1PK(d—) ]|  e-'L,(ndrs0

XolA }

{4>0,n =0,1,...). (2.23)

The proof is easily completed by noting that, for n = 0,1,...,

Ki{d—) Lm e "L, (2r)dr—0 (A—w). (2.24)

Notes: (1) Assume that X is infinitely many times differ-
entiable, and that K (#) and all its derivatives are O () for
some € < 1. Then (2.17) holds if and only if

|G

This follows on using e ~ 'L, (r) = 1/n!(d /dr)"(e ~"7") and
performing n partial integrations in (2.17).

(2) Since both X (r) = r*(@> — }) and
K (r) = e ~7"{0<p< 1) satisfy (2.17), one may ask whether
K (r) = r*e ~*" satisfies (2.17). Well, it does not unless o is an
integer. It can be shown from the formula (2.14) that, for
n=0,l1,..,

(2.25)

2243 J. Math. Phys., Vol. 25, No. 7, July 1984

(— 1)"J e "L, (2r"e " dr
o

=(l1—-p) " 'Ta+ l)Cwn[(l + w)”

—a—1
x (122 _w) ]
l1—p

Here C , denotes “coefficient of w” in.” Now Darboux’s
method?! can be used to find the asymptotic behavior of the
coefficients of the function (1 + w)*[(1 + p)/(1 — p)

—w] ~*~ L Weget [a= (1 +p)/(1 —p)]

(2.26)

(— 1)”[ e 'L, (2r)r"e " dr
o]

_ala—1)-la—n+1)
- n!

x[1+ la+ 1)

@+ Dig—n+1) 0(%)]
(n=0,1,.), (2.27)

and this oscillates for large n when « is noninteger. This
example shows that the condition (2.17) is rather intricate.
(3) We give an application of formula (2.15) which has
nothing to do with the main subject of this paper. In the
context of the Weyl quantization map we can express the
left-hand side of (2.15) as (T f.f), where Ty is the linear
operator whose Weyl symbol*? equals K [27( ¢ + p?)]. De-
note by H the Hermite operator — (1/477%)(d?/dq*) + ¢,
whose Weyl symbol equals g° + p*. One can now ask how
well £ (¢ + p?) is an approximation to the Weyl symbol of
S(H). As an example we consider f(r) = r'/?, and to that end
we choose K (#) = (r/27)'/? in (2.17). Now T is an operator
whose matrix relative to the basis (,), _ .. of Hermite
functions is a diagonal matrix, with diagonal elements

_(_1)n * —r /2
(TKdln’wn)— \/_2_77- L € Ln(z )r dr

=2732C (1 —w)">/(1 +w)"?]. (2.28)
By using Darboux’s method, one can show that
(Tx¥u i) =7 "2n+ 1)"?[1 + O(1/n)]
(n=0,1,..). (2.29)

At the same time (VH ¢,,,¢,) = 7~ "/*(n + 1)"/2 for
n =0,1,... . Hence Tx — +H is a diagonal operator (relative
to the ¥,,’s) with diagonal elements that are O (n~'/2). This

shows that T, — JH is of Schatten’s p class with p> 2. Of
course, all sorts of generalizations are possible here.

lll. PHASE-PLANE DISTRIBUTION FUNCTIONS WITH
NON-NEGATIVE GAUSSIAN AVERAGES

Let ¥ > 0. In this section we want to find out for which
@ asin (1.1j or @ as in (1.6) we have

f f CAqplexpl — 2my(q* + p)ldgdp>0  (3.1)

for all f£S. We require here that PeS** or geS ?*, for then
formula (1.5) shows that C*' is the convolution of p<S ?*

A.J. E. M. Janssen 2243



and W,eS?, and this is a smooth function that can be inte-
grated against any Gaussian as in (3.1). For the details con-
cerning convolution theory in the spaces S, $2, 5 *, 5%, one
may consult Ref. 33. We consider here only radiaily sym-
metric Gaussian weight functions since the more general
Gaussians exp[ — 27(y¢* + 6p?)] can be dealt with by con-
sidering® (@~ '8,a)instead of @ (6,7)[a = (6 /7)"/?]. Wecan
write (3.1) as

f f G (a,b )W a,b )da db, (3.2)
with G the convolution of @ and exp[ — 27/ ¢* + p?)], i.e.,
Glab)= [ [gla—ap—s)

xexpl —2m/(¢* +p)ldgdp [(a,b)eR?].

(3.3)

The following results show that a G for which (3.2} is
non-negative for all &S cannot decay too rapidly.

Lemma 3.1: Assume that G:R’>>R is bounded and
measurable and satisfies G (a,b ) = o{exp[ — 2m(a® + b))
{@® + b*— ). Then (3.2) is negative for some f&S, unless

27
f G(RcosO,Rsin0)d6=0 (R>0). (3.4)
(V]

Proof: Part of the argument given here can also be found
in Ref. 16. Suppose that (3.2} is non-negative for all /S, and

let
1 [ r ro.
Kirj=— G —cos 8, [ ——sin @ |d6.
2r Jo 27 27

{(r>0). (3.5)
We have for any feS by (2.11)

f f K [2m(¢* + p) | W/ q,p)dq dp
] 2T

27 Jo

([ [ 61a0Wus(apida do)dso. 3.6
Therefore, by {2.15), we have, for all n,
a,:=(—1y f: e~ K (AL, (2r)dr>0. (3.7)
It follows from the formula®*
Fe27e 3 (1 e+
n=0

nla—n+1)
{a> —1,r>0j {3.8)

L,(27)

that

«© o0 2
j Fe K (dr=2"% Y B Ao Y
o Lona—n+ 1)

(3.9)
The left-hand side of (3.9) can be shown to be

o[2-°I'ia + 1)] as a— . Indeed, this follows from the
assumptions on G implying that X (r} = o{e ~ ") as ¥~ . The
sum on the right-hand side of (3.9) has, for integer a, non-
negative terms only. Hence, for any m = 0,1,..., we have
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© 2 2,
9 -a Ia+1) a,»2-*— 1 lat]) _
iconla—n+1) mIa—m+1)

=2"T(a+ )@ —m + lj{a + l)a,,/m!

(a=mm+ 1,..). (3.10)

This is certainly not o[2 ~“I" (@ + 1)] as a— oo, unless all
a,, are 0. Since the functions e ~’L, (2r),n = 0,1,... are com-
plete in L ([0, 0 )), we see that K = 0, and the proof is fin-
ished.

Note: With a similar proof one can show that if G is
radially symmetric and satisfies
Gla,b)=O((@* + b?F expl — 2m(a® + b2])eR?, (3.11)
for some p>0, and (3.2) is non-negative for all f&S, then G is
of the form

Gab)= 3 (—1)a, exp] — 2m(a* + b?)]

n<p
XL, {4m(a®> + b?)]

with @, >0 (n<p).
Theorem 3.1: Assume that G:R*—R is continuous and
that

G(a,b) = O(exp[ — 27(@* + b?)])

[a,b)eR?], (3.12)

[(a,b)eR?],
(3.13)

for some 8 > 1.1If (3.2) is non-negative for all f€S, then G = 0.
Proof: Let (ag,bo)eR?, and let

Gola,b): = G(a—agh ~ by [(a,b)eR?]. (3.14)

We see from (1.2) that (3.2) holds for all f (with G, instead of
G'). Furthermore

Gyla,b) = O (exp[ — 2me(@® + b3)]) [(a,b)eR?],

(3.15)

for any € between 1 and §. Now Lemma 3.1 shows that

27
f GyR cos G,Rsin8)d6 =0 (R>0). (3.16)
(4]
It then follows from continuity of G that
G,(0,0) = G (ag,b,) = 0. This completes the proof.
Note: It is clear that the conditions on G can be weak-
ened somewhat.
Theorem 3.2: Let y> 1 and let 8> ¢(y — 1)~'. Assume
that @:R*—R satisfies

@(g,p)=0(exp[ —276(¢* +p9)]) [(gp)eR’].

(3.17)

Then there is an /€S for which (3.1} is negative, unless ¢ = 0.
In particular, there is no compactly supported ¢ #0 such
that (3.1) is non-negative for all f€S.

Proof: Let Gbe as in (3.3). Then G is smooth and satisfies

(@ +b 2))] [(a,b)eR?].
(3.18)
As 8y/(6 + y)> 1, the theorem follows from Theorem 3.1.
Note: We can allow @ to be an element of S 2* if we have
a substitute for condition (3.17). The theorem also holds, for

instance, when N, , @ (instead of ) satisfies (3.17) for some
a > 0. This is a consequence of (2.9). The theorem also holds

Glab)=0 [exp( ~ 27 oy
S+y
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when one requires that & be an entire function of two varia-
bles with

®(0,7)=0 [exp(%e (16> + |1'|2))] [(6,7)eC?]
(3.19)
for some € < {y — 1)/, for then the G of (3.3) also satisfies
(3.13) with a § > 1. All these matters can be proved rigorous-
ly within the framework of the theory in Ref. 33.

Example: Let ¥ > 0 and consider the choice
®,(0,7) = exp(2miadr) with a€R, a #0. Now @, is given by

@l g:p) = o~ exp( — 2mia~'gp) [(g.p)eR’], (3.20)
and the G = G, of (3.3) can be shown to equal
Gyla,b) = (1 + 4p%a*) 12
2ryl@®* + b?)  8miayab )
Xexpp — -
p( 1 + 4y%a* 1 + 4%
[(a,b )eR?]. (3.21)

Let g be the Gaussian 2'/* exp[ — {1 + i)g°] whose Wigner
distribution equals

W,(q.p)=2exp(—2r[q’ + (g +p)°]) [(g.p)cR?].
(3.22)

The convolution of W, and G, is a function of the form
(We*Gol ¢:p)

=exp[ — 7Py(q.,p) + Py gp)] [(qp)eR’], (3.23)
with P, a positive definite quadratic and P, a real noncon-
stant quadratic. Letting ¢( ¢,p) = Re[@o( 4.p)]
=a~ ! cos2ma " gp, so that G (a,b ) = Re[G(a,b )] and
@ (6,7) = cos 2rafr, we get an example of a D such that (3.2)
takes negative values for certain /’s. This is so since the real
part of (3.23) does so. Note that this example works for any
y > 0 while Theorem 3.1 and (3.21) predict trouble only for
y/(1 + %% > 1.

We consider the case y = 1, which has our prime inter-
est, in some more detail. The next theorem shows that a ¢
yielding non-negative averages in (3.1) must be of positive
type in a certain weak sense.

Theorem 3.3: Assume that ¢:R%—R satisfies

@ (gq.p)=O(exp[me(g* +p)1) [(gp)ER?], (3.24)

for all €> 0. A necessary condition that (3.1) with y = 1 is
non-negative for all f€S is that

bt r 172
f re g, [(——) ]dr>0 (n =0,1,....aeR?). (3.25)
0 T

Here ¢, (R ) is the average of @ over the circle of radius R
with center g, i.c.,
21
@, R)= —2—1—f @ la + R (cos 6,5in 8}1d6 (R>0).
m Jo
(3.26)

Proof: Assume that (3.1) is non-negative for all /&S. By
(1.2) it is sufficient to consider the case ¢ = 0. Insert formula
(1.5) into (3.1) and interchange integrals. We get, for all f&S,

[ [owsi [ [ exot—2nta?+2

XWq—ap—bldg dp)da db. (3.27)
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The expression between the large parentheses equals
1)(£,Gy( — a, — b))[?, where for all (a,b JeR?

G(—a,—b)9

=24 exp[ — 7 q + a)* — 2mibq — miab |

(g€R). (3.28)
This follows from the fact that, for all (,b }€R?,

WG,( —a— b)( q.p)

=2exp[ — 2m{g+a)’ —2n(p + b)’]

[ig:p)eR?], (3.29)
and Moyal’s formula. The choice f = ¢, gives®
|(¢sGi(—a, — b))|?

= [(@® + b?)"/n'lexp[ — ma* + b?)] [(a,b)eR?].

(3.30)

Hence

ffq)(u,b Jexp[ — 7la® + b?)](@* + b?)'da db

= 1 fr"e"
47"+ 2 Jo

X[J”q)( \/Z(cos 6,sin 9))d0]dr>0, (3.31)
Vs

0

for all n = 0,1,..., and the theorem follows.

Note: Observe that r"e ~ "\/27n/n! has its maximum for
r = n and that this maximum tends to 1 as n— co. Also, if

€> 0, the set of » with r’e — '\/2mn /n!>€is an interval around
r = n with length of the order y2n log ¢~ .

V. PHASE-PLANE DISTRIBUTIONS, CORRECT
MARGINALS AND MOYAL’'S FORMULA

Let ¥ > 0. In this section we aim at characterizing all
functions @ (or @) asin (1.1)[(or 1.6})] such that (3.1) holds for
all /€5 and such that the corresponding phase-plane distribu-
tion functions have correct marginals or satisfy Moyal’s for-
mula {see (1.7) and (1.15)]. In the case y>1 we shall show
that, under certain mild conditions on @, the situation is
very simple: for ¥ > 1 no such @ exists, for ¥ = 1 we must
have @ (8,7) = 1 [correct marginals) or @ (0,7) = exp
[ — 27i(6a + 7b)]for some (a,b JeR* (Moyal). And in the case
where ¥ < 1 and (1.7) is satisfied for all /&S, we are still able to
derive certain properties of ®.

We start with a lemma.
Lemma 4.1: Let HeL '(RY)nL *(R?), and assume that

[ [Htapwiandgar>o (fes) 1)
There exists ¢, >0 with 2, ¢, < « and orthonormal
£, €L }(R) such that

H(gp) =Y c,W;(qp) [(gp)ER?], (4.2)

with convergence in the L *(R?) sense.
Proof Let T'be the linear operator defined for KeL *(R?)
by
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(TK ) ‘]’P)=f@~2"'p'K(Q+%t,q——;—t)dt

[(g.p)eR?]. (4.3)

This T'maps L *(R?) unitarily onto L *(R?)as can be seen from
Moyal’s formula.*® And, letting (f® f)( ¢,,¢,)

=f(q1) f(q.),wehave T'(f®f) = W, forall fcS. Hence, if
T* is the adjoint of T,

(T*Hf8f)>0 (feS), (4.4)

where ( , ) denotes the inner product in L *R?). Formula
(4.4)extendstoall feL *(R)since T *HeL *(R?)and Sisdensein
L *(R). We conclude that T*H has a representation®’

(T*H)( ql’qZ) = 2 Cn.fn( ql) fn{ q2)

with f, eL R) orthonormal, ¢, >0, 2,.¢,? < « and conver-
gence in the L *(R?)-sense. Taking T at both sides of (4.5) we
arrive at

[{g192€R*), (4.5

H(qp)=73Y c.W;(qp) [(ap)R’], (4.6)

with convergence in the L *(R?) sense.

We still have to prove that 3 ,¢, < «. To that end we
consider H,( ¢,p) = (1/y2)H ( q/y2,p/y2). We have [see
(2.10)]

Hi(qp)=3 c,V;(qp) |(qp)eR?]. (4.7)

Let a >0, and apply to both sides of (4.7) the smoothing
operator IV, {see Sec. I). We get by (2.9)

NaH)Ngp)=> ¢, Vu(ap) [(gpER?],  (4.8)

with convergence in the S ? sense.*® If we integrate this identi-
ty over all { g,p)eR?, we obtain by (1.7)

[ [atiNapdado = B3 sl @9)

where || || denotes the L R) norm. Now ||V, f, || increases
to [|f,,|| = 1 for all n [see (2.6)], and** N, , H—H, in the

L '{R? sense if a 10 since HeL {R?), and whence H €L '(R?).
We conclude that

En‘,c,. =JJH(q,p)dqdp<oo,

and this completes the proof.

Note: Since ||f, || = 1, we have | W, ( ¢,p)|<2 for
( ¢,p)ER?. Hence, the convergence of the series in (4.2) is uni-
form. Since W, is continuous for every n, we furthermore
see that the H of Lemma 4.1 is continuous.

We are now ready to prove the following theorem.
Theorem 4.1: Assume that the G of (3.3) is in L {R?*)nL *R?),
and that (3.1) holds for all f£S. Then, (a)if ¥ > 1, C® cannot
have correct marginals for all f&S; and (b)if y = 1, and C®’
has correct marginals for all /&S, then @ = 1, and C*’is the
Wigner distribution of f for all f&S.

Proof: Assume that C |’ has correct marginals for all
f€S. This means that

(4.10)
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[otapp=da) (ger)
(4.11)

f¢(q,p)dq=a(p) (peR).

Hence, if we integrate the G of (3.3) over all b and a, we get,
respectively,

J Gla,b)db= (—21—7)1/2 exp{ — 2mya®) (acR), (4.12)

and

f Gla,b)da = (z—ly)w exp(— 2myb?) (beR). (4.13)

Our G satisfies the conditions of Lemma 4.1 and there-
fore we have the representation (4.2) for H = G. With an
argument similar to the one used for proving convergence of
2,c, in Lemma 4.1 we can show that

S ealfula)® = f Gla,b)db (ae.acR),
and

S | F b)) = f G (a.b)da (a.c. beR)

(4.14)

(4.15)

Sinceall ¢, >0, we conclude that, for all n by (4.12) and (4.13),

c?|f,(a)| <(1/2)"/* exp( — mya?) (a.e.acR), (4.16)
and
(T f0)|<(1727)* exp( — myb?)  (a.e. beR).
(4.17)

As we shall show in Lemma 4.2, the conditions (4.16)
and (4.17) are incompatible when ¥ > 1 (unless ¢, = 0). This
completes the proof for the case ¥ > 1. When y = 1, it follows
from Lemma 4.2 that every c./*f, is a multiple of the Gaus-
sian exp( — ma?). Therefore, ¢, #0 for only one n, and it easi-
ly follows that

Gla,b) =exp[ — 27(a® + b?)]

[(@,b)eR?].  (4.18)

Hence, as G is the convolution of @ and exp[ — 27(a® + b ?)),
we get ¢{ ¢,p) = 6 ( )8 ( p). This completes the proof.

Notes: (1) Since the G of (3.3) is the double inverse Four-
ier transform of {1/2y)® (6,7)expl — (7/27}(* + 7)) it is
clear that one should impose certain conditions on smooth-
ness and growth on @ to get GeL '(R*)nL %(R?). For instance,
conditions of type (1.13) and (1.14) guarantee®’ that
GeL '(R*)nL 4R?).

{2) As the proof shows, the theorem can be proved
equally well with the Gaussian exp[ — 27y( ¢* 4+ p?)]in (3.1)
replaced by certain smooth functions X ( g,p) with
J K(g,p)dp = O [exp( — 2myq’}] and
S K (g,p)dg = O [exp( — 2myp?)).

In the next theorem we replace the condition of having
correct marginals by the condition that Moyal’s formula
holds. We restrict the class of allowed ¢’s a little further
since we need some results from Ref. 33 about convolution
theory in §2 and S **. Of course, if one chooses a different
mathematical setting (e.g., a setting based on Schwartz’ the-
ory of tempered distributions), one can still prove a theorem
as the one below.
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Theorem 4.2: Assume that *'® (9,7)exp[ — 7e(0 2
+ 7?)]eS % for all € > 0, and that (3.1) holds for all f€S. Then,
(a) if ¥ > 1, Moyal’s formula (1.15) cannot hold for all f&S,
geS; and (b) if ¥ = 1 and Moyal’s formula holds for all f&S,
geS, then there is an (a,b )eR? with C\®( ¢,p)
= W/ q —a,p— b)forall S [( g,p)eR’].
Proof: Assume that Moyal’s formula holds for all fand
g. Then

26,7 =1 [(6,7)eR?]. (4.19)
In terms of @ this condition can be written as
ff¢>(q+a,p+b)abfl3—)dadb

=(p*@) () =8(9)8(p) [(g:p)cR’]. (4.20)

Here @(a,b) = @( — a, — b) for all (a,b }eR?, and * denotes
the convolution product for (generalized) functions of two
variables.

By the definition of G and the representation (4.2) we
have, with K ( ¢,p) = exp[ — 27y ¢* + p*)],

grK=G=Sc,W,. (4.21)

It will be demonstrated in Appendix A thatc, = Oe ~ ") for
some 3> 0, that £, €S and that the right-hand series con- _
vergesin the S 2 sense to @*KeS 2. Taking convolution with @
at both sides and interchanging the convolution and summa-
tion signs at the right-hand side (this is allowed*?), we get

K=pspsk=3 c,p*W,, (4.22)

by (4.20) and (4.21). _
We now observe that the Fourier transform of ¢ equals

L/} (Bir). Hence, Moyz}l’s formula is valid with @ as well as
with @. Since C*) = @ * W, we have

f f C'®) gq,p)dg dp = f f (@ *W,)( ¢.,p)dq dp

— 00 f f W, q.p)dg dp = d :{1213)

where d = & (0,0) is a number of modulus 1. Hence, if we
integrate identity (4.22) over the phase plane, we get by (4.23)

E177=JJK(‘17’P)a’qaw=a’§:cnllfnl|2=‘*’ch'
" @24

We conclude from ¢, >0 (all n) and |d | = 1 thatd = 1.

On the other hand, (4.22) provides an expansion of X in
a series of orthogonal functions, and we have by Parseval’s
formula

1
—_— K 9 2 = 2_
p” Hl (gp)’dgdp =73 ¢

Now, if weletd, = 2yc,,thend,>0,2,d, =1,3,d%: =v.
This is not possible when ¥ > 1, whence the case ¥ > 1 has
been dealt with.

(4.25)
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We shall give two proofs for the case ¥ = 1, one directly
hereafter, and one in Appendix B. When y = 1, we see that
exactly one d,, equals 1; the others are 0. Hence,

p*K =1W, (4.26)
for some f&S with ||f|| = 1. Take the double inverse Fourier
transform of (4.26). We get the identity
(FOFE W) O,7)

= @ (G,7)exp[ — (7/2)(6* + )] [(6,7)eR?]. (4.27)

The expression at the left-hand side of (4.27) can be
written as
(FI"FOWNG,) = fez”‘BV( q+ —;— )f ( q9-— -;— T )dq

=Amb{—7,—8) [(6,7€R?]; (4.28)
here Amb, is the ambiguity function of fwhich is well known
in radar analysis.*>** From a result of Ref. 44 the following

inequality can be derived for ambiguity functions. If
p = 12,..., then for any g,

f f |Ambg(7,0)|2"d7'd0<’% llgll*”;

if p = 2,3,..., the only functions g that never vanish, that are
twice differentiable, and that achieve equality in (4.29) are of
the form

(4.29)

gl q) = exp( — maq’ + 27 — me) (geR), (4.30)

with arbitrary complex «, 5, €, and Re a > 0.

It is easily verified from the fact that |@ (6,7)| = 1 and
|| £l = 1 that fachieves equality in (4.29) for p = 2,3,... .
However, our fis allowed to have zeros. What the argument
of the proof in Ref. 44 shows, though, is that if a smooth g
achieves equality in (4.29) and g( ¢,)#0, then g has the spe-
cial form (4.30) in a neighborhood of g,. And as our fis an
entire function, the conclusion that f has the special form
(4.30) remains equally valid.

If we calculate Amb, for the g of (4.30), we find

Amb, (6,7)
={1/2 Rea}'’? exp( — 27[Re ¥ — (Re B)*/Re a])
X exp[ — 17> Rea — Ir{w — 7 Im a)’/Re

— (2mi/Re a)lw Re B + 7 Im Ba)]. (4.31)

It is now easy to check from (4.27) that |@ (6,7)| = 1 implies
that & = 1, BeC arbitrary, yeC such that Amb,(0,0) = 1.
Then @ becomes

Dif,r) =exp[ —2milr ImB + 6ReB)] [(6,7eR?],
(4.32)
and
®(gp)=5(q+ReB)S(p+1ImB) [(gp)eR’].
(4.33)

This completes the proof.

We shall now prove the claim made in connection with
{4.16) and {4.17). It is likely that the results of the lemma
below for > 1 are known, but we could not find appropriate
references. In addition, we get useful information for the
case that O <y < 1.
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Lemma4.2: Let y > 0, and assume that feL *(R) satisfies

f(g)=0lexp( —myg’)] (ae. geR),
(FS)p)= O [exp( — myp?)]
Then, (a)if y > 1, we have f = 0, (b) if ¥ = 1, we have
f(q) = c exp( — 7¢?} for some ceC, (c) if 0 < ¥ < 1, we have,
withr=(1+479)"2(1—7)~"%

g‘,o (4. )PF =O(N) (N=0,,.).

Proof: We obtain from Mehler’s formula (2.8), with
— iw instead of w,

(a.e. peR). (4.34)

(4.35)

2\ ( 2 o 1 —w? 44riqu)
u—— + -
(1+w2) P\~ 7e +P) 1+w 1+ uw?
=3 (—w)Y,(q.(p) [(g.p)ER’|w|<1]. (4.36)
n=0

Noting that ¥ ¢, = ( — i)"y,,, multiplying (4.36) by
f(9) (¥ f) p) and integrating the result over the phase
plane, we obtain for |w| < 1

0

> WAl

()" e

1 —w? 4m'qu)
— dq dp.
T+w 1+ a9p

xexp( —(q* +p?)
(4.37)

We let w> 0, we insert the estimates (4.34) in the inte-
gral at the right-hand side of (4.37), and we take the modulus.
The integral that turns up can be evaluated explicitly, and we
obtain

3w fg,)ck — LW

O<w<l),
n=0 7+1+(7_1)w2 ( )

(4.38)

for some constant K >0. The integral in (4.37) thus converges
absolutely as long as ¥ + 1 + (¥ — 1jw*> 0.

Since the left-hand side of (4.37) is a power series with
non-negative coefficients, we see by Pringsheim’s theorem*
that the radius of convergence of the power series is at least
equal to r when 0 <y < 1, and oo when ¢3> 1. In the first case
we have in addition that

limsup (r—w) 3 wl(£i,)7 < . (4.39)
wr — n=0

It is not hard to see then that
N
S AP =0(N) (N=0,1,..). (4.40)
n=0

In the case ¥ > 1 we see that the right-hand side of (4.38)
tends to zero when w—» oo . This implies that ( £/, ) = 0 for
all n, whence f = 0. Finally, if y = 1, we see that the right-
hand side of (4.38) is O (|w|), w— «, whence ( £;1,, ) #0is only
possible for n = 0,1. Since ¥,( g) = 2'/* exp{ — m¢?),

¥.( ) = 272 q 1,(q) we see from (4.34) that ( ;¢,) = 0. This
completes the proof.
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In the remainder of this paper we let 0 < ¥ < 1. We shall
find conditions on the Wigner distributions of the £,’s as in
{4.2)and on G that must be satisfied in order that (3.1)is non-
negative for any f while C {*) has the correct marginals for
any f. There exist @ s~ 1 with these two properties, viz.

@ (6,7) = exp(786r) [(6,7)eR?] with

8= 4y~ (1 — 93)"2 (In fact, this example is not quite
proper since ® cannot be tested against all elements of S 2.} It
can be shown that the G of (3.3) equals in this case

G(qp)= Wi qp)
=-I—CXP( - imte tp) —-2;7-\/1”—7(«1+p)2>

14 1+J1 =9
[( g.p)eR?], (4.41)
where
flg)=(1729)""* exp( — w[y + i(1 - ¥)'"*1¢°) (geR).
(4.42)

Since the collection of all @’s with (3.1) non-negative and

(1.7) valid for all f'is closed under taking convex combina-

tions, it does not seem easy to describe this collection.
The fin (4.42) satisfies

| f(g)l = (1/29)""* exp( — 7y ¢°) (qeR),

[(F £)p)| = (1/727)"/* exp( — ¥ p*) (peR),

(4.43)

while its Wigner distribution satisfies

Wiqp) =0 [exp( - M)] [{ )R],

14+J1 =92
(4.44)
and its Hermite coefficients are given by (w = ¥ + i/1 — °)
J2n! (w — 1)"
W) =0 , 4.45
(fithe) e e 1T (4.45)

according as k is odd or £ = 2n is even. Hence
w—1

sa=of(252])=0((2)")

See also Theorem 4.3 below.
To find a condition on the ¥ ’s and on G, we recall

from the proof of Theorem 4.1 that
(K (g,p) = exp[ — 271 ¢ + p*)])

G=@*K=3 c, W,

(4.46)

with £, orthonormal, ¢, >0, £, ¢, < « and, for ( g,p)eR?,

1 172
Seltlal=(o=) " exp(—2my g (4.47)
n 2y
1 1/2 2
S el £ P = (;) exp(— 27y pd).  (4.48)
We shall show that for any n = 0,1,... and for any
e<y/(1 +¥1 =97,
W, (gq.p)= O (expl — 2me( ¢* + p*)])
[(g.p)eR?]. (4.49)
To that end we prove the following theorem.
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Theorem 4.3: Let £ €L %(R) and consider the following
statements: (a) for all § < ¥ we have

flg)=0(~™7) (geR),

(F fIp)=0(e~"" (peR); (4.50)
(b) for all § <y we have

(fith,) =0 [(i—jr%)m] (n=0,1,.); (4.51)
and (c) for all € < /(1 + V1 — /%) we have
W/ qp)=0(exp| —27e(¢" +p7)]) [(gp)eR’]. (4.52)

Then (a)=y(b), (bk=>(c).

Proof: The implication (a)=p(b) follows from Lemma 4.2
(c); in fact the result proved there is slightly more precise. We
shall now show that (bj=>(c). To that end we assume that (b)
holds and we let 0 <8 < y. We can write f = N_g, where
a=1log(1 + &)1 — &) ' and where the Hermite coeffi-
cients of g equal

(g = (122 ) (m=01.) (453

-6
Hence geS. Now, by {2.9) and (2.10),
WA q.p) = Wy 4(q:p)
=V2No Vo aV202)  [(gp)eR?].  (4.54)

The kernel X, , of the smoothing operator ¥, , can be
written as

K. (gpxy) = exp| — 7{ ¢*> + p*tanh o]

sinh a
X exp( — 7[( g — x/cosh a)?
+ (p — y/cosh a)*]coth a)
[( g.px.p)eR* X R?].
Since ¥,€S * we easily obtain that

(4.55)

W, q.p) = O (exp[ — 2m( ¢* + p*tanh a])[( ¢,p)eR?].
(4.56)
And as
2c
tanha=S —1_ 8 (4.57)
+1 141 =8

the proof of (b)=(c) is complete.
We next show the converse (c)=(b), and therefore we
assume that (c) holds. It follows that for O < e

<7/(1 + 1 + %), the integral
f f expl27e( ¢* + p*)] W/ q,p)dq dp
converges absolutely. Now let, for 4>0,
K(r)=e" (r>0),
K, (r) =max(K (r),4) (r>0).
Then we have by (2.15) (see Ref. 46), for 40,

(4.58)

(4.59)

f f K, [2m( ¢* + p*)1 W/ q,p)dg dp

= 5 (0 [ e K L, e, (4.60)
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Since K, is nondecreasing we can apply Theorem 2.1,
and we find that

e ()= (— 1) f: e~ 'K, (rL, (2dr>0

(A>01 =0,1,...). (4.61)

Also, by the generating function of the Laguerre polynomi-
als,

lim ¢ {4)= (1 f " e 'K (1L, (27\dr

=(1—¢€'~'/(1+€" (n=0,1,.). (4.62)

Since the left-hand side of (4.60) tends to the finite number in
(4.58) as 4— o0, we easily conclude that

(1—¢g " .
"20 u+ P

The proof is completed by noting that (1 — €)'/?
X(14+€ 2=(1-86)Y*(1+6)""*whene=56/
(141 =269

Note: Assume that fsatisfies (c). Then it follows from
(1.7) that (a) is satisfied with ¥ replaced by y/(1 + V1 — 7).
The implication (a)=>{b) cannot be strengthened [see {4.43)-
(4.45)).

We conclude this paper with the following theorem.

Theorem 4.4: Let G be as in (4.46). Then we have

G(qp)=Olexpl —27e(q* +p?)]) [(g.p)eR?](4.64)

for all € < /(1 + 1 = 9A).

Proof: The proof follows rather closely the proof of the
statements (a)=>(b), (b)=y(c) in Theorem 4.3. Therefore we
shall omit details.

Let G(¢,0): = (1/72)G (¢/\2,p/\2), and define

W a.p)

= [emrr(a+ 1) ofg—1t)ar [(qperL b6

%W (‘f %) [( g.p)eR?]

for &S, geS. Then we have (G, W,,) = (G, V) for all f&S,
ges.

We shall estimate the Hermite coefficients of G. We
have

Gt ® %) =3 (G.Vy, Wi

i

n

(4.63)

Viglaw) = (4.66)

(4.67)
with

Vit = (Vw,.,w,»'/’k eY,). (4.68)
This follows from completeness and orthonormality of
(¥ 4.,y in L *(R?) (see also the proof of Lemma 4.1). Accord-
ing to Ref. 8, 27.26.1, y;;,, equals ¢, ' a;” 'a, a, times the
coefficient of w2 in [(w + 2)/y2]1* [(w — 2)/iy2 ] here
a, = (n!)~"22= V447", 1t is important to observe that
Vowr =0, when k +171#i+j.

It is easy to see that, for all i/,
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GV 44 )1 = |G, Wy, ) P<(G. W, )(G.W,), (4.69)
whence, as 2i,j|7’ij,k1 1> =l ® 1/’1”2 =1,
(G o)< S (GW,IGW,) (4.70)

i+j=k+1
by the Cauchy—Schwarz inequality.
To estimate (G, W, ), we consider 2;7_ ,w*(G,W,, )
=: F(w)for |w| < 1. We have, as in the proof of Lemma 4.1,
for jw| <1,

pra(2)" e

2 oy 1w 4migpw
XCXP( (g~ +p) T 11w )dqdp,
(4.71)
with
H(gp)=Y c.folq (F £,)p) [(gpleR?]. (4.72)

n

It follows easily from the Cauchy-Schwarz inequality and
(4.43) and (4.44) that

1 172
Hiapl<(5) " epl =g ) [apeR]
(4.73)
As in the proof of Lemma 4.1(c) we conclude that

i P(GW,)=0(N) (N=0,1,.),

k=0
where r = (1 +%)"/? (1 — ¥)~ /2. Hence (G,W,,)
=O([(1 —8)/(1 4 8)1%7? for all § < 7, and we obtain by
{4.70), for all 6 < 7,

(4.74)

~ 1 — S\tk~+1v4
(G ®t)=0 {(—) ] (k,d=10,1,...).(4.75)
1+6
This shows that for any @ <} log [(1 + %)/(1 — y)] there
is an FeS * such that G = N, F. As in the proof of the state-
ment (bj=>(c) in Theorem 4.3 we conclude that, for any

a<ilog [(1 + /(1 -y,

G(g,p) = O(exp] — m(¢* + pYtanh a]) [(g,p)eR?],

(4.76)

and the proof is easily completed now.
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APPENDIX A: SMOOTH POSITIVE DEFINITE
FUNCTIONS OF TWO VARIABLES

In the proof of Theorem 4.2 the following theorem was
required.

Theorem A.1: Let KeS 2 be positive definite, i.e.,
(K, f®f)>0 for all feL }R). There are non-negative numbers
¢, and orthonormal £, €S such that

K(gp)=3 c.fulq) f.(p) PR,

n

(Al)
with convergence in the S 2 sense. Moreover, when the ¢, ’s
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are ordered decreasingly we have ¢, = O (e ~ ") for some
€>0.

The proof of this theorem relies on the foilowing
lemma.

Lemma A.1: Let K,e€S*(n = 0,1,...). Then K,—0 in the
S 2 sense if and only if (K, ,F ® F }—0 for every FeS *.

Proof* It is known*’ that K, —0 in the S? sense if and
onlyif (K, ,H }—0for all HeS **. Hence we only have to show
that (K, ,F ® F }—0 for every FeS * implies that (K, ,H }—0
for every HeS **.

By polarization we can assume that (K, ,F'® G )—0 for
every FeS*, GeS *. Let FeS *. The space S * is a Fréchet
space*®; as a countable system of norms on .S * we can take,
form=1,2,...,

© 172
161, =( 3 G aPe #m) " (Gesn (a2

Therefore we can find, by boundedness of
(K,,FeG)(n=0,1,..)forevery GeS *,anm = 1,2,...and an
M > 0 such that

(K, . F®G)<M (n=0,1,.) (A3)
for all GeS * with |G ||,, <1. Hence, S * =u;> | B,, where
B, = {FeS*|||G|,< 1=K, . FeG)|</(n=0,1,.)}, (A4)

for / = 1,2,... . Again using that S * is a Fréchet space we
conclude that thereis an /, = 1,2,... and an open setin § * in
which B, is dense. From this we infer the existence of M > 0,
ko= 1,2,... with

K, F8G)<M (n=0,1,.), (A5)

for all FeS *, GeS* with |F |, <1, ||G ||, <1. If we take
F = explk /ko),, G = exp(l /I ), we get

(K, ¥ @) |<Mexp( —k/ky—1/1;) (nkl=0,1,.)
(A6)

It is now easy to show [as (K, ,¥, ® ¢¥,)—0 for all k,/] that
(Ko H) =2, (K, i ® ¥)) (s ® ¥, H )0 for every HeS **.

Corollary: With an entirely similar proof one can show
that if K, €S2 and lim (K, ,F ® F) exists for all FS * then
there is exactly one KeS? with K, —K in the S? sense.

We now prove Theorem A.1. We have the representa-
tion*®

K=3%c.f, ®f,

where ¢, >0, 2, ¢? < , f,€L *R) orthonormal and where
the convergence is in the L %(R?) sense. In addition, for every
n,

(A7)

. folu)= fK(u,v)f,,(v)dv (ueR), (A8)
and from this one readily concludes that f, €S, e.g., by ex-
panding K in a Hermite series 2, ; d; ¥, ® ¢, with
d,; = O (exp[ — €k + I)]) for some € > 0. We assume here
and in the remainder that ¢, > 0.

Now let FeS *. We shall check that = ¢, |( £, ,F)}> < .
To that end we take a sequence Fy in S with F;, —F inthe §'*
sense if k— . We have, for all &,

(K.F ®F,) =3 ¢, |(f..Fe)l? (A9)
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by (A6). The terms in the right-hand side series are non-
negative for all k and tend to ¢, |(f, ,F)|* when k— 0. The
left-hand side tends to (K,F ®F’), when k— « . By Fatou’s
lemma we conclude that 2, ¢, |(f,,F)|* < . That is, we
have shown that lim,_,_ (E¥_,c, f, ®f,, F& F) exists for
all FeS*. The corollary after Lemma A.1 implies that
3N_, ¢, f. ®f, converges in the S 2 sense. Because of (A7)
the limit is K, whence K = = ¢, f, @f, with convergence in
the S 2 sense.

We finally show that ¢, = O(e ~ ") for some € > 0. It is
assumed here that ¢, >c, , | >0 (all ). We have

Kt e ) =3 ¢, [(fh)|* = Ofe ™)

for some € > 0. Hence there is an M > 0 such that, for all n,

Cs ; (St} €™ <M.

It follows from orthonormality of the f,’s and Parseval’s
theorem that for any m = 1,2,... there is an
n =n(m)=0,1,..., m + 1 such that

S ftPe—

k=m+1 m + 2
Therefore, c, (m)<M (m + 2)e — ™+ Ve,

We have assumed that ¢, > O for all n, and therefore
n(m)— o« as m—«. Now let n = 1,2,..., and take an m with
nim)<n<n(m + 1). Then m>n — 2, and, by monotonicity of
thec,’s,

(A10)

(A11)

(A12)

Co <Cppy KM (m + 2)e =" T Ve Mne — "~ e, (A13)

when # is sufficiently large. This completes the proof of
Theorem A.1.

APPENDIX B: SECOND PROOF OF THEOREM 4.2 (b)

We start~from the formula g*K = 1W, in (4.26), where
@ satisfies p*@ = 5 ® 8, K ( ¢,p) = exp[ — 27( ¢* + p?)], and
&S, || 1| = 1. This formula can also be written as
@*W, = W,, where g (q) = 2"/* exp( — 7 ¢*).

We shall use the following result®®: when @, and ¢, are
entire functions, then (z = x + iy)

2 f f @ol2lol)?  exp( — 2]z |)dx dy

C

< f J @ol2)|? exp( — 2| dy

xf f [ol2)|? exp( — ]z|)dx db, (B1)

C
and, if the right-hand side is finite, there is equality in (B1) if
and only if py(z)if,(z) can be expressed as C exp(27iiz) for
some u€C and some CeC. We apply this result with
@0 = ¥ = B fwhere B f'is the Bargmann transform®' of £,
given by

(Bf)z) = €™ f2g)(z)

=204 [ et =iy gidg (eeC). (B2

2251 J. Math. Phys., Vol. 25, No. 7, July 1984

The Bargmann transform provides an isometry
between the spaces L %(R,dq) and L *[C,exp( — 7|z|*)dx dy)).
Hence, the right-hand side of (B1) equals 1, as || f|| = 1. We
shall show that the left-hand side of (B1) equals 1 as well, so
that [(B f)(z)])* has the special form as indicated above.

According to Ref. 23, Eq. (2.8}, we have (z = x + iy)

(B f)(z)exp( — yrrlz|*) = (£,Gylx, — ) (B3)
where, for {a,b )eR?,
Giab)(q)
=2"4exp[ — 7(q — a)* + 2mibg — miab ] (g<R).
(B4)

Hence, the left-hand side of (B1) can be brought into the form

2 [ [ 106 xonf* dx . (B5)
By Moyal’s formula we have
[(£Gxp)?
=2 fJ Wa,b)exp[ — 2m(x — a)?
—2n(y — b)’ldadb = (WW,)x,p). (B6)
Hence, the left-hand side of (B1) can be written as
AW W, W W,). (B7)

Now W, =@ +W,, and (p*H ,,p+H,)

= (p*@*H ,H,) = (H,,H,) for any H,eS?, H,eS*. Hence,
the left-hand side of (B1) equals 2(W *W,, W *W,). Using
that

(WoxW,)ab) =exp[( —mla* +b7%)] [(a,b)eR?],
(B8)
we see that the left-hand side of (B1) equals 1.

This shows that there is equality in (B1), whence (B f})(z)
is of the form C exp(27uz) for some CeC and some ueC.
Writing # = a + ib, we see from Ref. 23, Eq. (2.8), that fis a
multiple of G,(a,b ). And since || /|| = G,(a,b) = 1, we get

W, (q.p)=2exp[ — 2m{g —a)f’ — 2m(p — b )*]
[(a,b )eR?].

Finally the formula @*W, = W, shows that
@lg.p) =6(g+ a)d(p + b). This completes the proof.
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A quantum-mechanical theory of distant correlations
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A composite quantum system consisting of two distant subsystems and described by a correlated
state vector ¢, is considered. It was shown in a previous work by the authors [Ann. Phys. 96, 382
(1976)] that such a system can be equivalently described in terms of the reduced statistical
operators p, and p, of ¢,, applying to the subsystems and a correlation operator U, between them.
It is argued that this description has a firm physical foundation for the system considered in view
of the fact that, on account of the subsystems being distant, one can only measure pairs of
subsystem observables A, B, in coincidence. The direct measurement of 4, such that [4,,0,] =0
on the ensemble of first subsystems performs distantly (without interaction) an orthogonal
decomposition of the ensemble of second subsystems p,, that amounts to the measurement of the
twin observable 4,(4,=U,4,U ;[ 'Q,, Q, being the range projector of p,). A number of
coincidence experiments have confirmed this claim, and have disproved all attempts (on the
quantum and on the subquantum levels} to view this decomposition of p, as being present also
before the measurement of 4,. Hence, this decomposition into subensembles comes about in the
very measurement of 4,, and U, determines them in a simple way. It is demonstrated that U, is
essential for twin observables and twin symmetry operators. A detailed study of these operators is
presented from a unified point of view. Puzzling features of quantum correlations described by U,
show up in composite states when the mentioned distant decompositions of p, into subensembles
can be incompatible with one another. A general definition of such ¢ t7® states (called Einstein—
Podolsky—Rosen states) is given in a few equivalent forms, and the nonuniqueness of the Schmidt

canonical form of ¢ 7} is investigated in order to encourage further theoretical and experimental

exploration of distant quantum correlations.

PACS numbers: 03.65.Bz, 03.65.Ca

I. INTRODUCTION

To begin with, we try to give an answer to the question:
What is intuitively paradoxical about distant correlations in
quantum mechanics?

To this purpose, we are considering a quantum system
consisting of two subsystems, that is described by a wave
vector ¢,,. We have shown' that, within the framework of
quantum mechanics, this system can be equivalently de-
scribed in terms of the separate states of the two subsystems
{the reduced statistical operators p, and p,) and the quantum
correlations between them (the antiunitary correlation oper-
ator U, mapping the range of p, onto that of p,):
¢,,+>{p1, U, p,}. Inspired by Schrodinger,” we made' a sys-
tematic investigation of the nature and physical implications
of the correlations established by U, by studying distant
measurement of subsystem observables (that are complete
and have a purely discrete spectrum).

Let us restrict ourselves, for the sake of an illustration,
to the two-photon system used in the Freedman and Clauser
experiment.” When one finds out by measurement that the
first photon is in the state of polarization @, then the second
photon is necessarily in the state of polarization U, @,. From
the quantum-mechanical point of view, ¢,, collapses (with-
out any interaction with the second photon) into
@, ® (U, @,). This quantum-mechanical prediction was con-
firmed by direct polarization measurement on the second
photon in the Freedman and Clauser experiment. Thus, it is
experimentally verified that the correlation operator U, de-
termines the state of the distant photon (after the measure-
ment on the first one).
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More generally, measurement of any observable 4, on
the first photon implies' the distant measurement of the twin
observable 4,=U_,A4,U ;' on the second photon. More-
over, if one considers two incompatible observables 4, and
B on the first photon (e.g., linear polarizations through two
different planes), the corresponding twin observables 4, and
B, on the second photon are also incompatible because the
above similarity transformation by U, preserves commuta-
tors. It means that one can distantly, hence without distur-
bance, measure any of the two incompatible observables on
the second photon. Hence, one may conclude that the second
photon “knows the answer”? to both measurements, sug-
gesting incompleteness of the quantum-mechanical descrip-
tion by ¢#,,. This is the essence of the famous Einstein—Po-
dolsky-Rosen (EPR) paradox.*

In a correct statistical language, the direct measure-
ment on the ensemble p, of first photons singles out distantly
the subensemble (U, ¢,) from the ensemble p, of second pho-
tons present before the measurement. Asking the question
what is actually happening with the ensemble of second pho-
tons in this change, one takes the position of physical rea-
lism. There are two possible answers. Either (a) the change is
taking place in reality (under distant influence without inter-
action of any type that we know today), or (b) the change is
only in our knowledge, so that the second photons were in
the same quantum-mechanical subensemble (U, ¢,) also be-
fore the meausrement on the first photons.

It should be noted that from the point of view of the
Copenhagen school of thought, the question of the realistic
meaning of the collapse ¢,,—@, ® (U, ¢,) is not physical.
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Contrarily, Einstein, Schrodinger, and others did consider
this question physical, but they could not accept alternative
(a).

As far as alternative (b) is concerned, both Einstein and
Schrédinger had their visions of it. Schrodinger’s hypothe-
sis” was in terms of quantum-mechanical entities: He envis-
aged that ¢,, goes over spontaneously into a mixed state p,,,
where the phases in the coherent mixture ¢, disappear when
the two particles get sufficiently apart so that they are out of
the range of mutual interaction. In this mixed state quasi-
classical statistical correlations appear, and this type of cor-
relation is intuitively easy to grasp. The mixed state p, gives
some predictions that are different from those implied by
@, hence experiment could decide. The Schrodinger hy-
pothesis was experimentally refuted®® (cf. Ref. 7, p. 1922;
also Ref. 8).

In the Bell model® (inspired by Einstein) the existence of
quasiclassical statistical correlations was assumed on a sub-
quantum level (the so-called model of local hidden varia-
bles). This model enables one to view each individual pair of
photons as having a definite state of polarization in every
plane simultaneously. Bell’s theorem® revealed a contradic-
tion between this model and quantum mechanics, so it be-
came possible to make an experimental decision,>”'° which
disproved the model of local hidden variables.

At present, as far as we know, there is no third way
within alternative (b). Thus, the apparent untenability of this
alternative is what is intuitively paradoxical about quantum
distant correlations'': It remains either to reject physical
realism independent of the measuring arrangements or to
consider seriously alternative (a). One wonders if Einstein
were alive today how he would react to this dilemma, to
which the new experimental facts have brought us. We be-
lieve that alternative (a) deserves systematic investigation.
We feel that quantum correlations in the ensemble ¢, are
something real, and that the correlation operator U, plays a
key role in their understanding (cf. Sec. VA).

The two basic aims of this article are as follows. (i) To
explore quantum correlations in any pure composite state
¢, from the point of view of measurement. In other words,
since twin observables are the basic form how the correlation
operator U, shows up, we study twin observables in general
(i.e., without the restrictions imposed in the previous arti-
cle!). {ii) To study different conditions under which quantum
correlations show up in a nontrivial way, i.e., when one has a
general EPR-type state vector.

For the second aim it will turn out that twin symmetry
operators are useful. Therefore, it is desirable to investigate
twin observables and twin symmetry operators from a uni-
fied point of view, as particular cases of twins of normal
operators (cf. Sec. IIB)."?

Il. MATHEMATICAL INTERMEZZO

A. Description of correlated subsystems in terms of the
polar factors of antilinear operators

If H, and H, are the state spaces of the two subsystems
of a composite quantum system, then the Hilbert space of
antilinear operators 4, mapping H, into H, and satisfying
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13715 of the tensor product

Tr, A} A, <  is a realization
H eH,.

A simple way to see the meaning of 4, that corresponds
to a given composite state ¢, , is to choose an arbitrary ortho-
normal basis {@, |n = 1,2,...} in H, and to expand’ ¢, in this

basis:

$12= 2P, 8 A.p,). (1)

The physical interpretation of {1} is as follows: When a first-
subsystem measurement results in @,,, the second subsystem
is by this very fact in the state 4, ¢, /||4, @, ||. Besides, the
square of the norm ||4, @,, ||* is the probability of this result.’

The advantage of the antilinear-operator realization of
H, ® H,liesin the fact that 4, connects H, with H,, and thus
it is well suited for the description of the quantum correla-
tions between the two subsystems.

The measurement of a first-subsystem observable that
has {@, |n = 1,2,---] asits eigenbasis is not necessarily a mea-
surement on the second subsystem. It is such a distant mea-
surement on the second subsystem if and only if the “relative
states”'® {4, @, |n = 1,2,--} are orthogonal. This is the case
ifand only if* { @, |n = 1,2,--] is an eigenbasis of the reduced
statistical operator p,=Tr,|d,,) (#;,| (Which means that the
measured observable is compatible with p,). Then (1) be-
comes the Schmidt canonical form

¢12 = zrrln/2¢m ® (Ua ¢m )’ (2)
where
P1 zzrm |¢m><¢m|’ (3)

allr,, >0, and
A, =U,py” (4)

is the polar factorization of 4, (cf. Appendix 4 of Ref. 1).

In the context of distant measurement the two polar
factors of A, have separate physical meanings in statistical
terms: p, describes the improper ensemble'” of first subsys-
tems implied by the proper ensemble of composite systems
represented by @ ,,; U, is the correlation operator' connect-
ing the states @, obtained in the direct measurement with
the states U, @, that come about in the distant measure-
ment. Actually, U, determines the subensemble (U, @,,) of
second subsystems that is singled out in distant measure-
ment (when the direct measurement has selected the suben-
semble @,, ).

B. Normal operators as twins

Definition I: Let H, and H, be the state spaces of two
subsystems and let ¢,,€H, ® H, be a composite state vector.
Two normal bounded operators 4, in H, and 4, in H, are
called twin operators with respect to ¢, if they satisfy

Ap,=AL4,, (Sa)
and

A J1r¢12 =A$12 (5b)

Theorem 1: Conditions 5(a) and (b) are equivalent to

M. Vuji¢i¢ and F. Herbut 2254



[410:] =0 (6a)
and
4,0,=U0,4,U;'Q, (6b)

where Q, projects onto R ( p,), the range of
p2=Tr|¢12)(¢12|-

Proof: Let us assume the validity of (5a) and (5b). Then,
utilizing 4, Tr,B,, = Trpd,By,, Tr, Bipd, = (Tr, Bo)A,,
and Tr, 4,B,, = Tr, B4, (which are valid for every bound-
ed linear operator B,, in H, ® H, as can be easily checked),
one can write 4,p, = Tr, 4,(¢,,)($12| = Tr, 41 |$12) (412

=Tr,|¢12){$12l4 ] = Tr|612) ($12|4, = p,4,, which
proves (6a). Therefore, we can take a common eigenbasis
{@,.|m=1,2,-} of p, and of 4, (hence alsoof 4 {)in R ( p,),
the range of p,. Expanding ¢, in this basis, one obtains a
Schmidt canonical form (2). Replacing (2) in (5a), one arrives
at

A @) ®(Ua@n) = X1 0n ©(A1Uagy). (7]

Owing to 4,¢,, = a,,¢,,, partial scalar product (cf. Appen-
dix 1 of Ref. 1) of r,; 2@, with (7) gives 41U, @,,
=08, U@ ot U, @, = U@, = U AU (U @,)-
Since {U, @,,|m = 1,2...} spans R { p,), {6b) follows.
If on the other hand, (6a) is valid, then (2) and
Ap,, = a,,@,, follow as above. Further, Eq. (6b) implies
AU, 9, =atU,p,.,and 43U, 9, =a,U,@,, . Conse-
quently, (7) and (5a) hold true. One proves (5b} analogously.
Q.E.D.
Since 4, and A4, play symmetrical roles in (5a) and (5b),
the latter are equivalent to

[42p0,] =0, (8a)

40, =U, IAzUanv (8b)
where @, is the range projector of p,.

Furthermore, as (5b) is symmetrical to (5a) with respect

to adjoining, one has two more pairs of equations equivalent
to (5a) and (5b):

[41p:]1=0, (9a)

A0, =U,41U;'Q, (9b)
and

[41,p.] =0, (10a)

410, =U;'41U, 0. (10b)

The reduced statistical operators p, and p,, as well as
their range projectors Q, and Q,, are basic examples of twin
operators. This follows from'

p2=U,p, U, '0,, (11)
and from
Q1¢12 = ¢12 = Q2¢|2: (12)

that is evident when ¢,, is written in a Schmidt canonical
form (2), respectively.

C. Hermitian twins

Let us now discuss the most important class of normal
operators—the Hermitian ones. In this case conditions (5a)
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and (5b) reduce into one equation,

A\p, =401, (13)
However, the equivalent conditions {6a) and (6b) are both
required when a given pair of operators 4, and A4, are tested,
whether they are twins or not.

If, on the other hand, one asks the question which first-
subsystem observable 4, has a twin when ¢, is given, then
Eq. (13)is of no use. But (6a) by itself gives a complete answer
to this question.

An observable 4, has a twin if and only if it is compati-
ble with p,. The proof of this statement is obvious if the right-
hand side of (6b) is understood as a prescript for the con-
struction of an 4, observable.

D. Unitary twins

If U, and U, are unitary operators in H, and H,, respec-
tively, then, owing to commutation of any operator from H,
with any one from H,, it follows immediately from Defini-
tion 1 that U, and U, are twins if and only if

U, U, =12 (14)
(U, U, = U, ® U,), or equivalently (according to Theorem 1),

[Up1=0 (15a)
and

U2Q2 = Ua Uan_ 1Qz- (15b)

If we consider the maximal symmetry group G, of p,,
i.e., all U, satisfying (15a), and the analogous group G, of p,,
then each of these groups is broken up into equivalence
classes where equivalent operators are those that reduce into
the same operator in the range of the corresponding p. In
other words, equivalent operators differ only in the corre-
sponding null space N ( p). Thus, the canonical operator in
each class is that among the elements of the latter which acts
as the identity operator in N ( p).

Denoting by I, the identity operator in H,, and by Q7
the complementary projector (I, — Q,) of Q,, the canonical
operator equivalent to U, [satisfying (15a)] is

Ui =U,0,+Q1. (16)
In both H, and H, the canonical operators form groups that
we denote G| and G ¢, respectively.

The correlation operator U, gives via (15b) an isomor-
phism between G § and G 5, enabling one to single out the
subgroup (G { X G 3),, the so-called diagonal of the direct
product G | X G 5, consisting of the ordered pairs of the form
(0,0 + 01,0, U,U;'Q,+ Q;), UeG,.

Now, we can rephrase (15a) and (15b) as follows: Two
unitary operators U, and U, are twins if and only if U,eG,,
U,eG,, and (U{,U$)e(G S X G5),;. We denote by G,, the
group of all U, U, in H, ® H,, where U, and U, are twins.

lll. DISTANT CORRELATIONS IN TERMS OF
MEASUREMENT

A. Detectable part of a subsystem obhservable

Since the measurement of 4, compatible with p, on é,,
lies at the root of the study of twin observables, we first con-
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centrate on it. As a matter of fact, it can be replaced by the
measurement of the detectable part of A,: A,Q, (on @ ,).

Before we elaborate this, we have to derive a suitable
spectral form of 4,Q, from the spectral form of 4,.

The operator A,Q, has necessarily a purely discrete
spectrum whatever is the spectrum of 4,. Namely, 4, re-
duces in each eigensubspace of p,, and all the eigensubspaces
corresponding to positive eigenvalues of p, [and making up
its range R ( p,) = R (Q,)] are finite dimensional (because p,
has a purely discrete spectrum, see Ref. 18, p. 329; and
Tr, p, = 1). Therefore, the entire possible cotinuous part of
the spectral form of 4, falls into the null space of .

If 2, a,P\"isthe discrete part of the spectral form of 4,
and if we enumerate by m those values of n for which
PYQ,#0, then we have

4,0, = ZamP(lm) 8

All terms omitted from X, a, P{" (for which P{"Q, = 0)
correspond to undetectable eigenvalues a,, of 4,, because the
probability to obtain such a value in the measurement of 4,
on ¢,, is zero:

pla, A1) = (2| P|¢15)
=Tr; PV|$12)($12| = Tr, Pp,
=Tr, P"Qp, = 0.
The remaining eigenvalues a,, are all detectable be-
cause P™Q, #0 implies Tr, P{™)p, > 0. To see this, we

choose a unit vector |@) such that P{'Q,|@ ) = |@ ). Then
Tr, P{"p, = Try(P{7Q1 )0, (P Q)

>(@ |(PTQ1)p,(PT™Q))p ) = (@ lp1l@ ) > 0.

In this way we have proved:

Lemma 1: Whatever the spectral form of 4, that is com-
patible with p, the spectrum of 4,0, is purely discrete, and
one can write

4,0, = zamP(lm)Qp (17)

where m enumerates the distinct detectable eigenvalues of
A,, i.e., those which have a positive probability in the mea-
surement of 4, on ¢,,. Decomposition {17) is unique under
the requirement

0, =Y P"Q, (18)

and we refer to (17) as the suitable spectral form of A,Q;.

Owing to [4,,0,] = 0, the range of p, is invariant for 4,,
and the latter reduces there into its relevant part 4 ;."* In
order to avoid domain restrictions, we utilize the detectable
part 4,0, (defined in the entire first-subsystem state space)
instead of 4 ;. However, the suitable spectral form of 4,0,
corresponds in fact to the standard spectral form of 4 | [in
which the eigenvalues are distinct and the eigenprojectors
add up into the identity operator in R ( p,)].

Now we can elaborate the physical relation between 4,
and 4,Q,, that makes them indistinguishable on ¢ ,.

Lemma 2: (i) The entire continuous spectrum of 4, that
is compatible with p, is undetectable on ¢,,.
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(ii) The probability of a detectable eigenvalue a,, of 4,
on &,, is the same as that of 4,0, on ¢,,:
pla, A,¢1) = pla,.4,Q1,¢:)

(iii) Any predictive measurement of either 4, or 4,0, on
&, giving a,, as the result, converts ¢, into the same state
P8,/ | P76

Proof: (i) Let D be an arbitrary domain on the real axis,
and let PP be its spectral projector (or spectral measure)
determined by 4,. The probability to obtain a result from D
in a measurement of 4, on ¢, is Tr, p, PP Since p, = Q,p,,
this probability is zero whenever P'P)Q, = 0, i.e., whenever
R (P'PYis part of the null space of p,. This is the case when D
is the continuous spectrum of 4,.

(ii) Tr,p, P = Tr, py(PVQ)).

(1) P32/ ||IP M1l = (P™Q1)812/ || P{7Q1812]| due
to (12).

Q.E.D.

Corollary: Two first-subsystem observables compatible
with p, are indistinguishable in measurement on ¢, if and
only if their detectable parts coincide. This indistinguishabi-
lity is obviously an equivalence relation in the set of all first-
subsystem observables compatible with p,. We take for the
canonical representative of any equivalence class the Hermi-
tian operator that acts as zero in the null space N { p,). Wecall
such operators canonical (with respect to ¢,,).

Remark: For any given ¢, the canonical operators of
the first subsystem form a Lie algebra L | with “(i/#) times
the commutator” as the Lie product.

B. Twin observables

Now we assume that 4, and 4, are twin observables,
and we derive the basic mathematical and physical implica-
tions of this relation.

Lemma 3: If A, and A, are twin observables, then:

(i) 4,Q, and A4,Q, are also twins, and vice versa.

(ii) The detectable eigenvalues of 4, and those of A, are
the same, i.e., if (17) is the suitable spectral form of 4,0,,
then that of 4,0, is

A0, = ZQmP‘Z’“)QZ, (19)

and

0, =Y P{Q,. (20)

(iii) The eigenprojectors P{'Q, and P §"'Q, correspond-
ing to the same detectable eigenvalue a,, are also twins.

Proof: (i) 4,Q,8,, = 4,01, is equivalent to (13) due to
(12).

(i) and (iii) Applying U, U, 'Q, to (17}, and taking
into account 4,Q, = U, (4,0,)U ;7 'Q, [cf. (6b)], one obtains

4:0,=Ya,[U, (PO ;'] Q (21)

The antiunitary operator U, takes by similarity transforma-
tion orthogonal projectors decomposing the identity opera-
torin R ( p,)into orthogonal projectors which decompose the
identity operatorin R ( p,). Hence, (21} is the suitable spectral
form of A,Q,. Further,
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Vm [Ua P (IM)QI)Ua— l]Qz = P(zm)sz

where P are the eigenprojectors of A, corresponding to the
detectable eigenvalues.
Q.E.D.

The quantum-mechanical meaning of twin observables
can be summarized in the following way.

Theorem 2: If 4, and A4, are twin observables with re-
spect to ¢, [see Eq. (13)], then their measurements on ¢,, are
indistinguishable:

(i) The probability p(a,,,4,,¢,,) to obtain a detectable
eigenvalue ¢,, in a measurement of 4, on ¢,, is the same as
that of a,, when A4, is measured on ¢,,, i.e., the same as
Pla, ,Ax8:)

(ii) If the two measurements mentioned in (i) are predic-
tive, they have the same effect on ¢,,, i.e., they convert the
latter into

P(IM)¢12/”P (lm)¢12” = P(zm)¢12/”P(2m)¢12”-
Proof: (i) p(a, »A41,612) = plam.A4, O1,612)
= ($12|P{Qi612) = ($12|PL'Q:|812) = P(,,4:02.812)
= pla,, A,,$,,) [cf. Lemma 2{ii) and Lemma 3(iii)].
(ii) Follows immediately from Eq. (12) and Lemma 3(iii).
Q.ED.

Thus, a direct measurement of 4, is by this very fact a
distant measurement of A, and vice versa. The term “dis-
tant” refers to the fact that the measurement of a first-sub-
system observable 4,=4, ® I, requires lack of interaction
between the measuring apparatus and the second subsystem.
The concept of distant measurement was introduced in pre-
vious work! for the special case of complete observables 4.
Now we have extended this concept to all first-subsystem
observables compatible with p,.

In distant-correlation experiments (which were invent-
ed to decide for or against local hidden variable theories),”*°
as a rule one deals with a special kind of twin observables—
with twin projectors P, and P,, having the physical meaning
of simultaneous occurrence of events on distant subsystems
{e.g., the first photon goes or does not go through an analyz-
er, and the same happens with the second photon; see Dis-
cussion Cin Ref. 1). These twin projectors P, and P, provide
us with an important example of distant measurement:
When the event P, happens in the laboratory, then P, occurs
on the distant subsystem. The coincidence measurements in
the above experiments check this quantum-mechanical
statement confirming it.

IV. DISTANT CORRELATIONS IN THE EPR CASE

A. Criteria

Definition 2: A composite state vector ¢, is an EPR-
type state vector (a ¢ 57 7) if there exist two first-subsystem
observables 4, and B, such that both are compatible with p,
and that their detectable parts 4,Q, and B, Q, are incompati-
ble with each other. In other words, this condition means
that the Lie algebra L § (see Remark) is nonabelian.

Thus, in a ¢ 7® one can measure distantly (i.e., without
interaction with the second subsystem) either of the two twin
observables 4,0, and B,Q,, which are necessarily [due to
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6(b)] incompatible with each other. We believe this is a natu-
ral generalization of the original EPR state vector* (where 4,
was the coordinate and B, was the linear momentum), as
well as of all the other examples studied in the literature
since 1935.71°

An obvious necessary and sufficient condition for a ¢,,
tobe a @ 7~ is that at least one positive eigenvalue of p, (or
equivalently of p,) be degenerate. Necessity is due to the fact
that [4,,0,] = 0 and [B,,0,] = 0 imply that both 4, and B,
reduce in each eigensubspace of p, in R ( p,). Unless one of
these eigensubspaces is more than one-dimensional, 4,0,
and B,Q, have to commute. Sufficiency is obvious.

A group-theoretical version of this condition is given in
the following theorem.

Theorem 3: A state vector ¢,, is of the EPR type if and
only if its symmetry group G { is nonabelian.

Proof: The group G is a Lie group, and its Lie algebra
is L {. The latter is nonabelian if and only if so is G .

Q.E.D.

B. Schmidt canonical form

It may not be realized that the Schmidt canonical form
of a given @,, is, in general, nonunique. If ¢, is not of the
EPR type, i.e., if all positive eigenvalues of p, are nondegen-
erate, then the Schmidt canonical form (2) is unique:

¢12 = zr:n/2¢m ® {an)m )'

Namely, the eigenbasis of p, in R ( p,) is unique up to a phase
factor exp(id,, ) for each m independently. But, owing to the
antilinear nature of U, , one has U, exp(il,,)@,,

= exp( - id,,)U, @,,, hence this freedom cancels out, leav-
ing each ¢,, ® (U, ¢,,) unchanged.

On the other hand, if ¢,, is of the EPR type, then there
exists at least one degenerate eigensubspace V (r,,), 7,, > 0, of
P, in which there are orthonormal bases differing from each
other more than by a permutation or by phase factors. Since
each eigenbasis in R { p,) gives a Schmidt canonical form (2),
one thus obtains different forms of this kind, i.e., expansions
(2) differing more than by rearrangement of the terms.

Theorem 4: The group G,, of ¢,, is the symmetry group
of the Schmidt canonical form of ¢,,, i.e., for every two ca-
nonical forms (2) there exists one element U, U, of G,, taking
one into the other; and vice versa, each element of G,,, when
applied to an expansion (2), gives again such an expansion
(which is not necessarily a different one).

Proof: Let

erln/2¢m ®(Ua¢m) =¢12 = zr¥2¢m ®(Ua¢'rn)

be two canonical forms of ¢,,. The two eigenbases
{@m|m=12,-} and {¢},,|m = 1,2,-} of p, in R ( p,) define
[nonuniquely in N (p,)] an element U,eG,:

¥,, = Up,,, m=1,2,--, that obviously commutes with p,.
Let U, be a twin of U,. Then

¢, (U ¥¢,)={Uwp,)e (U, Ue,,), and making use of
15(b), one further has

¢m 8(U0¢m) = (U1¢m)®(U2Ua¢m)'
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The proof of the converse statement runs along the same
lines in the opposite direction.
QE.D.

V. DISCUSSION

A. On the physical meaning of p,, U,, and p,

Though ¢,, and the pair of operators p,, U, are math-
ematically equivalent (cf. Theorems 5 and 7 in Ref. 1}, physi-
cally p, and U, do not have separate meanings if all observa-
bles (measurable on the composite system) are taken into
account. Restriction to the class of first-subsystem observa-
bles 4, ® I, endows the notion of p, with physical contents,
whereas further restriction to the subclass of observables
compatible with p, ([4,,p,] = 0) gives physical basis to the
concept of the correlation operator U, . [The observables of
this subclass are precisely those which have twins
A,Q, = U, 4,U [ 'Q,—f. (6b)—among the second-subsys-
tem observables.]

Therefore, one cannot disagree with Bohr'® that the
state ¢,, of the composite system is actually an unseparable
whole, but this does not prevent one from exploring the con-
ditions under which the “parts” (the two subsystems and the
correlation between them) have separate physical meaning.

When the subsystems are distant (i.e., sufficiently far
apart from each other so that they are not interacting), but
correlated (e.g., have interacted in the past), then the typical
experiments are coincidence measurements.’ These are mea-
surements of composite events of the type PP 3, where P, is
some event {projector) in H, (e.g., a linear polarization ana-
lyzer orientated in a certain direction and completed with a
detector measuring the event of “passing through” in case of
photons), and P} is an independently chosen event in H,
(e.g., one measured by a differently orientated polarization-
measuring arrangement). We assume that P, is compatible
with p,, and we argue as follows.

The probability p{ PP ,é,,)=p(1,P,P5,4,,) of the oc-
currence of PP in the state ¢,, can be broken down to the
conditional probability p( P},8,,|P,) of P; under the condi-
tion that P, took place, and to the probability p{ P,,é,,) of P;:

PIP\P ;b)) =p( Pudo)p( Phydon| Py). (22)
Evidently,

P Pudy) =Tr Pp,. (23)
Further,

P(P3,612|P\) =Tr, Pyp,( P)), (24)

where p,( P,) is that subensemble of p,=Tr,|¢,,) (¢ 5]
which corresponds to the subensemble P,p,P,/Tr, P,p, ob-
tained by the occurrence of P;:

pa P1) = Pyp,P,/Tr, Pp,, {25)
where P, is the twin event of P, i.e.,
P,=U,PU S 1Q2s (26)

and Tr, P,p, = Tr, Pp,. Actually, Eq. (25} is a special case
of the more familiar general expression

pal Py) =Tr, P1|¢12> (12| P/ Tr, Ppy, (27)
obtained from the latter by utilizing (13).
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One should note that the above argument reduces any
coincidence experiment on distant subsystems to the mea-
surement of P ; on the distantly prepared subensemble
P4 P,). The restriction of the choice of P, to events compati-
ble with p; means that the distant preparation is, in fact, the
distant occurrence of the twin event P,. Thus, coincidence in
this case actually reduces to successive measurements of P,
and of P (they need not be compatible with each other).

As seen from Eq. (26}, it is the correlation operator U,
that determines which event P, is the twin of P,. For in-
stance, in the well-known Freedman-Clauser experiment,?
the two-photon polarization state ¢,, implies a U, such that
P, and P, correspond to parallel orientations of the analyz-
ers; whereas in another known experiment,?® P, and P, cor-
respond to perpendicular orientations.

The correlation operator U, is an entity endowed with
physical meaning to the extent to which the restriction
[P,,p1] = Ois natural. The weaker restriction to any subsys-
tem events P, and P is actually not a restriction, because on
distant subsystems there is nothing else to be measured. As
far as we know, in all experiments performed so far,

[P1,p1] = O was no restriction either due to p, = {I,. There-
fore, in these cases the physical meaning of U, seems to have
been established beyond doubt.

As 1o a general ¢, describing two distant and correlat-
ed suybsystems, the requirement [P,,p,] = O is a restriction.
It selects out an important class of measurements because
this requirement is equivalent to the following: (i) The occur-
rence of P, is a no-disturbance direct measurement.*' (i) The
distantly prepared subensemble p,{ P,) comprises precisely
those distant subsystems on which an event P, occurs. In
other words, when [P,,p,]#0, then the nonselective?' direct
measurement of P, changes p (i.e., P,p, P,

+ (I, — P)p1I, — P\)#p,), and p, decomposes into the dis-
tantly prepared subensemble p,{ P,) [given by {27)] and the
remainder, but these two are not orthogonal to each other.

To draw a conclusion from the above argument, one
should bear in mind that quantum correlations are a kind of
entanglement of the predictions of subsystem events, and
that there is no other way to disentangle them than to per-
form subsystem measurements.” Therefore, no-disturbance
measurements on both subsystems (equivalent to
[P,,0,] = 0) seem to be best suited for the study of observable
consequences of quantum correlations. On the other hand,
this same condition [P,,p,] = 0 makes it possible for the cor-
relation operator U, to play an important role [determining
o2 P;) via Eqgs. (25) and (26)]. Hence, U, describes basic
aspects of quantum correlations in the general state ¢,, un-
der the given conditions.

B. What is paradoxical in distant measurement in the
EPR case?

Let us return to this question put in the Introduction.
Two possibilities (a) and {b) were given, and it was pointed
out that alternative (b) had been disproved experimentally.
Now we discuss alternative (a), and we point to two essential
aspects of the change taking place as a result of the direct
measurement.
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(i) When an observable 4,, compatible with p,, is select-
ed, one has before its direct measurement decomposition (2):

2= 3 P ® (U @),

where {@,, |m = 1,2,--] is a common eigenbasis of 4, and of

p1in R ( p,). In the direct measurement of 4,, ¢ 3~ collapses
into
P12AN= S|P ) P | © (Us | @ )P | UL (28)

The entire improper ensemble of second subsystems

p=Tr[¢ TN T = 31 Usl@m ) @n | UL (29)

was decomposable, i.e., potentially decomposed, into the su-
bensembles { U, |@,, ) {@., | U |m = 1,2,--} also before the
measurement. In the collapse ¢ §; *—p,,(4,) the composite
system, containing the distant subsystem, undergoes a phys-
ical change that has been checked and proved in coincidence
measurements of the P, P type (cf. Sec. VA). The ensemble
p, does not change in the collapse because

Tr, | R (@ 8| = Tr, p1old,), butiits potential decomposi-
tion (29) becomes actual as given by (28), and this takes place
without any interaction with the second subsystem. Namely,
the occurrences of P{™"=|g,, ) {(g,.| on the first subsystem
separate out distantly the subensembles

PYp, P/ Tr, P"py = U, l@,, )@ UL (30)

From the point of view of von Neumann’s quantum
theory of measurement,’® the direct measurement of 4, on
the first subsystem is the second link in a two-link chain,
where the first link is the composite state ¢ =**. Von Neu-
mann has shown that the very interaction of the mea-
suring apparatus with the first subsystem gives rise to the
collapse ¢ [T —p ,(4,). (We do not discuss the total collapse
of the entire chain, which is the well-known problem of the
quantum theory of measurement.)

Thus, the collapse ¢ ;7% —p,,(4,) is puzzling by itself.
But in the EPR case, there is more to it.
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(ii) The nonuniqueness of the Schmidt canonical form
(2) (cf. Sec. IVB) allows any of an infinite number of collapsed
composite ensembles p,(4,) (but they are not simultaneous-
ly realizable if one selects incompatible 4,). This has the
consequence that p, can be actually decomposed in any of a
number of mutually incompatible ways implied by (28) with-
out any interaction with the second subsystem.
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In quantum physics the tests of most properties do not have predetermined outcomes. The latter
have nevertheless well-defined probabilities of being realized during a test. Following Popper we
interpret these probabilities as physical propensities. A first purpose of the present article is to
formalize the propensity interpretation in the framework of state-property structures. Next,
Gleason’s theorem asserts that in the Hilbert space there exists a unique propensity function (i.e.,
one probability measure for each state vector); the propensities are thus uniquely determined by
the state vector. Conversely, we prove that if the state-property structure admits one and only one
propensity function, then the set .# of all properties is a complete atomic orthomodular lattice.
We point out that according to our assumption the probabilistic aspect of the system is entirely
determined by its deterministic aspect. Assuming furthermore that each property can be ideally
tested, it follows that .#”is isomorphic to the direct union of Hilbertian space lattices. We recover

thus the purely classical and purely quantum frameworks as the two extreme cases. The
intermediate cases correspond to quantum mechanics with—possibly continuous—
superselection variables. Finally, we prove that a system is classical, i.e., all properties are
mutually compatible, if and only if the propensity function is dispersion free. In our approach the
quantum probabilities appear thus as a generalization of classical determinism rather than a

generalization of classical probabilities.

PACS numbers: 03.65.Ca, 02.50. + s

1. INTRODUCTION

In Ref. 1 B. d’Espagnat wrote: ‘“most predictions of
quantum mechanics are of a statistical nature and therefore
make sense only for ensembles.” This is probably the root of
the discomfort that many people feel about quantum me-
chanics. Yet, in the late 1950’s, Sir Karl R. Popper argued
that a different interpretation of probability, called the pro-
pensity interpretation, solves the problem of single events,
and in turn, the problem of the interpretation of quantum
mechanics.?* Indeed, d’Espagnat’s statement refers to the
frequency interpretation of probabilities, but is in opposition
to the propensity interpretation.

We shall come back to the propensity concept in Sec. 3.
For the time being, let us just briefly quote Popper?: I pro-
pose a new physical hypothesis. The two slits experiment
convinced me that probabilities (...) are physical propensi-
ties, comparable to Newtonian forces, (...) to realize singular
events.”

The first purpose of the present article is to formalize
Popper’s idea in the context of state-property structure.*

Another important motivation is the Gleason theorem,
which states that there exists one and only one probability
measure on the set of closed subspaces of a Hilbert space,
with value one on a given ray.” We remind that in the usual
Hilbert space quantum mechanics the properties are repre-
sented by the closed subspaces. A property is then called
actual whenever the corresponding subspace contains the

# Supported in part by the Swiss National Science Foundation.
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state vector. Consequently, any (pure) state is then complete-
ly and uniquely determined by the set of all actual properties,
and, in turn, any (pure) state completely and uniquely deter-
mines the “propensity of any property to realize itself during
a measurement.” This is a beautiful result. However, it
seems to us that the conclusion is physically more natural
than the Hilbert space assumption. Accordingly, the second
purpose of the present article is to prove a theorem which is
in a way the converse of Gleason’s one (see Sec. 5).

Our main result is the following: If the state-property
structure (see Sec. 2) admits one and only one propensity
function (see Sec. 3), and if each property can be ideally test-
ed (Sec. 4), then the states are naturally represented by atoms
of the property lattice .Z, and .% is isomorphic to the direct
union of Hilbert space lattices (Sec. 5). Hence the system is
either purely classical {all Hilbert spaces are of dimension
one), or purely quantum (only one Hilbert space), or quan-
tum with—possibly continuous—superselection variables.®

In Sec. 6 we characterize compatible properties and
classical systems in terms of the propensity function. In the
last section we summarize the conclusions.

2. THE STATE-PROPERTY STRUCTURE

In this section we first fix the notations, and then recall
the concept of a property of a physical system.®

A state-property structure (S.P.S in short) is a triplet
(2., &, o) where X is a set, whose elements represent all
possible (pure) states of the system, and 1 is an orthogonality
relation on 3 two states €, 77 are orthogonal, € 1 7, iff there is
an experiment which gives always a certain outcome a
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whenever the initial state is €, and a different outcome 8 # a
whenever the initial state is 77 (see Ref. 7). The set .Z of all
properties of the system is a complete lattice (see below). It
includes the “never actual property” 0. Finally, 00 3 — £ is
the map which maps each state € onto the strongest (i.e.,
smallest) property actual in the state € [hence ai€) # 0]. The
order relation on . and the map 6 are related as follows:

a<bo(VeeZ, ol€)<a=ole)<b).
Consequently, for all b€ .2,

b= V{ole)|ale)<b }, (1)

where V denotes the lower upper bound.
The orthogonality relation on & provides .2 with the
Aerts-orthogonality relation”: V ¢, b€ .7,

clbo{Ve @e, ole)j<c and olg)<b =€ Ll ).

(We use the same notation for the orthogonality relations on
2 and .Z.) Theinterpretation of ¢ L b will become clear after
Theorem III. For the time being let us anticipate that when-
ever c is actual, a test of b cannot give the positive answer.
The orthogonality relation on .7 is characterized by

(V a,b,ce.L),

(1) alb=bla,
(2) a<bandblc=alc,
(3) a L a=a =0 (or, equivalently,a L b=a A b = 0).

In the remaining part of this section we remind the con-
cept of property. A property is something which the system
can have in act or not and which can be tested by a yes-no
experiment. If the system has the property in act, one says
that the property is actual. In that case, whenever a test is
carried out, the positive result is certain to be secured, i.e.,
the positive result is predetermined. Hence, an actual prop-
erty is nothing but what Einstein called an “element of rea-
lity.”!® A typical property of a particle is, for instance, the
property of being localized in some space region A. The
property is actual whenever the particle is in a state such that
a counter outside A can never detect the particle. (In that
example, the positive result is secured whenever the counter
does not detect the particle.)

Clearly, a property can be actual for some states of the
system, but nonactual for other states. If { b, } ¢, is a collec-
tion of properties, A b; denotes the property which is actual
if and only if all the &,’s are actual. Any test of a b; isalsoa
test of A b,. If the b,’s are never simultaneously actual, then

A b; = 0 (we identify properties which are always simulta-
neously actual). The order relation on the set .# of all the
properties is defined as follows:

a<b & aAb=a.

It is straightforward to verify that . is a complete lattice,
with A b; the greatest lower bound.®®

Let us emphasize that whenever one tests a nonactual
property, both results, in general, are possible.

Several authors use the word proposition instead of
property. But this sounds too much as a logical concept rath-
er than a physical one. We consider the concept of property
as a primitive one, but different authors define a property as
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a set of equivalent yes-no experiments,® or as an “ideal”
yes-no experiment (i.e., a kind of limit of actual yes-no ex-
periments).*®

3. PROPENSITIES

In the late 1950’s Popper proposed the propensity inter-
pretation of probabilities. He “gave up the frequency inter-
pretation” because of “the problems of interpretating quan-
tum mechanics and the probability of single events” (see Ref.
2). This has raised many interesting discussions (see, €.g.,
Refs. 11-16). The intuitive idea of propensity can be present-
ed as follows. Assume that the system under consideration is
a silver atom which just enters a Stern—Gerlach magnet, and
assume that there are two counters after the magnet. It is a
well-known empirical fact that the atom has a well-defined
probability (depending on its initial state and on the Stern—
Gerlach magnet) to localize itself in the “upper” or “lower”
counter. There are several possible objective interpretations
of this probability.'” First, the epistemic one, which claims
that the atom is always localized at some point, but that it is
objectively impossible to know where, as for a classical
Brownian particle. The de Broglie-Bohm model of quantum
mechanics adopts this interpretation.'®!® Next, the frequen-
cy interpretation claims that the probability refers to ensem-
bles of atoms. The statistical interpretation of quantum me-
chanics refers to this viewpoint.?’?! Finally, the propensity
interpretation, as we understand it, claims that each single
atom is spread in both beams simultaneously, and that the
interaction with the counters is such that the atom has a
physical propensity of localizing itself in one counter or the
other.

In order to measure this physical propensity one makes
statistics over many silver atoms in the same initial state, i.e.,
one measures a frequency. But the distinction between the
frequency and the propensity interpretation is sharp: in the
former the probability is a characteristic of an ensemble of
atoms, whereas in the latter the probability is a characteristic
of the interaction of a single atom and the counters. Only the
last interpretation takes seriously the fact that certain ex-
periments do not have a predetermined outcome.

Now, the counters could be replaced by different ones,
working on different physical principles. Experimentally,
the propensity of an atom does not depend on the measuring
apparatus. Hence the propensity is a modality of the proper-
ties and not of the way one tests them.

The above idea is formalized below and in the next sec-
tion. Bohr insisted that one should never speak of a system
without specifying the measurement apparatus. In our
framework this means that the propensities of properties
which cannot be simultaneously tested, do not necessarily
satisfy the law of classical probability.?> We propose thus the
following definition.

Definition: Let (X, .£,0) be aS.P.S. and w:

2 XX —[0,1]. wis a propensity function iff it satisfies the
following conditions:

(1) we,aq) =1 0le)<a Veel, ac.?,
2) wle,oln))=0&eln Ve npel,
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(3) a<b=Vees, wie,a)<wleb),
(4) b;Lb; Vi#j=12,3,..=Veec3,

w(e, Y b,) = Zw(fy bi)’

(5) w(e, b;) =0 Viel= w(e, Vb,)=0.
I

The two first conditions follow from the structure of
(2., £, o). Condition (3) is obvious. Condition (4) stems
from the idea that mutually orthogonal properties can be
tested simultaneously. Accordingly, the propensity function
w(e, ) restricted to such a set { b, } must satisfy the usual con-
ditions of a probability function. Condition (5) is imposed for
symmetry reasons.

Two examples of S.P.S. with propensity functions are
given by classical and quantum mechanics. In the latter ex-
ample X is the set of rays of a complex separable Hilbert
space &, with the usual orthogonality relation, .% is the
lattice of closed subspaces of %, and ¢ is the inclusion. For
this example Gleason’s theorem asserts that there exists one
and only one propensity function.’ In classical physics .# is
the power set of the set of states: .2 = P(X'), the orthogona-
lity relation on 2 is the trivial one: € L <€ # 7 and
ale) = {€}.” Accordingly, it follows from Conditions (1) and
(2) that there exists one and only one propensity function:

1 if eca
0 if eaal

We now come to a crucial remark. The fact that in the
classical case only the propensities “one” and “zero” occur
means nothing but the well-known fact that classical (i.e.,
Newtonian) mechanics is deterministic (or predeterministic,
since every experiment has a predetermined outcome). An
important consequence of this remark is that propensities
are generalizations of classical determinism, rather than
generalizations of classical probabilities.

Let us make clear that we do not consider statistical
mechanics here. Statistical mixture would be introduced
with the help of measure theory applied to the state space 3.

wle, a) = [

4. THE HYPOTHESES

In this section we formulate our basic assumptions.

Axioms: The S.P.S. (2, .Z, o) is such that

(1) o is one-to-one.

(2) There exists one and only one propensity function w.

(3) For all eeZ, b € .Z, there is a state 7 € 3 such that
o(n) < b and we,b ) = w(€,o(7)).

The central remark for motivating Axioms (1) and (2) is
that a statement about a property of an individual system can
be falsified if and only if the property is actual. Hence we
conclude that the state of a system at time ¢, must be com-
pletely and uniquely determined by the set of properties ac-
tual at that time ¢, [Axiom {1)]. This is the Jauch-Piron char-
acterization of states.”> However, we go further by assuming
that, in turn, each state determines completely and uniquely
the propensities of all the properties [Axiom (2)]. In other
words, Axioms (1) and (2) state that the set of Einstein’s ele-
ments of reality'° characterize the state of the system and the
propensity of each property.
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We now interpret Axiom (3). A test of property b is
called ideal iff the state 7 after the test has been carried out
and the positive result has been secured, depends only on the
initial state € and on the property b. Moreover the test is of
the first kind iff o(n) < .%* This implies that an ideal test of
the first kind of the property b is also a test of o{%). Axiom (3)
is thus physically motivated.

5. THE MAIN RESULTS

The following theorem is the main result of the present
article:

Theorem I: If the S.P.S. (X, ., o) satisfies Axioms (1)
and (2), then

(a) The property lattice .# is atomic, canonically ortho-
complemented (i.e., a 1 b<>a < b’) and weakly modular.

(b) o is a bijection between X and the atoms of .#.

(c) If furthermore Axiom (3) holds, and X contains at
least four mutually orthogonal states, then .¥ is isomorphic
to the direct union® over a set I" of Hilbertian space®’ lattices:

L=V P,

ael”

Let us recall that a Hilbertian space is almost, but not
precisely, a Hilbert space.?>~2% In fact, if the field over which
the Hilbertian space is defined is a finite extention of the real
numbers, then the Hilbertian spaces in Theorem I can be
replaced by Hilbert spaces.”®

Except for the above remark, Theorem I states that
there are essentially only two S.P.S. satisfying Axioms (1)-
(3), namely, the purely classical one (where all 5%, are of
dimension one) and the purely quantum one (where I" con-
tains only one point). The intermediary cases correspond to
quantum mechanics with—possible continuous—superse-
lection variables.

The proof of Theorem I is done in several steps.

Theorem II: If the S.P.S. (2, .Z, o) satisfies Axioms (1)
and (2), then . is atomistic (i.e., atomic and Vbe.?,
b=V {p|pisanatom and p <b }*) and o is a bijection
between 2 and the set of atoms of .Z".

Proof II: First we prove that V € € 2 of{€) is an atom. The
proof proceeds by contradiction. Assume that o{¢) is not an
atom for some state € € 3. Then, 3 b 5% Osuch that b < ole).
And 3 ¢ € I such that o{¢ ) < b. Let .2 X .¥—[0,1] be de-
fined by:

Aw(d, a) + (1 — A )wl(e, a)
win, a) if 7 # ¢
where A €]0,1]. It is easy to check that u is a propensity
function. But u(e,b ) # wle,b ) which contradicts Axiom 2.
Hence of€) is an atom, V €3, and .7 is atomic. It follows
from (1) that .# is in fact atomistic.

Finally we prove that o is surjective onto the atoms of
Z.Letp € .Z, then p is actual for some state € € 2 o€} < p.
But if p is an atom, then of€) = p.

i
umm=[ nr=e

a
Henceforth we identify the states €,7,4,--- with the
atoms and write €,7,8, €.7.
Theorem III: If the S.P.S. (£, .Z, o) satisfied Axioms
(1) and (2), then for alla, be &
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a L bo(VeeZ, wlea) = 1wle, b) =0).

Proof IIT: First assume that ¢ | b and wie, a) = 1. Then
e<a,and € L 3 V7 <b. Hence w(e, 7) =0 Yy <b. And
w(e, b} = Obecause .¥" is atomistic and w satisfies Condition
(5) of a propensity function.

Next we prove the converse. Let € <a, 7 < b. One has

wle, a)=1>wle, b) =0

Swle, 7) =0=¢€ L 7.

Corollary I'V: Under the same assumption

wle, a) =0&€ la.

Theorem V: Ifthe S.P.S. (X, .&, o) satisfies Axioms (1)
and (2), then for all age.Z, a # 1, there is a state eeZ such
thate L a.

Proof V: The proof proceeds by contradiction. Let
ce.Z,c # lbesuchthat w(e,c) #0VeeZ. ThenVb>c
one has w(e, b) # 0 V € € 2. Hence, Theorem III implies

Vb>c, b'=f{alalb} = {0}.
Let
A + (1 —A)wle, a)
wle, a) if not
where A€]0,1[. It is straightforward to verify that u is a pro-
pensity function. Butu(e, ¢) # wle, ¢) V edc, which contra-
dicts Axiom (2).

b

,u(e,a)={ if a>c]

|

Theorem VI: If the S.P.S. (Z,, .&, o) satisfies Axioms
(1)and (2), then .Z is orthocomplemented and weakly modu-
lar,and foralla,be .¥,a L b&a < b’ (where b’ is the ortho-
complement of b).

Proof VI: First we prove that .¢ is orthocomplemented.
Put

a=V{b|bla}.
By Theorem III and Condition (5) of the propensity function
w, one gets @’ 1 a. By Theorem Vonehasa V a’ = 1. In-
deed, if not, there would be a state e such thate La Va',
hence

€lae<a'=e<aVa,
which is a contradiction. Accordingly one has
Veel, ae.?,

and the map ': a—a’ is an orthocomplementation.
Next, let a <. One has

w(e, a) = 1=wle, b') = 1=2uw(e, b) = 0.

wle, a’)=1— wle, a)

Hence a 1 b. The converse is immediate.

Finally . is weakly modular. Indeed, it is known that
every orthocomplemented lattice which admits a propensity
function is weakly modular.*® For completeness we repeat
the proof: Let b < ¢, we want to prove that cA(c'V b)<b.
Lete<cA(c'V b), one has

bec=blc
SwE b)=wle, bV c)—uwlc)=1—-0=1

=€<b.
|
It should be noticed that a property b is nonactual (i.e.,
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potential) iff w(e,b ) # 1, but its orthocomplement is actual
iff w(e,b ) = 0. Hence, b nonactual does not imply &' actual.
Theorem VII: let (X, .£, o) be a S.P.S. satisfying Axi-
oms (1) and (2). . satisfies the covering law if and only if the
third axiom holds.
Proof VII: We first prove the “only if”” part. For all
€eel, ae.? one has:

wle, a) =1 —wle, a’) — wle, a\€')
=1—wle a' Vi{iaA€))
=w(e, aN(eVa')).

a A (eVa') is the Sasaki projection,* which corresponds to
the usual projection postulate in the case of Hilbert space
quantum mechanics. It is an atom, hence a state, whenever
& satisfies the covering law.

We now prove the “if”’ part of the theorem. Let e€3,
ae.?, wie, a) # 0. And let 7 € X, 5 < a be such that
w(e, a) = w(e, n). The existence of such a state 7 is the con-
tent of Axiom (3). We want to prove that n = a A(eVa').
Since .Z is orthomodular, one has § = a A (n V @’), it is thus
sufficient to prove that 7 Va' = e Va'. This is done in three
steps:

(a)e<mVa' Indeed, n<a

=a=nV(y'Aa)
=wl(e, a) = wle, ) + w(e, 7' A a)
Sw(e, 7'\ a)=0

—e<nV a'.
(b) nV a’' covers a’: Let be.¥ be such that

ad <bgnVa'.
)

Since .7 is orthomodular, thereisace ¥, ¢ # 0,a' L ¢

such that ¢ V a’ = b. Accordingly ¢ <a and ¢

=aAl@Vc)<aA(pVa')=1rn Hencec=nandb=nVda'
(c)mVa' = eVa' Indeed, one has

a :EVG' <nVa'
]

Theorem VIII: If the S.P.S. (X, .7, o) satisfies Axioms
(1) and (2) and if .& is irreducible (i.e., £ is not the direct
union of two lattices® and .¥ # {0,1}, then .Z contains at
least three orthogonal atoms.

Proof VIII: Let ee.¥ beanatom. . # {0,1}=¢" # 0.
If ¢ is not an atom, then € contains at least two orthogonal
atoms. We thus only have to prove that €' is not an atom. Let

p(m a)=win,a) ifn#e
1 if e<a
ple,a)=10 if ela ,
Awle, a) + (1 — 4 )w(d, a) if not

where A€]0,1[ and ¢ # € is a fixed state. If € would be an
atom, one would have

E<aia’ <ea=¢€eora=1,
€elaca<esa=¢€ ora=0,

and it would be straightforward to verify that u is a propen-
sity function, hence ;2 = w. In particular u(e, ¢ ) = wie, ¢ ).
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But this is possible only if € 1 ¢, which implies that

p=¢ and £ ={0,¢ ¢, 1].
But then . would be reducible.

]

The proof of Theorem I is now a direct consequence of
the above theorems and of Piron’s representation theorem.®

To conclude this section, let us remark that Axiom (3)is
used only to prove the covering law. We conjecture that Axi-
om (3) is not independent of Axioms (1) and (2). Other open
problems are the following. Does a nonseparable Hilbert
space admit more than one countably additive propensity
function?*!** Do the Axioms (1)~(3) imply that
wle, 7) = w(n, €) for all states €, n? And
wle, a N\ b) = wle, a)wla A (eV a'),b ) for all compatible (see
next section) properties a and b ? Do Axioms (1) and (2) imply
that any irreducible .# is necessarily infinite?*?

The problem of the most general dynamics compatible
with our kinematics is considered in Refs. 34 and 35.

6. COMPATIBLE PROPERTIES AND CLASSICAL
SYSTEMS

In this section we characterize compatible properties
and classical systems in terms of the propensity function w.
In this section (2, .7, o) denotes a S.P.S. satisfying Axioms
(1) and (2). First, we recall some definitions.*®

Definitions: (1) Leta,be.” . a and b are compatible prop-
ertiesiffa = (@A b) V (a Ab'). Weusethefollowing notation
a<b. (2) A property ¢ is classical iff c«»a for allae ¥ . (3) £
is classical iff all properties are classical.

It can be shown that this compatibility relation is sym-
metric (see, e.g., Ref. 6). In the case of Hilbert space lattices
compatibility is equivalent with the usual concept of com-
muting operators. Different lattice characterizations of
compatible properties and classical lattices are given, for in-
stance, in Ref. 6. In particular,

(i) acbSaVO)AL <a b, (2)

(ii) . is classical < .7 is the power set of the set of
states: & = P(Z).

For completeness we recall without proof the following
theorem®:

Theorem: (1) The set Z of all classical properties of .Z is
a classical atomic orthomodular sublattice of .%.

(2) .Z is the direct union of irreducible atomic orthomo-
dular lattices .%

L =V.Z,,

acl”

where I' is the set of atoms of Z.
(3) b= V (bAa) for all be.?,
ael”

(4) e=€eNAa for a unique ael.

Corollary IX: For all €2, be ¥ one has
wle, b) = w(e, b A\ a), where a€l is the unique classical atom
such that e Aa = €. The proof is immediate, since
alp Va£pel’

The following theorems are the main results of this sec-
tion.
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Theorem X: For all a¢,be.¥ one has a<b
&VeeZ, wle,aNb)+wle, aVb)=wle a) + wle, b).
Theorem XI.: ¢ is a classical property
& VeeZ, wle )€ {0, 1}.
Corollary XII: .¥ is classical < the propensity function
is dispersion free.*
Proof X: Assume that a<»b. One has

wle,aVe)+wealbd)
=wle@aNb’)Vb)+wle aAb)
=wle,aNb’)+wle, b) + wle, aNb)
= wl(e, a) + wle, b).

Conversely, assume that the right-hand side of

Theorem X holds. We want to prove that(a V b)A b’

<a A b'[SeeEq.(2)]. Lete<(aVb)Ab', thenw(e, b)=0
and w(e, a) = wle, aV b) + wle, aAb) = 1. Accordingly
€lbande<a, hencee<aAd’ ]

Proof XI: Assume that c is a classical property, and let
€cX. One has c<>€. But € is an atom, hence € < ¢ or €lc.

Conversely, assume that w(e, ¢} € {0, 1} VeeZ, and let
be.¥ . Wewanttoprovethat(c Vb )AD " <cAb’'[SeeEq.(2)].
Lete<(cVb)Ab' . If elc, then elc V b which contradicts
€<cVb. Consequently e <c,and e <cAb'.

|
Corollary XII follows immediately from Theorem XI. Note
that the converse part of Corollary XII is the Jauch~Piron
impossibility theorem of noncontextual hidden variables.**-’

Corollary XIII: .Z is classical <> for all €€, ae.?,
€<a,onehasw(e,aNb)=wle, b) Ybe.Z.

The proof is immediate. Notice the similarity between
the right-hand side of Corollary XIII and the classical condi-
tional probabilities. Indeed the former states that the pro-
pensity of any property b in a state such that the property a is
actual, is equal to the propensity of a A b.

7. CONCLUSION

The hypothesis that, at any time, the state of the system
and the propensities of all properties are completely and
uniquely determined by the set of properties actual at that
time implies that the states are in one-to-one correspondence
with the atoms of the property lattice .Z°. Moreover the lat-
ter is canonically orthocomplemented and weakly modular.
Let us emphasize that the hypothesis assumes that the sys-
tem is entirely determined by the set of Einstein’s elements of
reality,'® or in other words, that the nondeterministic aspect
of the system is entirely determined by its deterministic as-
pect.

Assuming furthermore that for each state, any property
can be ideally tested, implies that . satisfies the covering
law, whence .% is isomorphic to the direct union of Hilber-
tian space lattices. In this way we recover the usual classical
and quantum mechanics (possible with superselection varia-
bles) in a common framework. Let us note that the “wave
packet reduction” is demonstrated to occur for ideal first-
kind tests. It turns out that a system is classical iff the pro-
pensity function is dispersion free, i.e., iff only the propensity
zero and one occur. Accordingly, the quantum propensities
enlarge the concept of classical determinism.
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Let us emphasize that our approach is fundamentally
concerned with individual systems, which we describe simi-
larly in quantum as in classical physics. In this article we did
not consider statistical mechanics. Actually, the description
of statistical mixtures of states, or of incomplete knowledge
of the state, requires the use of classical probability theory
(i.e., measure theory) applied to the state space 2.
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Note added in proof: Since we submitted this article we
noticed that the first axiom is unnecessary. Indeed, a proof
similar to the ones of Theorems II and V shows that the
second axiom implies that for all states €, 7 € 2, if
ole) = ofn), then wle, a) = w(y, a) Vae.¥. Accordingly, all
the results concerning the property lattice . hold also with-
out Axiom (1). We also noticed that nonseparable Hilbert
spaces admit exactly one propensity function [combine con-
dition (5) of a propensity function with Ref. 31].
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An upper bound on the vacuum-to-vacuum amplitude of the Schwinger model with massive

fermions is obtained.

PACS numbers: 03.70. + k, 11.15.Bt

1. INTRODUCTION

A question of interest since the early 1950’s has been the
following: To what extent does renormalized perturbation
theory exhaust the information content of a relativistic
quantum field theory? Stated differently, how much infor-
mation is lost in the Feynman series? For the ¢ * theory in
two' and three® dimensions (@ 3 ;) and the Yukawa interac-
tion in two dimensions (¥,)** the answer is that none is lost
in the series for their Euclidean Green’s functions (or
Schwinger functions), and, for ¢ 3, none is lost as well in the
series for its physical mass and two-body S-matrix.’ These
theories have sufficient analyticity in the coupling constant
and sufficiently slow growth in large orders to allow the
unique recovery of these quantities by Borel summation.

There are examples where this is not the case. Massless
super-renormalizable field theories are known to contain
nonanalytic terms in the coupling constant that forbid ex-
pansions in its powers.® In QCD in four dimensions with
massless quarks, ‘t Hooft” has argued that the correlation
function G ( p?) of the color-singlet operator gg cannot be
uniquely summed if it has the usually assumed analyticity
properties in the p>-plane with multiparticle singularities ex-
tending to infinity along the cut. Field theories that have a
nontrivial ultraviolet fixed point may also impose restric-
tions on their unique summability.®

Presumably field theories exist whose associated Feyn-
man series are not even asymptotic. It is straightforward to
construct physically reasonable potentials in quantum me-
chanics whose ground-state energies have associated Ray-
leigh-Schrodinger series that are not asymptotic, even
though each term is well defined.’ These potentials have the
general form

Vix)= Z 8"V, (x),

where the V, are polynomials in x, and g is the coupling
constant. Since this is just how the nonderivative terms in the
Lagrangian of a large class of boson field theories would look
after Wick ordering and renormalization, it is not unthink-
able that some of them have nonasymptotic Feynman series.
In this connection we note the preliminary result of Froh-
lich'® that there is no family of ¢ * theories in four dimensions
to which renormalized perturbation theory is asymptotic.
It can be generally said that the faster the coefficients of
a Feynman series associated with a field theory grow with
order, the more analyticity is required about the origin of the
complex coupling constant plane to uniquely reconstruct the
quantity of interest from the series. Typically, if the expan-
sion coefficients grow like (n!)}, analyticity in a region about
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the origin with opening angle A7/2 is required.® Therefore,
the large-order behavior of a field theory, by itself, can only
be an indication of the odds favoring its unique summability.
There are simple examples illustrating the folly of inferring
anything more than this."’

Table I summarizes current knowledge of the large-or-
der growth of several field theories. To facilitate compari-
son, the Feynman series for the Euclidean vacuum-to-vacu-
um amplitude Z (hereafter called the partition function) has
been singled out in two"'*!” and three dimensions>'*-'%; in
four dimensions'® the Schwinger functions in order n, de-
noted by S, are the obvious quantities to compare. The
quantity X is a sufficiently large n-independent constant.
The result for two-dimensional quantum electrodynamics
with massive electrons (hereafter called QED,) will be de-
rived here. A related model, the massive Thirring—
Schwinger model,'® is also sometimes referred to as QED,.
The charge-0 sector of this model and the massive sine-Gor-
don theory are equivalent. The authors of Ref. 19 showed
that the Feynman series in the coupling constant for the
Schwinger functions of the latter theory converge for suffi-
ciently large electric charge.

The decreasing rate of growth of the expansion coeffi-
cients as the physically relevant field theories are ap-
proached in two and three dimensions is striking. For ¢ 3, all
graphsin a fixed order have the same relative sign, so that the
growth of the Z’s is due to the growth in the number of
graphs. With the addition of fermions, graphs with an even
or odd number of fermion loops differ by an overall sign that
is presumably responsible for the sharply reduced upper
bound on the Z,’s for the Y, theory. A (non-) Abelian local
gauge symmetry will introduce correlations among graphs
in a fixed order, and this may contribute to a further slow
down in the growth of the Z,’s. This is illustrated by the
Schwinger model (QED, with massless electrons) whose par-
tition function actually has a convergent power-series ex-
pansion.'” It will be indicated below why it is expected that
the bound on the Z,’s in QED, can be improved to |Z,, |
<K ", as for the Schwinger model.

A further indication of the trend toward better behaved
power-series expansions with increasing symmetry is given
by conformal covariant QED. This is QED, in a special
gauge with massless electrons and no electron loop sub-
graphs. The conformal electron propagator turns out to be
analytic about the origin of the coupling constant plane.?

In four dimensions the subtractions due to renormaliza-
tion may further ameliorate the growth in large orders. The
remarkable bounds of de Calan and Rivasseau'® on the
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TABLE I. Upper bounds on the Euclidean vacuum-to-vacuum amplitude Z,, and the Schwinger functions.S, inorder n. The bounds on Z,, in the last column
are for QED with massless and massive electrons. The bound for Y, is also claimed in footnote 32 of Ref. 3. The S, ’sfor ¢ § , and Y, ; have the same dominant

bounds as the Z,’s.

Dimension ¢* Yukawa QCD,SU(2), X U(1), QED
K, m= .
2 L|Z,|<K"n! (Refs. 1,12-14) 1Z,|<(K logn)" (Refs. 15, 16) |Z,|< m = 0(Ref.17)
(Klogn)", m>0
3 |Z, |<K" n! (Refs. 2,13,14) |Z, |<K™ (n)'/* (Ref. 15) |1Z,]<?
4 |S, |<K" n! (Ref. 18) IS, 1<? 1S, 1<?

Schwinger functions of ¢ § in order n are encouraging.

As Table I indicates, present knowledge of the large-
order behavior of (non-) Abelian gauge field theories that
include fermions is deficient. For the simplest case, QED,
progress in any number of dimensions has been barred by a
lack of knowledge of the order of growth of the renormalized
fermion determinant, det, ., (1 — eSA ), obtained by integrat-
ing over the fermion degrees of freedom. Here 4, is the vec-
tor potential, S is the free electron propagator, and e is the
coupling constant. In fact, det,, is just exp(single fermion
loops—counter terms). Ideally one would like to prove that
det,., is an entire function of e and, having established this,
determine its order and type, assuming that A, is a Gaussian
random field. The desirability of this will become evident in
Sec. 3. For the Schwinger model, the solution is well known:
det,,, is Gaussian in 4,,."” This simple result follows from
the fact that (0| j,, (x,)... j,.(x,)|0) = O for n>4 and zero
electron mass.'”?! For nonzero electron mass this is no long-
er true, and the growth properties of det,.,, have to be rees-
tablished.

Ito* has examined this case and has found that det,,, is
Gaussian dominated for real 4, eL,nL, (g > 2) in QED,.
Since his upper bound is not almost everywhere finite with
respect to the functional measure assocated with 4 " it can-
not be used here to study the large-order behavior of QED,.
A new bound is obtained in Sec. 3.

For QED, some results on the order of growth of det,,,
that neglect charge renormalization effects are known for
special field configurations and massless electrons.?** It
should be stated that charge renormalization is absent by
definition in the model studied in Ref. 23. For QCD, and
QCD, it is known that massive fermions are essential for a
satisfactory definition of det,., .>> Nothing is yet known
about their orders of growth.

It is apparent from the foregoing that knowledge of the
large-order behavior of QED, would be desirable before at-
tacking other (non-) Abelian gauge field theories. Attention
is focused on its gauge-invariant sectors as these are the phy-
sically relevant ones, and because the infrared divergences
present in its charged sectors are absent. The large-order
behavior of the partition function is singled out because it is
the simplest gauge-invariant quantity in QED,. On the basis
of previous studies cited in Table I, e.g., Ref. 3, the
Schwinger functions in the charge-0 sector are expected to
have the same dominant large-order behavior.

The final result, (4.45), is

|Z,,|<[C In(mn/u)]*", (1.1)

where m is the bare electron mass, u( < m) is an infrared
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cutoff, and C is a sufficiently large constant. The presence of
p in (1.1} is a result of the upper bound on det,,,, in terms of
trace ideal norms obtained in Sec. 3. Such norms ruin gauge
invariance by putting fermion propagators and vertices in
the wrong order in closed loops. The possibility remains that
a better bound can be obtained that will permit the limit

1 = 0tobe taken. Referring to(1.1), it may then happen that
when In(m/u) drops out, so will the In » term, yielding

|Z,, | <C*" as for the Schwinger model.

2. DEFINITION OF THE PARTITION FUNCTION

Our starting point is the following expression for the
partition function obtained by formally integrating out the
fermions in the vacuum-to-vacuum amplitude:

ZiA)= [ dutd, et (1 — 3K), 2.1)

where det,,, denotes a suitably renormalized Fredholm de-
terminant that will be defined below. The integral operator
Kis
K=(P*+m*)!"*S (x — yM,(yig(WNP? + m?)~ "7,
(2.2)
where iP, =4,

S = d 2P eipx m— ﬁ
(2 77.)2 p2 + m2
is the two-point Schwinger function for the electron with
bare mass m > 0, geC & is a space-time cutoff, and
A, =A*h,. For4 €5, the space of tempered distribu-
tions, then A, C = if the ultraviolet cutoff function 4 4€C .
Our choice for 4, is

(2.3)

d 2 ipx],
hab)= [ 2L e (p), (2.4
with fz,,(p)ng;}AzA(p) = 1for p?<A ?; I;A(p) =0 for
P*>(A + m)? and A > 0. The choice of A + m as the cutoff
point is arbitrary.

The Gaussian measure du for 4, is chosen to have
mean zero and covariance

fdp A, (XM, (¥)= DA x —y), (2.5)
whose Fourier transform is
~ k. k h2(k)
A _— v A
Dak) = (zzw - k2“+,u2) e (2.6)

where 2% > 0 is an infrared cutoff.
The electric charge is denoted by A€C to avoid confu-
sion with the exponential function.
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Our conventions for the y matrices are

{7#’7,"} = _26;“/ (/“t=091)1

yu = — yl_u
and, naturally p = pyy, + p17:-

A word on the choice of X in (2.2): We work on the
Hilbert space L %(R?,d %x;C?) of two-component square-inte-
grable functions on R% The K in (2.2) differs from SAg on
L 3R%\p? + m? d *p,C?). But the two are equivalent given
the natural unitary equivalence of L %(R?, 4 %x) and
L }R?,\/p? + m? d*p). Our choice of Hilbert space and X is
motivated with the view of taking the limit A = o at theend
of our calculation.

We now turn to the definition of the renormalized de-
terminant, det,.,. The operator X is a compact operator in
the traceideal 7', , ., €>0. Thisis an easy consequence of a
proposition stated by Seiler and Simon.?¢ The trace ideal
¢ ,(1<n < o} is defined for compact operators 4 with
|4 1|7=Tr(4 *4 }** < 0. Then the determinant

det;(1 — AK), defined by
dety(1 — AK ) =det[(1 — AK )X+ K] - (2.7

is an entire function of A of at most order 3:

dety(1 —AK) = [ [(1 —aa)e™ ], (2.9)
i=1
where A,, ...are the eigenvalues of K€% ,.%’

The graph in Fig. lais not present in the loop expansion
of {2.7). It is only conditionally convergent and may or may
not contain a current nonconserving piece, depending on
how one regulates. Its offspring obtained by integrating over
A,,, Fig. 1b, has an ultraviolet logarithmic divergence that
must be subtracted out. Therefore, define the Wick-ordered
quantity

TrK = J d’xd’y glxp,.x — y)g( )

X [Auat,a(y) = Do x — )], (2.9)
where p,,, is the transverse piece of
tr(S (x — y)y,.S(y — x)y, ), whose Fourier transform is

1 9.9 4m?
p;w(q) 17'( uv qz q(42 + 4m2)1/2
Xarctanh( —————(q2 +qmz)1/2)] . (2.10)

Summation is implied over repeated polarization indices.
We can now define

det,. (1 — AK)=e~*72TKdet,(1 — AK),  (2.11)

which is depicted graphically in Fig. 2. All loops with an odd
number of external photon lines vanish (C-invariance) except
for the tadpole graph in Fig. 1c which we dropped alto-

gether. If det,, is expanded in a power series in 4, inserted in

(O & ~O

(a) (b) (c)
FIG. 1.
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FIG. 2.

(2.1), integrated, and the limit A = o taken term by term in
the series

ZA)= 3 ZuAR™

the renormalized perturbation expansion for the partition
function is obtained. Moreover, if & %(0) is interpreted as a
large but finite space-time volame—which will not be done
here—and the volume cutoff g is replaced by unity, then the
extra powers of momentum in the numerators of graphs ob-
tained by gauge invariance allow the removal of the infrared
cutoff uz.
To conclude this section note that

1 d2n
d det
2] f H ©

dﬂ' 2n ren
3. DETERMINANT INEQUALITIES

We proceed to prove the following result:
Theorem 3.1:

(2.12)

1Z2a(4)I<

(2.13)

A=0

2n
— det,,

n

e
2n) | d
1

4e " n n n
<2 (1 + ez i
n

K 2.|n
x|, + TR, 3.1
forn = 1,2, ... ,0 <€<1 and a, B sufficiently large. The oper-
ator K has been split into low and high momentum parts

A=0

K=L+H, (3.2)
where
L = (PZ + m2)1/4S </‘Ag(P2 + m2)—l/4’ (33)
d’p i _m—p
S <(x =J e’ , (3.4)
) bl<em 27f  pP4+m®

and £>0. As in the case of K, a proposition of Seiler and

Simon?® can be used to show that He %, , ., 0 <€ <2. Using

the same procedure as Renouard® one may easily show that

Le% , for ¢ > 0. Therefore,”® HLe% ,.We will prove

Theorem 3.1 by first establishing some relevant lemmas.
Lemma 3.2: Let

He?,, ., €>0, Le?,.
Then
dety(1 + L + H) =det,(1 + H)det(l + L)
Xdet(l —(1+ L) 1+ H)"'HL)

Xexp(—TrL +3TrL?+ Tr (HL)).
(3.5)

Proof: 1t is sufficient to give the proof for L,He% , since
dets(1 + A4 ) is a continuous function of 4 on ¥, 1<p<3.%°
Then
dety(1 + L + H) = det,(1 + H)det(l + L )det(l + D)

Xexp( —TrL + 3 Tr L? + Tr(HL)),
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where
D= —(14+L)" Y1+ H) 'HL,
since
1+L+H=(14+H)1+L)1+D).
Lemma 3.3: Tr L =0.
Proof: Since Le% ;, then®

TrL =J-d2xd2ydzztr[D_1/4(x—y)S<(y—z)

(3.6)

J

Lemma 3.4: For He% , , ., €>0, Le?,,
|det;(1 + H )det(1 + L )det(1 — (1 + L)1 +H) 'HL)]|

< S lldety(1 + H)A (1 + H)~| | det(1 + LA (1 + L)~"|| | HL |f3/nt

X (A 48)(2)D1 4z — X)),

where
2 ipx
D=2 P_t . (3.7)
@27 (p* + m?f
Hence
P 2 I
Tr L = 24, ,(0) iﬂz L —
lpl<¢m (2m)° p*+m
=0. (3.8)
(3.9)

Proof: By the expansion det(1 + D) = 22_, Tr(A *(D)), with D given by (3.6), and the fact that A "(4B) = A "(4 }A "(B),

we get
dets(1 + H)det(1 + L )det(1 + D)

= | 3 (= 1ydety(1 + H)det(1 + L)Tr(A"(1 + L)~'A"(1 + H)"'A"(HL )

< i lldets(1 + H)A (1 + H) || [ldet(1 + L)A (1 + L)'|| |4 (HL )],

n=0

which gives (3.9) using®’ ||A "(HL )||,<||HL ||} /n.
Lemma 3.5: For Le% , and Tr L =0,

l[det(1 + L)A (1 + L)"!|?<eme" . (3.10)

Proof: For Le% | we have by a result of Simon,?’
ldet(1 +L)A ™1+ L)~'?
<e"exp2 Re(Tr L) + ||L |5),

from which (3.10) follows with Tr L = 0.
Lemma 3.6: For He? , , ., 0<€<],

||det;(1 + H)A (1 + H)™'|><C exp(I" [[H |13 12),
(3.11)

for C and I" sufficiently large.
Proof: 1t is sufficient to give the proof for He% |. Then

lldets(1 + H)A (1 + H)™||?
= [|det(1 4- 0 )4 "(1 4 0g) ™|
Xexp[ — 2 Re(Tr H) + Re(Tr H?)],

whereOy = H+ H* + H*H. Let — 1<a,<a,< - be the
eigenvalues of Oy and A, the eigenvalues of H with the

B: =2Re A, + |4,;|* ordered so that — 1<B,<B,< . Us-
ing det(1 + H)=II2 (1 + A4,) it follows that

lldet(1 4 Og)A "(1 + 0,) ||

o0

= (1+a)
i=n+1
= I —— [[1+8) (3.12)
=1 1+ a; ith
Since the first equality is finite we conclude that the multi-
plicities of the eigenvalues a; with ¢, = — 1 and of the
eigenvalues A; with 8, = — 1 are equal. Let k>0 denote this

multiplicity. The left-hand side of (3.12) is nonvanishing
when n>k and is equal to

2269 J. Math. Phys., Vol. 25, No. 7, July 1984

1 —— I 1+8)

i=kw1 L+ a; =k

Where -1 <Ay 41 <ak+2<"' s — 1 <Ek+ 1 <Bk+2<". N
Choose a constant C (> 1) sufficiently large so that

1+a,>(1+8)/C, izk+ 1.
Then

ldet(1 + 0)A "(1 + 0)I<C"~* [ (1+B;

i=n+1

and

lldets(1 + H)A "(1 + H)~'||?

<C" ]

i=n+1

xexp(—2Re A, + Red})]

[(1+2Red; + |4,

xexp| 3° (Rei?—2Re/1,.)].

i=1

(3.13)

We note that there exists a constant I"; such that
(1+2Red + |4 ]%exp(—2Red +Red?)
<exp(l"|4 |**9),

where 0 < €<1. Thisis obviousfor |4 | > § forany &, while for
|4 | small the left-hand side is 1 + O (|4 |*). Then

0

II [(1+2Red, + |4,))exp(—2Re4, + Rei})]

i=n+1
<exp(1“1 APt ) : (3.14)
i=n+41
Finally, using the inequality
exp(Re A2 —2Re 1 )<2 exp(lL|4 |79, (3.15)

for € >0 and I', sufficiently large we get from (3.13)}3.15)
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|| det (1 + H)A (1 + H)~'|?

S OWPrAr, 3 e

i=n+1 i=1

g2tCc” exp(F |

ok exp( S )

i=1
<2"C expll" |H [312),
where 0 < <1, I' = max(I",,I,). For the last inequality we
used?’ 22 |4, (H )| °<||H ||} ¢, which proves the lemma.

i=1

Combining (3.5) and (3.8)—3.11) we obtain
| dety(1 + L + H )|<|exp(} Tr L* + Tr(HL))|

xexp((I" /2| H (31 + 4L 13)

X S |[HL |[7(Cey"/n!

n=0

<exp(|[L |3 + (1 +JCe)|HL ||, + (L 72)|H [33¢).
(3.16)

By a Cauchy estimate and the definition (2.11) we get
from(3.16)

__1.._ _d__?L de
(2n) | da? 2=0

<sup|dety(1 — AK Je A 72 Tk /|4 27
']

tren

<expla|d >+ b AP —2nlnji|), (3.17)
where

A=|1]€",

a=IIL I3 +(1+COHL [, +3|TeK %] (3.18)

b=(I2)|H|Te (3.19)

Let M denote the right-hand side of (3.17). Then for n >0,
inf M<(ae/n + e((2 + €)b /2n)*? + ). (3.20)
Proof:Sinced M /d |A |* > 0, M has only one minimum

at |4 | = ry, where 2ar3 + (2 + €)bry>* € — 2n = 0. Thus

M (ro)<(e/r2)". Since r,°<(2n/b (2 + €))* * 9 then

1 2 bry°
1_a Q+epry
n o n 2n
2/(2 + ¢€)
SRCETL A
n 2n

for which (3.20) follows.
Finally, since @ in (3.18) and (3.20) is composed of three

terms, we apply the inequality
(@ + @, + a3 + a)"'<4" Y@} + a3 + a5 +a3), (3.21)
for ay, ... ,a4>»0, n = 1,2, ...to (3.20). From (3.17)~(3.21) we
get
1 d 2n

@nt | a1
<LV B+ 0 + VoL
+ ((2 + 6)1"/4)271/(2 + e)nsn/(Z + ejllH ”%n+ .
+ |TriK %|"/2%],

from which Theorem 3.1 follows.

tren

A=0
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4. BOUNDS

We now proceed to place bounds on the integrals aris-
ing from the application of Theorem 3.1 to (2.13). Our main
tool in this section is the hypercontractive inequality.®’ It
implies that if Qis a polynomial in 4, , of degree n and p>1
then

P
[auterr<ip - ([ auier). @.1)
a1 L)
By the hypercontractive inequality
n/2
[t <t —1r( [aue )™ 2)

for n>2. Since Le¥ , we get from (3.3)

IL1E =2 [ d% a5t .80,

X(x = yID 55 (x — y)d, 48 ¥) (4.3)
where D, , is given by (3.7) and
d 2p eipx
Dsix)= f _— (4.4)
l<me (2) ( p* + m?)

From (4.3)

f dullL It = 4fd2x....d 2y, gk, gl yaID /2l — 1)

XD 55 (%1 = y1)Dy5lx; — p5)
XD 5, (x, _yZ)[D;/:y(xl —}’1)Dcv(x2 —),)

+ D;/:v(xl - xz)D;/:v(Jh — )+ (xz‘“’h)]-
{4.5)

The topologies of the Feynman diagrams corresponding to
the right-hand side of (4.5) are depicted in Fig. 3. Since these
are finite by power counting in the limit A = oo we get from
(4.2) and (4.5)

tim [ dullL J3r<n — 1703 + 1 46
where
2 [ A
11 = 6 H dzki lg(k1)|2D1/2(k1 +k2+k3)
(277') i=1
XD {5, (ka)D,,, (k3), (4.7)
8 i et omrr A
1= Lo [ 1T akaikik gt~ & — &, — k)
(27) i=1
XD 5, (ka)D 5, es)Dy ol + ey + k)
Xﬁl/Z(kS + ke — k) pr(ke)ﬁ;w(kx + ks + k), (4.8)
and
Dy =— D; =—f
FIG. 3.
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~ 8 k,/tk*+u®
D(k)= nv ;Lv( +#)

uv k 2 +,l.l.2
Referring to the Appendix, (A2), (A3), and (AS) give
25/2

e fd 2% |tk )2 VR T F 2 [2172[111 (’"g)]
]
i

(4.9)

- (4.10)

while (A6), (A7), and (A9) give
80

—_—— d 2k, |k, )gk,)8k

2 :l:I1 |8tk 18k 2)8(KS)

X &k, + ky + k3)| [y + ks + 2 1(k T + m?)!’?

272 2
X (k3 +m2)”2[(ln(4 \ /mf +1 )+i) +i],
7’ 2 4

(4.11)
for m&>u. From (4.6), (4.10), and (4.11) it is clear that for all
m¢ > u an n- and §-independent constant C, can be found
such that

|5|<

tim [ dullL < 07, Infmg /1™ @12
A— oo

for n>2.
4.2 (au||HLYG
By the hypercontractive inequality
n/2
[ autae i <tn— ([ ez 1)

where n>2 and
HL = [(P2+m2)1/4s>AAg(P2+m2)~—1/4~6]
X[(P2+m2)1/4+cSS<AAg(P2+m2)—1/4]
EA>B<’
with § >0 and

2
S>(x)=J- dpzeip" T_t,z.
lpl > m¢ {277) ptm

From the definitions of § < and .S > it is easy to show that
A, ,B_€%, Hence

[tz <t = ([ auia. s, 8) @16

where

4. ”% =2 fd x dzJ’(A,‘,Ag)(xlDl/2+25(x -

(4.13)

(4.14)

(4.15)

XD 7% — YA, 18) ¥ (4.17)
IB_ |2 =2 fd % d %A, ,)6)Dy 2l — )
XD 5% — IAurg) ) (4.18)
and
d 2p eipx
Drix)= . 4.19
) -Il‘pl >mé (277)2 (P2 + m2)z ( )

Thus
Jaulla. 215 12
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= 4fd X yd’y, 8(x1).-8(¥2)D, 3 1 25(x1 — yy)

XD 7%y = y1)D1jolX2 = ¥2)D 555 _25(x5 — 2)
X [D (1 —y)D 7, (x, — )
+ D,uv(xl —x)D yv( Yi—=y)+ (xz“’}’2)]- (4.20)

The topologies of the Feynman diagrams corresponding to
the right-hand side of (4.20) are the same as in Fig. 3 with
appropriate D, -functions. Again, since these are finite by
power counting in the limit A = « we get from (4.16) and
(4.20)

lim [ du|HL <t — UL+ L7 21)

where

3=

2 (¢ L
(2 )6 H d?k; |8k )|?D, 5 4 25k, + Ky + k3)
i=1

D3, (k)D s (K3)s (4.22)

I, =

2
(27F H d?k; Ig(kl)IZDI/Z (ky + ks + k3)
i=1

XD 52 _25ka)D, (k) (4.23)

and

= i ),zf I1 4kttt
( k - k2 - k3)‘D 1/2 (k4)D 1/2 — 25(k5)
X 1/2+26(k1+k4+k6)

XDy olks + ke — k)D,, (ke)D,, (k; + ks + kq).
(4.24)

Referring to the Appendix, (A10), (A11), and (A13) give
I3< [5(m§ )wml +4627/2 — 2574] —1

X fdzk Ié(k)|2(k2 + m2)1/2+2¢5

X[ = 1)+ ]

provided 0 < § <}, while (A14), (A15), and (A17) give, with
the same restriction on &,

I< "’;i)z Jde |8tk )| V& Z + m*

2;2
[ 1) ]
7
Finally, (A18), (A19}, and (A23) give
4°160
i s | T a7tk tkaetes)
X &k, +k2+k Wy + k3) + p?]
X(k% +m2)1/2+28(k§ +m2)1/2

x[ 4/’:32’;’2 r(%— 25)1"(45) + %ﬁﬂ] . (4.27)

(4.25)

(4.26)

1< —m

with0<d <L

From (4.21) and (4.25)(4.27) it is possible to find an n-
and {-independent constant C, such that for all £ > 0 and
n>2
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@ (B @D

E/(4+25

FIG. 4.

{4.28)

2
lim fdynHL lik[nc2 ln( m f
A—rco )73

2 n
+ 1)] .
4. 3fd'u|lH| 2+e€

Using the general interpolation theorem for the spaces
% , as stated by Seiler and Simon®® we get

1H 2+ e <C5llHis 4 30718 420 1% V2

>< ”H16 + 5€)/(8 + 4¢) “26/(2 * E' (4‘29)
where 0 < C5<1,
H, =(P?+ m?)"S > A ,g(P* + m?)~ /%, (4.30)
and
2 —
S>— 9D grm_m—P (4.31)
1P| >me (277) (p* + m?F

From (4.29) and Holder’s inequality we obtain

2—¢€r2
jdﬂ”H 3% < C:;n(Jd/-‘"H(-z a1 29 12T E’)

€/2

X (J-d,u 1 H 6 + serrs + 4e lla®* 6)) )

whereit is recalled that 0 < e< 1. Applying the hypercontrac-
tive inequality to the two integrals on the right-hand side of
(4.32) gives, for n>2 + ¢,

1 = m 2, 1T 4%

|keq| > ”'§ N
tr[zji\g(kl koA 8k, —

Jaung g <cp(2=2=9)

2+¢€

L\ —an e
X Ud#llH(4 1 36/16 + 2¢) “2)

d H 8 €n/(4 + 2¢) 4 33
X ﬂ” (6+56)/(8+4e)”4 (4.33)
Sincefor Rez> 1,
=2 argap
(2 )4 ol >m¢ o~ .
|4,..89)|
((p+ g+ m?]'/2(p? + m2pRez=32"
(4.34)
it follows that
||I1(4+3€)/(4+2€) ”%
<2(21r)"‘[m2(1 + §2)] —e/(4+25)J. dzqdzp
|p|>m¢g
4, 48(9)?
[(p + q)Z + m2]1/2(p2 + m2)(1 + /2 + €
<[m*(1 4 §3)) — 2 “H(s + 5€)/(8 + 4¢) II2- (4.35)

The topologies of the Feynman diagrams generated by
Sap||H &= % /s + ¢ ||3 are those of Fig. 3 with D &, replaced
with D 7, 4/i ;. o- These are finite by power counting in the
limit A = . Hence from (4.35)

Algn J‘d,u“H“ +30/18 420 12 SCa[m*(1 + £2)] ~@+ e

(k% + mz)”z(ki + m2)2Rez—3/2(k§ + mz)‘/z(kﬁ + m2)2Rcz~3/2 ’

from which one obtains

“H(G + 5€)/(8 + 4¢) ”: <(27T)—.8[ 2( + g 2)] —eRre

jkzl >ms H1 (k 2 4

lky|>m¢

<[mH1+£7)] _E/(2+E)HH(3+25)/(4+25;“4-

(4.32) (4.36)
where C, = hm fdl‘”Hw + 5€1/(8 + 4€) I3
Next, for Rez > 3/4,
1
TN N
kA gk — kA gk — ky)] (4.37)
—~ T~
tr[AAg(kl - k2)'"AAg(k4 - kl)]
m?) Pk + mA) G 4 m?) A 4 m?)e 2

(4.38)

The topologies of the diagrams obtained from fdu||H 7%/ + 29 ||§ are depicted in Fig. 4. All of them, including those
obtained by permuting photon lines, are finite by power counting in the limit A = «. Therefore, using (4.38) we can state that

Jim J dpliBi + savs +4a <CsIm?(1 4 £)] 722+,
where

= lim d/‘"H(s + 26)/(4 + 2€) 13 < 0.

A—o

Combining (4.33), (4.36), and (4.39) gives, for n>2 + ¢,
tim [l [ <"1 + Y,
where Cg is a {-independent constant.
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(4.39)

(4.40)
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4.4 au|TrK="
Application of the hypercontractive inequality gives

f du|Tr:K %|"<(n — 1)"( f du(TrK 2:)2)"/ 2, (4.41)
provided 7>2. From (2.9) it follows that
de(Tr:KZ:)z = 2fd le...d 2y2 g(x1)~~~g( y2) pp,vl (xl —'yl)/);zzvz(x2 _yZ)D;:l,uz(xl - ‘x2)'D c,vz( 1 _‘y2)' (4‘42)

Noting from (2.10) thatp,,, (¢) = O (¢°/m?)for g’—0andp,, (q) = O (1) for g"— oo, (4.42)is manifestly finitein the limit A = oo
by power counting. Hence,

lim |du|Tr:K %:|"<n"C3, (4.43)

A— oo

where

= lim [du(TrK%f < .
A— 0
4.5Boundonlim___ |Z,,(A)|
We now combine (2.13), (3.1), (4.12), (4.28), (4.40), and (4.43) to obtain
. 4e)" m; 2n m2§ 2 n u n2 ne/(4 + 2€} C\
st - [ ) s s 25 ) e (5]

provided n>2 + € and m¢ > . By setting § = n and 1 < m it is evident that a sufficiently large constant C can be found such
that

|Z,, |<[C In{mn/u)1*", (4.45)
for all .
APPENDIX: ESTIMATES
1./,
Using?
[y + ky + ko2 + m?] 722/ m)k } 4+ m?) 2 [(ky + ko2 + m?] =12 (A1)

for k,cE, where E denotes a two-dimensional Euclidean space, and letting &, ; —m{k, ; we get from (4.7)
22 [ flaw 2tk PR +
m2m)® S it [y + k) + /6212 k5 + 1763 2k + p2/m*C?)

22 [ ARG

m2m® Jiici = k| [k + ksl (K3 + pP/mE?)

(A2)
Let

2 2
| = ‘[ IkZ + k3|d k2 k3 (A3)
!

ki<t Vegllly + kPl d + p2/m?)’
and combine the denominators involving &, and k; using

=f lazt bl -2

ksl + [ko|(1 — 2)1d °k, d %k,
Jl< 2 27272 °
lal<t |Ko|[K3 + k32(1 —2) + p?(1 — 2)/m*§ 2]
Letting k -+[kzz(1 —2) + p¥(1 — 2)/m*; *] k3 it follows that

J f |ks|d *k, d %k, f f d?k, d %k,
o T 2dwic Tl (243 +p2/mig 1 PRT + 17 wist (k3z + p2/m¢ k3 + 172
The remaining estimates are elementary and give

Jl<2ﬂ'2[ln( —':175)]2 + 7t ln(g::l—g- + l) + 16: (AS)

Equation (A5) combines with (A2) to give (4.10).
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2./
Using the bound (A1) we get from (4.8)

160 ° s Arr A n [(ky + K3 + p2Y(k T + m?) Pk 5 + m?)/?
III<—><f d %k, |8k, )8tk )8 (k)8lk, + K, + K . A6
2 m2ﬂ2(277)1/2 :::J::g il__—.I1 | 1) ( 2)8( 3)g( 1 2 3)| ‘k4| |k4+k6’ |k5| lks +k6|(kt2«, +,Uv2)2 ( )
Let
dzk (J‘ dzp )2
7, = f _dk _dp Y, A7
’ (k*+ p?? \Jpicme |p| P+ k| (A7)
and note that
d?p ( 4m§)
— < L2rlnfd+ —=). A8
oo T k] A8

Setting x = k %/(k ? + u?) we get

2 ool 2 < oo TE) 4] 2
J,< 2#2_[)‘1"1“4’*' P . <2#2 Int4 /1 + p + 5 + Sk (A9)

provided m{>u. Insertion of (A9) in (A6) gives the bound (4.11).

3./
From (A1), (4.22), and the change of scale k, ;,—m{k, ; we obtain
5/2 426 3 “k 2k2 +m21/2+26
< i — 6f dk, |8(ky)| (11 - ) _. (A10)
(m& )°m” = 22m)° Sl > 1720 Kol Ky + ks + 4k 3 + P/ m*E )
Let
145 32 2
=J’ |k2+k3|2 2d k22d k232 . (Al1)
ot > 1 (ko |(ka + Kaf(k 3 + p*/m*E?)
Combine denominators and rescale &, as for I, to obtain
Ji< f dz J |ks|' —%d %k, d K, 4 JI dz f d?k,d %,
o (1 =275 Do [kollzk3 +p2/mP e 2750k 4 17 Jo (1—2% oot kol ek 3 + u2/mPE kS + 172
(A12)
provided 0 <& < }. After some easy estimates we get
17'2 [ ( m’¢? ) 3
J3< — |In +1)+ —. Al3
) PE 25 (1 — 45) AL3)
Equation (A 13) combines with (A 10) to give (4.25).
4. /4
From {4.23) and proceeding exactly as for I, and I; one gets
5/2 45 3 5 k 2 k2 2
I4<2 (m§2 J d*k, |&(k )| v 12+m —, (A14)
m(2m) [kl <li=1 ko' = ky + ks (k5 + p?/m?G?)
provided 0 <8 <}. Let
— f |ky + ks|d *kyd *ks ] (A15)
i<t ko' ™4k, + K3k S 4+ p?/m??)
Combining denominators and rescaling k, as for I, gives
' ki|d *k,d *k ' k,|*d %k, d *k
J4<j dz f 1—446 2i 31 2 : 2 ;1/2 2 2 +deJ 2 l 2I2 2 22 23 2’ (A16)
o JT—z Jial<t |kp|' %2k + p*/m*C%) 3 ks + 17 Joo Juaiar (2ky +p7/mE0)ks + 1)

from which one easily obtains

J4<ﬂ2[ln( ”’;2 - 1) + 7]/25. (A17)

Equation (A17) combines with (A 14) to give (4.26).
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5./5

From (4.24) and repeated use of the bound (A1) we get after the scale change k, s ¢ —>mCk, 56

(k3)lke, + &y +

11y < — 2160 an a4k, @k bk,

2+ 28 2
(m* g\ I

[y + ks +p21(k 3 + m?) 22k ] + m?)?
Ik4| ks + k6|l +46|k5|1 _46|k5 + k6|(k% +,U2/m2§2)2
(A18)

Next we split the k4 integration into a high and low momentum piece. Let

d %, d%sd %6 (ks — 1)

C(6), (A19)

.
’ Wl > Uy | kg + kol + *[ks|! ~ ks + k| (k& + 12 /m* %P

[hes| <1

where C is a £-independent constant that is finite by power counting provided 0 < 8 < 1. The other contribution from the k¢

integration is
d’kyd’ks d ks 0 (1 — |kel)

(A20)

si=], _
T U Ty kel ' e + k(G + 2/

lksi<1
Using the estimates

_(k,|> 1 }k_A_jl:_kjm Lal’ (% — 26)F(45)

kol < 1
d ks 27
lks| <1 Ik |1—4&|k +k I S
lkel<1 175 5 6
one gets

Ji< if r (_ _ 25) (45;(’"7;)2 .

Equations (AI9} and {A23) combine with {A 18] to give (4.27).
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Electromagnetic fields invariant up to a duality rotation under a group of

isometries®
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Electromagnetic fields invariant up to a duality rotation under a group H of space—time isometries
are analyzed. The symmetry equations 4 *F = cos alh }F + sin a(h )F * are integrated by noticing
that a defines a homomorphism of H to SO(2). Applications of that concept to Einstein-Maxwell
equations are studied. Cosmological models are considered. Special attention is paid to Bianchi
universes which are shown to admit nontrivial, spatially homogeneous-up-to-a-duality-rotation,
electromagnetic fields of all algebraic types. All L.R.S. type-V solutions to Einstein-Maxwell
equations in which the electromagnetic field shares the symmetry of the gravitational field up toa
duality transformation are derived. Discrete isometries are also analyzed.

PACS numbers: 04.20.Jb

I. INTRODUCTION

Let (M,g) be an oriented Riemannian space-time and let
H be its group of isometries. An electromagnetic field F de-
fined on M is said to be “invariant up to a duality transforma-
tion under the group H ” if, for all elements heH, h * F differs
from F by a duality rotation,

h*F=cosalh)F+sinalh)F*. (1.1)

Here, & * Fis the usual pullback of F by A, whereas F * is its
dual two-form. The angle a(# ) depends on the group element
h, but is a space~time constant. Unless otherwise stated, the
terms “duality transformation” will always mean “constant
{in space-time) duality transformation.”

When 4 preserves the orientation, the property (1.1)im-
plies {(see Appendix A)

h*F*= —sina(h)F +cosalh)F* (1.2)
and
h*Ft =gt (1.3)
h*f=e—ia(h)}'", {1.4)

where F' and F are, respectively, the following self-dual and
anti-self-dual two-forms:

F' =} (F—iF¥*), (1.5)
F=1(F+iF*). (1.6)

It is well known that if the metric g and the field F obey
Einstein-Maxwell equations and if F is nonsingular, then,
every symmetry of the metric is a symmetry of the Maxwell
field up to a duality transformation. This results from a
theorem by Misner and Wheeler that states that the electro-
magnetic field itself is determined from the metric up to a
duality transformation,' and motivates our present work.
Some examples of Einstein~Maxwell solutions with an elec-
tromagnetic field that shares the symmetry of the metric
only up to a nontrivial duality rotation have been given in the
literature.”

% Work supported in part by U.S. National Science Foundation grant num-
ber PHY-8216715 to the University of Texas.

® On leave from Département de Physique, Université Libre de Bruxelles,
Belgium.

2276 J. Math. Phys. 25 (7), July 1984

0022-2488/84/072276-08$02.50

As we shall see, the study of the equation (1.1) is some-
how similar to the study of gauge fields invariant up to a
gauge,’ of spinor fields invariant up to a phase transforma-
tion,* and of homothetic motions.’

It follows from (1.1), (1.2}, and the properties of the
pullback of forms that the function a: h—-a(h ) defines a
group homomorphism of H to SO(2),

alhg) =alh) + alg). (1.7)
When the image of H by this homomorphic mapping is the
identity, the relation (1.1) reduces to the strict invariance of
F. New interesting possibilities appear when the image of H
is SO(2) itself or some nontrivial subgroup.

Since SO(2) is abelian, one easily infers from (1.7) that
a(h ) vanishes for all commutators,

alh 7y k) =0. (1.8)

Accordingly, the derived group H ' belongs to the kernel of
the homomorphism. When H is abelian, this is obvious, but
in the case when H ' is equal to H (as for noncommutative
simple groups), this imposes a{H ) = {0}.

We shall assume from now on that H is a n-dimensional
Lie group (1<n<10) and shall confine our attention on its
component connected with the identity. The above formulas
can then be rewritten

L F=k,F*, &L, F*= —k,F (1.9)
and

L. F' =ik, F', £, F= —ik,F, (1.10)
where k, is defined, in our additive notations, by

afexpté ] =k4t, (1.11)

and where ., are the Lie derivative operators along the
Killing vectors £, (4 = 1,...,n). Formula (1.8) becomes

k,C#pe =0, (1.12)

where C“, are the structure constants of the isometry
group.

We shall also assume that the group H is transitive on
M. The discussion is easily extended to the general case of a
nontransitive group.
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Il. HOMOMORPHISMS H—S0(2)

Let us consider a basis of right-invariant vector fields on
H, denoted by {£,}, and its dual basis, {@*} (no confusion
should arise between £ ,, right-invariant vector field on H
and £, Killing vector field on M ). One has

[§A’ §B] = CcAB§c’ do' = — 3 C'5c@” N @°.(2.1)
The left-invariant vector fields X, such that

X, (e)=£4le) (2.2)
(e is the identity) obey

[XArXB] = - CCABXC (2.3)

and their dual basis {@*} is such that
do* =1 C?5c0® A 0 (2.4)
Theorem: There is a bijective correspondence between
homomorphisms a: H—SO(2) and functions on H, (i) which
vanish at the identity, and (ii) the gradients of which are right
invariant.
Proof: (1) da is right invariant [a(e} = O is obvious].
From the homomorphism condition (1.7), one easily
derives

al[g.(h)] =a[d.le)] +alh), (2.5)
when ¢, is the one-parameter group of left translations gen-
erated by an arbitrary right-invariant vector field. It thus
follows that

Ly a=0, a=k,, (2.6)
where the numbers k , are the values of £, a attheidentity.
This in turn implies that the gradient of «,

da=4, a o’ = k,&", 2.7)

is right invariant.

Itis clear that the same argument applied to right trans-
lations shows that da is also left invariant. Moreover, one
has

Lra=k, (2.8)

(withthesame k), since X, = £, at theidentity. Actually, if
the gradient of a function is right (left) invariant, it is auto-
matically left (right) invariant because X, and £, commute.

The condition (1.12) is equivalent to d %a = 0.

(2} If dfis right invariant and if f (¢) = 0, then f defines a
homomorphism of H to SO(2).

Indeed, one finds

f@gﬁ=f@ﬂ+J%&W'

—mej'#
= flgd) +flg) —fle)
—flg) + /18

where the transformation of the integral is allowed because
of the invariance of df (right multiply the path joining g, to
&1 8, by g5 '). This proves the theorem.®

Theorem: Any set of constants k, obeying (1.12)

k,Co%c =0

2277 J. Math. Phys., Vol. 25, No. 7, July 1984

defines one and only one local homomorphism of H to SO(2).

Indeed, the right-invariant one-form o = k,@" is
closed and defines locally one and only one function a such
that

(i) ale)=

(i) da = o.

Global restrictions arise when H is not simply connect-
ed.

lll. SOLUTION TO THE INVARIANCE CONDITIONS—+
IS SIMPLY TRANSITIVE ON M

In order to derive the solution to the symmetry equa-
tions (1.1) for a given H, we first consider the case when H is
simply transitive: to any pair { P, P’) of space-time points,
there corresponds one and only one transformation 4 € H
suchthat/ ( P) = P’( M canbeidentified with H; the Killing
vector fields and the right-invariant vector fields then coin-
cide; 4 = 1,2,3,4).

Let us choose an arbitrary fiducial point P, and denote
by 4, the unique transformation of H that maps Pon P,. Let
a be a homomorphism of H to SO(2).

It is clear that F is determined everywhere in M by the
symmetry conditions (1.1) whenever F is known at P,, and
that these conditions do not restrict ' { P,). The expression

F(P)=cos alhp)F(P)— sin a(hp)F*(P) (3.1)
with F(P)=h%F(P)=h%F(P,) (h*F=FVY heH)is
accordingly the general solution to the symmetry equations.
F differs from the invariant two-form field by a space-time
dependent duality rotation.

In the invariant basis {@” }, (3.1) reads

Fop( P)=cos alhp)F,, — sin alhp)F*,, (3.2)

where the components F,, are constant.

Theorem: If both F and F obey Maxwell equations
(dF = dF = dF * = dF *), then

(i) either dax(h ») # O is lightlike, in which case Fand Fare
null (E> — B?> = E-B = 0); (i) or @(H ) = {0} and Fis strictly
invariant.

Proof: In terms of the self-dual two-form F1, (3.1) re-
duces to

Ft' =™ “pt, (3.3)

. This leads, assuming Maxwell equations for both Fand
F, to

dalh,) A FT =0. (3.4)

If a(hp)#0is timelike or spacelike, (3.4) implies Ft=0
(use the self-duality of F'* ). Accordingly, if the field Fis non-
trivial, either a(h,) = const(= a(h,) = a(h; ) = 0), or
da(h,) is lightlike. In that latter case (3.4) implies that the
invariants E> — B? and E-B both vanish (see Ref. 1).

It results from this theorem that the unphysical invar-
iant form Fis, in general, not a solution to Maxwell equa-
tions.
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IV. SOLUTION TO THE INVARIANCE CONDITIONS—+
IS MULTIPLY TRANSITIVE ON M

In that case, M can be identified with the quotient space
H /K, i.e., with the set of left cosets #K of the stability sub-
group at, say, P,. K is isomorphic to the stability subgroups
at the other points. Greek indices will refer to M, capital
Latin indices to H, and small Latin indices to the subgroup
K.

In the mapping u: H—M: g—gK, the right-invariant
vector fields £, are mapped, as is well known, on the Killing
vector fields £, , whereas the left-invariant vector fields X,
{corresponding to the subgroup K ) are mapped on O,

by =&, uX,=0. (4.1)

The pullback of any two-form field ¢ on M is a two-
form field on H that obeys

Lyu*tp=0 X, lu*¢=0. (4.2)
Moreover, one finds
Leuto=ur"L, @ (4.3)

Reciprocally, if a two-form field y on H obeys
ZLx, x =0=2X, Y, there is one and only one two-form
field on M such that y = u*p.

LetG ' bethepullbackof F' (u*F' = G').G" cannotbe
self-dual on H, since the dimension of H exceeds four. We
shall solve the symmetry equations

L G =ik,G" (4.4)

on the group H and then “project” G back on space—time
(standard trick of differential geometry).

From the analysis of the previous section, it follows that
the general solution of (4.4) is given by

G (h)=GT ze™ o A 0, (4.5)
where the G ' 4p s are constant and where « is a homomor-
phism of H to SO(2). We must then impose the conditions

(4.2), which turn out to be algebraic equations for G s In-
deed, the second equation (4.2) becomes

Glyy=G'yW=0 (4.6)
(only Gt «p can be different from zero), whereas the first one
reads

ik,Gt g+ GT4pCFy — G peCF =0 (4.7)

[we have used ., 0" = C* 0% which follows from the
identity .¥° yo = X | dw + d { X ) w)]. These equations can
be rewritten as

GtA, —(GTA) +ik,Gt =0, (4.8)

where the matrix A, has components (4,), =C 4.

The problem of determining all H-invariant two-forms
F (upto a duality transformation) is thus reduced to the alge-
braic problem (4.6)—(4.7) and the demand that G' induces a
self-dual form on M. .

Note that the two-form G is projectable on M if and
only if k, = 0, i.e., if the homomorphism of the isotropy
subgroup K to SO(2) defined by a is trivial. It is shown in
Appendix B that when k, #0, F is necessarily a null two-
form.
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V. A CLASS OF HOMOTHETIC MODELS

As a first application, we consider space-times with a
four-dimensional transitive group G,(I) of homothetic mo-
tions. The group is of type I according to the classification
given in Petrov (Ref. 7, p. 63). Its generators are &, = d,,
£1=0,, &= —x'9p+ 3,

E,=(07—1)x"dy — x' 3, + b°x* 3, + J,(b #0). The metric
g is homothetically invariant,
L. g=20,8 (4=0,123) (5.1)

This is a generalization of cosmological models homogen-
eous in space and time.
A basis of invariant forms is given by

w® = el sz)x‘(dxo + x2 dxl)’

o' = e dx!,

wr=e "% dx? (5.2)
o =dx>.

Since o, generates a homomorphism of G,(I)to R, 0,,C“ ¢
must vanish, which implies that only o, can be different from
zero.

We shall further assume that the metric is diagonal in
the basis (5.2) and that »° is timelike. By appropriate normal-

izations, the coefficients of (#°)? and (') can be set equal to
+ ¢ The metric reads

ds’ = &7 [ — (@ + ('] + & + ] (53)
(0=03,).

The Maxwell field must obey

L F=0, F+k,F*, (5.4)

which is a natural extension of the equations of the previous
section. Again, only k;50. This implies

F=¢(Fy, coskx® + F, sinkx®lo* A o, (5.5)

where F,, are arbitrary constants.
From Maxwell equations, one infers

o= —(1—-0?, {5.6a)
ﬁ01=ﬁ02=ﬁ13=i’23=0y (5.6b)
Foy=2bF,,, (5.6¢)
k = 2b. (5.6d)

Accordingly, the Maxwell field is non-null. One of its princi-
pal orthonormal tetrads is just obtained from {w*} by appro-
priate rescalings. If one had not allowed for the possibility of
a duality rotation in (5.4), one would have been unable to
fulfill the Maxwell equations (the field ¢~ F cannot obey
these equations) and one would have missed the solutions
below. This shows the importance of incorporating the term
k,F*in (5.4)

Finally, the Einstein equations, which also turn out to
be algebraic equations, simply yield

o2 — 4a?h? (5.7)

and
Fyy =2b. (5.8)
Marc Henneaux 2278



This completes the resolution of the Einstein~-Maxwell equa-
tions for the above fields.

The metrics (5.3), (5.6a), (5.7) depend on two param-
eters. They belong to a class described by Barnes,® who
found them by algebraic means. When b ? = 1, o vanishes by
(5.6a) and the homothetic motions reduce to true isometries
(McLenaghan-Taricq-Tupper solutions). Note again that k
never vanishes (6 #0).

VI. BIANCHI COSMOLOGICAL MODELS WITH AN
ELECTROMAGNETIC SOURCE

As a second example, we consider cosmological models
of the Bianchi type whose source is an electromagnetic field
that shares the symmetry of the metric up to a duality trans-
formation. The isometry groups are three-dimensional and
act on spacelike hypersurfaces. Their structure constants
can be written as

C%c = €peq® + 8%a, — 8°a,, (6.1)

with n*%a, = O (see Ref. 9, Chap. 6, for the details). From
now on, small Latin indices stand for group indices and run
from 1 to 3.

For all types but types VIII and IX (which will be ex-
cluded in the sequel), the equations k, C °,. = 0 possess non-
zero solutions and allow for the new possibility of electro-
magnetic fields invariant up to a nontrivial duality rotation.
These equations have actually been studied by Eardley in the
context of homothetic Bianchi models,'® and we will not
repeat his discussion here [homomorphisms H—SO(2} and
H—R are locally equivalent].

Let x° = O be a hypersurface of transitivity. It is easy to
show that the following equations hold on it as a conse-
quence of the symmetry hypotheses.

(3)g§"gkm = 0, (3)g§aKkm = 0, (6.2)
O, Fkm —k,BY, OFL, B =k, &5 (63

Here, g.,,, is the metric induced on the hypersurface, X,,, is
its intrinsic curvature whereas * and Z* are the electric
and magnetic components (with respect to the hypersurface)
of the electromagnetic field.!' Moreover, the fields

&im> Kim» &%, and % * are constrained on the x° = 0 -hyper-
surface by the G,, = T, equations, as well as by Gauss’ law
and the div # = 0 equation. These equations are called the
constraints, as opposed to the other Einstein-Maxwell equa-
tions, which are truly dynamical.

Theorem: Let conversely g, , K., €%, and 2 * i) obey
both the conditions {6.2), (6.3) and the constraints on the
hypersurface x° = 0; and (ii) be propagated off that hyper-
surface by means of the dynamical Einstein-Maxwell equa-
tions. Then the group generated by the £,’s is an isometry
group of the full space-time metric and is such that
&, F=k,F* (and of course, the constraints are preserved
in time).

The proof of this theorem, which shows that the as-
sumed symmetry is compatible with the Einstein-Maxwell
equations provided it is with the constraints, is standard (see
in this context Refs. 10 and 12): take for simplicity a slicing
obtained from x° = 0 by the conditions
L N=0,2, N“=0(Nis the lapse, N* is the shift).
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Show that the initial conditions (6.2)—(6.3), together with the
dynamical equations, imply in that gauge (i) 3y ®.% ; gim
(= (3)35" 3o8im) =0=08,"L ; Kim

(=22, 3Kim) Ty, Obeys ®.L, Ty, =0 becauseitis
duality-invariant) and (i) 3,(*.¢, &* + k, B")

(=8, 0,&*+k,0,8%)=0,3("L; B*— k,&")
(=92, 3,B*—k, 3,&*) =0. Conclude then that (6.2)
and (6.3) hold at all times, which easily leads to the desired
result.

In the invariant frames {dx%»° }— where x° is defined
by the above gauge conditions—the metric only involves x°.
In the same way, the general solution to the symmetry equa-
tions (6.3) is

%9 x°, x) = cos a( x)e’( x°) — sin a( x)B°( x°),

(6.4)

B°(x°, x) = sin a x)e*( x°) + cos a( x)B( x°),
where ¢, 8¢ are functions of time only and where
da = k,»°. Without loss of generality, the invariant frame
can be taken so that @ = kx? [i.e., @® = dx?, k, = (0,0,k)].

It results from the above theorem that the dynamical
Einstein-Maxwell equations can only restrict the time de-
pendence of g, ( x°), €( x°), and B %( x°), i.e., must be ordi-
nary differential equations for these functions. This is easily
checked in the case of the Einstein equations, since
T, [€°, #°] =T,,[€, B"] [the spatial dependence (6.4)
of &7, 4 ° drops out from the energy-momentum tensor]. As
to the dynamical Maxwell equations, they reduce to

Zo = [((/2)C*Zs — Kk, Z. )N /{g]

4 C% N*Z + (2a, + ik,IN*Z*, (6.5)
where Z° are the spatial components of £,
Zo=e 4 iBe. (6.6)

To completely demonstrate that the application to
Bianchi models of Maxwell fields invariant up to a duality
roation indeed opens up new nontrivial possibilities, it re-
mains to prove that the constraints do not imply F = 0 when
k, #0. This can be seen by direct inspection of the con-
straints, which turn out tobe simply algebraicing,, , K, , €,
and 3¢,

(2a, — ik,)Z° =0, (6.7)
K,K®— K2R+ (1/2g)€€ +BB*) =0, (6.82)
— 2K, C%, — 4K, e, = (1/\g)€. €B°, (6.8b)

where R (g,,, C*,.) is the curvature of the surfaces
x° = const.

Let us stress that these constraints do not imply that the
electromagnetic field is null; all algebraic types are allowed
for F.

Although the “fictitious field” (¢, B °) does not obey the
dynamical Maxwell equations because of the £, term in
(6.5), the initial value problem is independent of k, to a large
extent.

Theorem: For all class B types, except type I11, the con-
straint (6.7) is equivalent to ¢, Z * = 0.

The proof is straightforward since k, = ka,,. The initial
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value problem is thus obviously independent of k,,.

Theorem: For types I and I, any solution of the initial
value problem with k, #0 is also a solution with k, = 0.
Reciprocally, given a solution of the initial value problem
with k, = 0, it is possible to find some k, #0 so that Egs.
(6.7)-(6.8) hold.

Proof: (i) Type 1 (C?,. =0)

{6.7) reads k,Z ¢ = 0. Given Z 9, it is always possible to
find k, #0sothat k,Z“ = 0.

(ii) Type II (n** = diag(1,0,0), a, = 0)

Again, (6.7) reads k, Z° =0, but this time, &, is re-
stricted by k, n°® = 0. Equation (6.8b) implies €2 8% = ¢ 87
so that given a set (g, , K, €°, B °) obeying (6.8), one can
always find k, #0 solution to kK, =0, k, e’ = k,5°=0.

We finally note that the cases k, #0 lead, when the
electromagnetic field is non-null, to truly new metrics. In-
deed the gravitational field determines the electromagnetic
field up to a constant duality rotation,’ whereas the cases
k, #0and k, = 0 differ by a nonconstant duality rotation.*
Any exhaustive study of electromagnetic Bianchi models
must accordingly include the case &, 0.

It is difficult to find exact solutions to the Einstein—
Maxwell equations when &, %0 because these models are in
general nondiagonal: k, couples the various components of
the electromagnetic field. Noticeable exceptions are models,
the diagonality of which results from additional symmetries,
as we now pass to discuss.

Vii. L.R.S. BIANCHI MODELS

For definiteness, we consider the L.R.S. type V/VII,
case,

ds? = — N x)dxP + a*( x)e =2 [(dx'}* + (dx?)*]
+ ¢ xO)(dx*), (7.1
asitisthe only L.R.S. Bianchi model that admits a nontrivial
k4. The type V Killing vectors are d,, 4,, and

3, + x' 3, + x* 3,. The generator of the additional isometry
is

E,=x"3,—x'09,. (7.2)

Taking (6.4) into account, the requirement that the elec-
tromagnetic field be invariant under £, up to a duality trans-
formation is equivalent to

62———]_€Bl, B2=—-]_(61, —-6l=]_(ﬂ2,

(7.3)

Bl=ke®, 0=kpB> O0=ké,

where k& determines a homomorphism of the isotropy sub-
group at the origin [generated by £, and isomorphic to SO(2)]
to SO(2) and is accordingly restricted to be an integer by
global considerations. Actually, itis only whenk = Oor + 1
that the equations (7.3) possess a nontrivial solution (let us
insist that there is no such restriction on k ):

7{:0’ Elzezzﬁlzﬂzzo’
€ and B3 arbitrary; (7.4)
k=€ e=+1 €=8°=0,
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61=—6B2’ €2=€ﬁl)
B! and B? arbitrary. (7.5)

In the first case, the electric and magnetic fields are parallel
and point in the third direction. In the second one, the field is
null-—in agreement with the theorem of Appendix B—and
corresponds to a circularly polarized wave propagating
along the third axis. Since Gauss’ law and the div % -law
impose € = 8 = 0, we shall consider from no one that sec-
ond possibility.

Mazxwell equations read, for the field (7.5),

B =N/cleB*—kB'), B'=N/cleB' +kB?. (1.6)

In the gauge N = ¢, they can be straightforwardly integrated
and yield

B! = E exp ex® sin kx° = € €7,
B*=Eexpex’coskx’= —¢é€, (7.7)

where E is an integration constant. We have chosen the axes
{x,, x5)sothat3' = 0and E > O when x° = 0. The time scale
x° is related to the proper time ¢ by

Ndx®*=dt & cdx® =dt. (7.8)
When inserted into (6.4), the relation (7.7) leads to

—€e&'=Eexpex®cos k(x°— ex’) = %2,
(7.9)
€e&*=FEexpex®sink(x°—ex’)= A"

This represents a wave that propagates in the positive or in
the negative x> direction according to whether € is equal to
+ 1 or — 1. Its frequency is determined by |4 |, and its po-
larization, by the sign of — ke (positive helicity if ke < 0}.

The electromagnetic stress-energy tensor possesses the
radiation form and is explicitly given by

E 2

Too = — exp2ex’ =Ty, = — €T (7.10)
its other components all vanish.

The nontrivial Einstein equations are equivalent to

. ,
(i) +2if—3=£2—expzex°, (7.11)
a

a ac
. . 2
2(%{): - faEz exp 26x°, (7.12)
. d*lna dlna\?
ad+a*—-20*=0 a7 +2( 5 ) —2=0,
(7.13)
. .\ 2 . 2
E_(E) +2i£_2=£-2—exp 2ex®, (7.14)
¢ \c ac a

where we have explicitely used the condition N = c¢. The
equation (7.11)}is the Gy, = T, equation, the equation (7.12)
is the R,; = T,; equation, whereas the remaining ones are
the R,, = T, = R,, = T, and the R, = T}; equations.
Depending on the sign of (@/a)* — 1, the equation (7.13),
which is the same as in vacuum, leads to three possibilities:

(ia) @ = A4 (sinh 2x%)'/?  (valid for x°>0) or

(ib) @ = 4 ( — sinh 2x%)"/2  (x° <O); (7.15)
(i) @ = 4 (cosh 2x°)'/?; (7.16)
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(iii) @ = Ade*™, €= + 1. (7.17)
Here, A is a constant of integration which can be set equal to
1 by an appropriate redefinition of x! and x>
(x'—>Ax', x>>Ax%; this does not modify the structure con-
stants), whereas the origin of x° has been chosen so that
a (0) = A [cases (7.16) and (7.17)] or O [case (7.15)].

The constraint equations (7.11) and (7.12) are only com-
patible with the first and third possibilities and impose (with
A=1):

Case (7.15): (ia) e= —1 E =43,
(ib) e= +1 E=43, (7.18)
Case (7.17): € =€, no restriction on E. (7.19)

It is then very easy to integrate Eq. (7.12) for c. One
finds

Case (7.15): (ia) ¢ = Be®?*(sinh 2x%)~ /4, (7.20)
(ib) ¢ = Be™*2*(— sinh 2x%)~ /4,

(7.21)

Case (7.17): c=BexpelE*/2 + 1)x°. (7.22)

In both cases, Eq. (7.14) is identically satisfied by the above a
and c.

VIil. PROPERTIES OF THE L.R.S. SOLUTIONS

Let us first turn to the solution {7.9), (7.15), and (7.20),
with € = — 1. The metric reads, explicitly,

ds* = B %™ (sinh 2x°)~V/2[ — (dx°)? + (dx°]

+ (sinh 2x% ~ 2 [(dx") + ([dx¥)?] (x°>0).
(8.1)

It represents an anisotropic universe filled with an electro-
magnetic wave propagating in the negative x> direction. This
universe expands from an initial singularity located at x° = 0
(a finite amount of proper time in the past). The singularity is
of the “cigar type,” with Kasner exponents (2/3, 2/3,

— 1/3). As x>0, both @ and ¢ increase as ¢* and there is
thus “isotropization.”

If one takes € = + 1, one just gets the time reversed
solution, with a singularity in the future. The wave now pro-
pagates in the positive x* direction. We recall that this direc-
tion is defined by a, > 0.

When the electromagnetic wave number vanishes,
these solutions reduce to the one described by Ftaclas and
Cohen.'* Note that the stress-energy tensor and hence, the
metric, are independent of k~—actually, the metric is of the
“radiation fluid-filled, plane symmetric type.”” Besides, the
solutions with different k¥ (but same metric} can be obtained
from one another by a space-time-dependent duality rota-
tion 3 ( x° — ex?), the gradient of which is lightlike and along
the direction of propagation of the electromagnetic wave (the
field is null).

Although the above metric (8.1) does not possess addi-
tional Killing vectors, the solution (7.17), (7.22) is invariant
by a seven-dimensional group of motions acting on space-
time. Indeed, the change of coordinates
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e = (z/B)(2uv)"?,
& = (z/B ) 2u/v)''?,

x?=x?

(8.2)

x'=x!,
withz=1 4 E*/2, brings the metric and the electromagnetic
field to the form

ds® = —2dudv + v**[({dx")? + (dx?)’], (8.3)
1/z—1
F=2 [cos(i In v)dv A dx!
z z
—€sin (i In v)dv A dxz]. (8-4)
z

The metric (8.3) is conformally flat and represents a
Kagan subprojective space (Ref. 7, p. 252}, i.e., here, a special
type of plane gravitational wave with seven Killing vectors.
The electromagnetic field is only strictly invariant under a
transitive six-dimensional subgroup ( x d, — y d, never Lie-
derives F).

The above classes of solutions contain all electromag-
netic Bianchi type V universes with local rotational symme-
try in which the Maxwell field shares the symmetry of the
metric up to a duality transformation.

IX. BIANCHI MODEL.S WITH DISCRETE SYMMETRIES

The concept of Maxwell fields invariant up to a duality
rotation is also useful for understanding discrete symme-
tries. Let us consider again the Bianchi type-V case, but this
time, without assuming g = b,

ds® = — N*(xdx"P + a*( x%)e ~ 2 (dx")?
+ b x% ~ *(dx?)? + A x°)(dx)*. (9.1)
The metric possesses the following discrete symmetries
[in addition to the G,(V) group]:

F 1 x%x% xlo —x!, x*—x?, XX,

(9.2a)

F o x'—x x'ox!, x*——x%, x’—x?,

(9.2b)

as well as their product

Ry x—x° x> —x!, X —x% xoxi (9.2¢)
Z 4 preserves the orientation, whereas .# | and % , do not.
Conversely, the existence of these discrete symmetries im-
plies the diagonality of the metric. In order to determine the
possible electromagnetic, diagonal type-V models, one must
thus find all the Maxwell fields invariant up to a duality
rotation under the full group
HyV)=Gy(V)u{F,, F, #,} (and their products).

We first turn to the task of determining a(H,(V')). Since
both.% | and %, commute with the transformations gener-
ated by £,,it follows from a property demonstrated in the
first appendix that k5 must vanish (together with %, and k,).
In other words, the image of G5(V') is trivial,

a(G(V) =0} (ok, =0)

We next note that the product laws
(P =e, F,.F,=R,=F,7,imply (see Appendix A}

(9.3)

2a(#,) =0, (9.4a)
alF |) — alF,) = a(#;). (9.4b)
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Two cases need to be considered: either a(%,) is the
identity, or it is half a revolution. To investigate the conse-
quences of the second equation (9.4), we assume that a(F ,) is
the identity, which we can always do by performing an ap-
propriate constant duality rotation S on the electromagnetic
field (a(F ,)}—a(F ;) — 28)."° The relation (9.4b) implies
then that (5 ,) is equal to a(#5).

i) a(#,) =0, alF,)=0. {9.5a)
The symmetry equations imply

=B =€"=R*=0= R (9.5b)
Only &~ can be nonvanishing.

(ii) a(#,) = a(F,) =1 (half a revolution). (9.6a)
The symmetry equations imply

E*=8=0 A'=R=0. {9.6b)

Only &' and %2 can differ from zero.

Because of the constrainta, Z ¢ = 0, one must reject the
first case. In the second case, that constraint is automatically
satisfied. We have thus proved the following theorem:

Theorem: In all diagonal type-V Bianchi models filled
with a non-null electromagnetic field, the electric and mag-
netic components & “ and % * are characterized, up to a glo-
bal duality rotation, by the conditions {9.3) and (9.6).'¢

It is not our purpose here to discuss the integration, in
the comoving frame, of the Einstein—-Maxwell equations for
the above fields. Let us merely mention that solutions do
exist, because (9.1) and (9.6) are compatible with the con-
straints. Moreover, these solutions define Maxwellian invo-
lutive structures in the sense of Debever!’; the two-dimen-
sional abelian group generated by d, and d, is invertible, with
4 4 as involution.

The conclusion of this paper is that the concept of Max-
well fields invariant up to a duality rotation is not only math-
ematically interesting, but also particularly fruitful for un-
derstanding some of the properties of solutions to Einstein—
Maxwell equations with a group of motions.
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APPENDIX A
We consider in this appendix how the formulas of the
first section need to be changed when the isomorphism 4
does not preserve the orientation of space-time.
Asisknown, F * is defined in an arbitrary frame {©” } as
the two-form

Fiy = (€[0]/2V — 8)84185, € “Fe,. (A1)
Here €¢fw] is + 1 or — 1 according to whether the frame
{w™ ] has the “right” orientation or not.

From (A1), one infers

h*F* =, (h *F)*, (A2)

where €, = + 1if the isomorphism A preserves the orienta-
tion of space-time and — 1 in the opposite case.
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Formula (A2) implies

h*F* =¢,(—sina(h )F + cos alh )F *) (A3)
from which it follows that the composition law reads

alhy hy) = €, alh,) + alh,). (A4)
This leads to

alh 7'y = —¢€,alh) (A5)
and

alh 7 thy k) = alh,) + €nalh,) — €y alhy) — alh,). (A6)

These relations show that the mapping a: H—»>SO(2) is
in general not a group homomorphism when H possesses
elements which do not preserve the orientation.

If H is the direct product of an orientation-preserving,
connected, Lie subgroup G with an involutive “reflexion”

sle, = — 1, s* = ¢), formula (A6) implies that a(G ) = {0}.
Indeed, one easily infers from (A6) withh, =h € G, h, =s,
0= 2a(h).

Accordingly, a(h ) is either the identity or half a revolution.
But that second possibility is excluded by the assumption
that G is a connected Lie group {(and the continuity of a).

APPENDIX B

Let us assume that the isometry group H is multiply
transitive on its surfaces of transitivity. In this appendix, H
may not be transitive on the space~time manifold. Let K ( P)
be the isotropy group at P, and let £, be the corresponding
Killing vectors [we assume that K ( P)is at least a one-dimen-
sional Lie group; discrete isotropy subgroups are not consid-
ered]. As is well known, the vector fields £, vanish at P, but
§.# ,( P)#0,and the £, s induce a group K * of transforma-
tions of the tangent space at P which is isomorphic to a sub-
group of the Lorentz group.

Theorem: If one of the k,’s does not vanish, i.e., if K { P)
does not belong to the kernel of the homomorphism a:
H—S0(2), then, Fis a null two-form.

Proof: The symmetry equation ., F* = ik, F" reads
at P

APy €, ]F;B +A%[E, ]Flp =ik, F,z, (B1)

where A 7, [£, ] is the infinitesimal generator of the one-
parameter subgroup of K * induced by &, . In a suitable orth-
onormal frame, A [£, | can be taken to be

0 a 0 0
a 0 0 —m
= B2
A [4] 0 0 0 n (B2)

0 m —n O

We can also assume m = 0 when 7,54 #, is non-null, or
n =0, |m| = |a| when it is null, but, in order to treat both
cases simultaneously, we shall not use these simplifications

here.
With (B2), formula (B1) becomes

ikF}l, —mFt, =0,
ikFl, —aF?!, +nFi, =0,
ikFY, —aFt, + mF{, —nF}, =0, (B3)
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ikFl, —aF{, —mF}, + nF}{, =0,

ikFl, —aF{, —nF!, =0,

ikF3, + mF}, =0,
where we have dropped the index @ in k.

The system (B3) possesses a nonzero solution F only
when its determinant, easily evaluated by the Laplace meth-
od, vanishes:
k*42k3a®> —m? —n?) +a* + m* + n* — 2m%a?

+ 2m?n* + 2a°n* =0. (B4)
Since k ?isreal, the discriminant of the quadratic (in k ?)equa-
tion (B4) must be positive.

— 4a?n?>0. (BS)

Thus, either @ vanishes—in which case (B2) describes a pure
rotation and one can also take n = 0—or # is equal to zero.
But in that latter case, it follows from (B4) that

k2=m?—a? (B6)
and hence, |{m| > |a|(k 50). Thus, by an appropriate Lorentz

rotation, one can assume that a vanishes too, and the equa-
tions (B3) reduce in both cases to

ieFl, —Fl, =0, F} =0,
(B7)
ieFl, —Fl, =0, F},=0,

which implies that the electromagnetic field is indeed null.
An alternative derivation of this theorem, somewhat
simpler, starts from the equations

Lo y=2k,0, £, L= —2%k,I, (B8)

for the two invariants F,, F*#=I, and F,, F***=I,. These
equations clearly show that the electromagnetic field is ever-
ywhere null on a surface of transitivity if it is null at one point
of that surface. Moreover, since the generators £, of the iso-
tropy group at P vanish at P, and since 7, and 7, are scalars,
both &, I, =3, I, and £, I, = &, I, vanish at P, which
implies

kI, =k, =0. (B9)

If k, #0, one infers I, = I, = 0, i.e., the electromagnetic
field is null.

As a consequence of this theorem, it follows that all the
k,’s associated with isotropy subgroups are zero when the
electromagnetic field is everywhere non-null. F1 can then be
written as

Ft =¢FT, (B10)
where F7 is strictly invariant and where the function o (de-
fined on space-time, not on the group manifold!) obeys
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Le o=k, (B11)
This is not true when some of the k,’s differ from zero.
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Dong-sheng Guo®

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616

(Received 19 July 1983; accepted for publication 9 December 1983)

We present a noniterative method of executing a large class of Kinnersley—Chitre transformations
in both the vacuum and the electrovac case. By solving the homogeneous Hilbert problem in the
Hauser—Ernst formalism, we generate new many-parameter solutions of the Einstein equations.
In the vacuum case, the solution is a natural generalization of the N-fold Neugebauer solution,
while, in the electrovac case, we have a natural generalization of the N-fold Cosgrove solution

worked out by Wang, Guo, and Wu.

PACS numbers: 04.20.Jb, 02.70. 4+ d
I. INTRODUCTION

In recent years many authors have employed Biacklund
transformations'~® and Kinnersley—Chitre (K~C) transfor-
mations* '® in order to generate new solutions of the vacuum
and electrovac Einstein field equations. Usually the transfor-
mation selected is quite simple and involves only a few pa-
rameters, but, by iterating such transformations, solutions
with an arbitrary number of parameters can be generated.

In the present paper an alternative approach will be
described, in which the K—C transformation selected has an
arbitrary number of parameters, and it is applied only once.
Starting with Minkowski space as the seed space-time, we
first consider the generation of vacuum space-times, and
then we turn our attention to the generation of electrovac
space-times. In the vacuum case, our new many-parameter
solution is a natural generalization of the N-fold Neugebauer
solution,” while in the electrovac case we have a natural gen-
eralization of the N-fold Cosgrove solution worked out by
Wang, Guo, and Wu.'®

Our method possesses the following features:

(1) The parameters characterizing the transformation
are directly related to the coefficients of polynomials in the
numerator and denominator of the transformed Ernst po-
tential evaluated on the symmetry axis.

(2) In its simplest vacuum exemplar, our method unifies
the Ehlers transformation,'' Harrison’s Biacklund transfor-
mation,* two types of Hauser transformation,®® and an
HKX transformation,’ while in the electrovac case it unifies
the Ehlers transformation, the Cosgrove transformation,’
and a charged HK X transformation.®

(3) By using this method one can more directly obtain a
complete symmetry in the parameters characterizing the
generated space-time, for one can build it into the characteri-
zation of the K-C group element itself. In the iterative meth-
od the parameters enter in an ordered way, some with each
iteration. The generated space-time does not involve these
parameters in a symmetrical fashion, and it is a nontrivial
problem to redefine the parameters in such a way as to res-
tore symmetry in the final result.

* Research supported in part by National Science Foundation Grant PHY-

82-05608.
® The author will submit to the Illinois Institute of Technology a Ph. D.
thesis based in part upon material contained in this paper.
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Our new method, in addition, may provide a way to
employ a sequence of exact solutions which in some sense
approaches a solution which cannot itself be obtained in
closed form because of difficulties in solving the associated
homogeneous Hilbert problem (HHP).”

Il. VACUUM TRANSFORMATION

In the Hauser—Ernst formalism®’ vacuum K—C trans-
formations are represented by 2 X 2 matrix functions »(¢ ) of a
complex parameter ¢, such that

detu(t) =1, (2.1)

1) , (2.2)

u"(t)csu(t)=6:=(_1 0

where

(6 Dy )

is holomorphic in an open neighborhood of t = . [Note
that in Eq. (2.2) u'(¢) stands for the Hermitian conjugate of
u(t *). Because of Eq. (2.1), condition (2.2) may be replaced by
the statement that the matrix u(z }is real for real values of the
parameter 2. We shall when speaking of u(t ) always use the
word “real” in this sense.]

Following Cosgrove,® we shall introduce a real matrix
it(t } such that

u(t) = (deta(t)] " *a(r). (2.3)
Specifically, we shall choose #(t ) of the form

_ . (alt) B()

1= () o)) 24

wherea(t),B (¢t )t ', v(t)t,and§ (¢ )arerealpolynomialsin the
variable ¢ ~!. We assume that a(w )8 (cc) — 8 (0 ){ee)#0.
Explicitly, we may write

aft)=apg+a_it '+ ta_,t "

Bt)=Bit+Bo++B ot ™"

n

Yie)=y_g 'ty g

(2.5)

St)y=8,+6_t "+ +S_, 07"

Situations in which the four polynomials terminate at differ-
ent terms will be treated as degenerate cases.
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It should be noted that when the seed space-time is Min-
kowski space the coefficients of the polynomials have a di-
]

- (g — By) + lia_, — Bo)(22) + lia_, — B_,)(22)* +

rect interpretation in terms of the new Ernst potential &’
evaluated on the symmetry axis (z axis),’> where

.ee

; . (2.6)
(¥_y + 880 + (V-2 + 16_,)(22) + (y_3 + i6_o)(22)* + -

The case n = 1, where
B ayt+a_ ! t+Bo+B_yt !
u(t)=( R Byt +Fo S 2.7)

¥t 8o+ 6_4t

includes five well-known transformations, the Ehlers transformation, !’

- Qo Bt

aft) = ( _ ) , (2.8)

( Y—at ™' &

the Harrison transformation, '

~ ap Bo)

i) = ( _ , (2.9)

) y— ' 8

two types of Hauser transformation,®?

() = ((aZml — mya,) + %(a_l 1— a)t ! a,ayim, — m)t *1) , (2.10)

(my — my)t (axm; — aymy) + da, — ay)t
where a,, a,, m,, and m, are real parameters, and
Xy * Yo — a*)t —1 *iprr % r
ﬂ(t):i((a m—am )+z(0!_l a¥) aa*(m* — m) _]), 2.11)
(m — m*)t (@*m* —am) + Ya — a*)t
—

where o and m are complex parameters, and an HKX trans- The equation
formation,” which corresponds to the special case when a(t)é(t) — Blt)vit) =0 2.17)

(@_100 +apd_, _507’—1)2
=Haybe —Lry_le_6_,—B_y_,)

is satisfied.
The homogeneous Hilbert problem consists of finding
2 X2 matrix potentials F’(¢) and X _ (¢ ) satisfying

(2.12)

F'(t)a(t\F(t)~" = [det @t)]V/2X _, (2.13)

such that regarded as functions of the complex parameter ¢,
these matrices possess, respectively, the space-time-depen-
dent singularities of F () (the F-potential of the seed space-
time) and the fixed singularities of #(z ). It is further required
that £'(0) = F(0) = ie.

Because of the polynomial form assumed for #(#) it can
be shown that

F't)ya@)F(t) '=Ag+A_jt "4+ 44 _,t "
(2.14)

where the constant matrix coefficients 4, (/ = 1,...,1) remain
to be determined. Indeed, 4 _ , is easily found to be given by

’ 5—n _y~n
A_,,=1imF’(t)&(t)t”F(t)"’=(_ﬂ . >

" 2.15)
The new F-potential can be obtained from
Flt)={Ag+A_t 7"+t A4__t—7
8e) —Blr)
XFM(—y(z) a(t))
X [a(t)s(t)—Bt)ne)l " (2.16)
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has 27n roots. We shall denote them by ¢t = ¢, £, ..., ¢,,,, and
temporarily we shall assume they are all distinct. None is at
t = . The condition that F'(r) not have any of the fixed
singularities associated with (¢ ) implies that

(Ao +A—1ti_l+"'+A—nti_n)

6(ti) - B (ti)
<l ey i) = .18
for i = 1,2,...,2n. By using the relation
8t;)  —BIt) -
det( —t) a(r,-)) =0 (=12..2n), (219

we can express Eq. (2.18) in the following alternate form:
[Aohss + (A_1)sst '+ + (4 —m—n)aati = ”] T;
+{Aohsa+(A_ )t 4+ (A4 —tn_nhed =

= _6—nti_n71i + y—nti-"’
(2.20)
[(Aoas + (A _y)ast ' + =+ {4 PR Y Sal l)] T
+ (A0)44 + (A—1)44tf_ ! + e+ (A —(n— 1))44’ i~("_ ¥
=ﬂ—nti_nn _a—nti-n,
where
Fi3(1,)0(2;) — Fs,t e,
7-}: _ 33( 1) ( 1) 34( 1)7/( x) (l _ 1’2,.“’2’1) (2.21)
Fs(t:)6 (1) — Faalt: i)
are known quantities.
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The solution of Egs. (2.20) can be expressed in the form
(A4 —j)33 =AJ_;,3/A, (4 —j)34 =A€4/A

) : (j=0,1,.,n—1), (2.22)
(A—j)43=Aj43/A1 (A-—j)44=A{M/A
where
-1 —(j—1 _ —n—
_ Ty, «¢7'T, - t7V-NT, =t 6, Ti—y_,) et 0T 1 P P
4, =
b
-1 —{j=1 _
T2n t2n T2n o thU )TZn _t2nn(6~nT2n _y—n) "'tZZ(H_I'TZn 1 t2—r;1 o t2_n(n‘”
—1 —(n— — —_{(j=
. Tl t Tl 1 ‘" ljTl 1 t ! ol v=n _tl_nw—nTl“'?’-n) tf‘"_”
4%, = ,
—1 —(tn—1 _ =
T2n t2n TZn o tln(n )TZn 1 t2n1 '"tlnu b —tz;n((s—nTZrt ——'7/—11) e t2:("_l)
—1 —(f —
| T, t7'Ty o 7Y 47N B_ Ti—a_,) -t 1 T
A%, = ,
—1 —{ji=1 — —(n—
T2n t2n T2n " th(J )TZn t2nn(ﬁ—nT2n —a—n) '"th(n ”TZn 1 t2;l o t2_n(n‘”
-1 —{n — — —{j—
I, 7T, = 7"T, 1 ¢t g U-v trB_ Ty —a_,) - gm0
A{‘4 o .ee ’
—1 —(n = — —(j—
T2n Ly, T2n tz»z‘" 1)T2n 1 tznl "'th(j Y t2_nn(ﬂ—nT2n _a—n) tZ_n‘"‘])
and
4 T] ¢ T lTl . tr (n— I)Tl 1 t l~l . tf (n— I)I
T,, t5,'Ty, =~ t5;"° 00, 1 50 w 0070

From the new F-potential we can easily obtain the new H-potential using the formula

g 9F() ' (2.23)
dt t=0
Thus we obtain
a_ gy B_p_ a_, B_.\"'
H’=[A_,,H+A_(,,_”.Q—-.Q( o= ‘ ")]( A ) , (2.24)
Yewm-1n O_@m_y You O_,
where H is the H-potential of the seed space-time, and
Omi __( 0 i)
=le={_ . o)
As an example, we shall work out the case n = 1 explicitly. In this case the determinants are given by
A0 — —t7 6T —y_)) 1'
SR P Y AL AN |
A0 — T, —t;7'6_.T\—7-)
AL~ -yl
(2.25)
A0 = ti BTy —a_y) 1
43 t;y (B T,—a_,) 1 '
49, = T, t7Y{B_T,—a_)) ,
T, t;'(B_T,—a_)

and 4 = T, — T,, where
T, = [Fs(t:)0(t,) — Fault: ()] [ Faalt:)8(2:) — Faalt,)¥(2:)] -l (i=12) (2.26)
The A matrices are given by
1 S ity Ty —t T +y e —27Y) T\ _\(t7 ' —t5 )y (T ' =Tt ) )
(_ﬂ—l(tz_sz —tl_lTl) *a—l(t l—l .—12_ l) - T1T2B—1(t1_1 _tZ_ 1) —_a—](TltZ—l - thltrl)

Ay =

T,—-T.
b (2.27)
r
and From the quadratic equation
4 = (5—1 - 7’—1) (2.28) (@b —Biy_1)t? + (@_ 18+ @b _ — Boy_ )t
\—B, e, +l@ b1 —B_y_)=0 (2.29)
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the roots ¢, and ¢, are easily obtained.

Let us now see how the Harrison transformation can be
treated as a degenerate case of the above. In this case #(¢ ) is
given by Eq. (2.9). Leta_,, B_,, By, Yo and 6 _,—0. Then
the quadratic equation (2.28) becomes

@oBot > — Bov 1t = 0. (2.30)
Hence the roots are
ty=Boy_/ady 1 =0. (2.31)

After taking the limits we get

4 = (50 —i®y_, v i —T6— ig?’—l))
° ~Bo BoT, ’

0 —7’—1)
A =
-1 (0 o/’

where & is the Ernst potential of the seed space-time. Hence
the new F-potential is

(2.32)

F'(t)
_(5o_i$7’—l 7’~1(t1_1_t—l)—Tl(ao"igY—J)
B —Bo BoT,
o =B —17—1
XF(I)(—y_lt_l @ )[0050—307’—1t ](233)

This result is in agreement with the resuit quoted in the pa-
per of Cosgrove,” provided we choose @, = 8, = 1.

lil. ELECTROVAC TRANSFORMATION

The K-C group element can be defined as a 3 X 3 matrix
function u(t) of the complex variable ¢ subject to the follow-
ing conditions:

detuft)=1,
0 1 0

wl(t)C( u(t) =Ct):=| —1 O 0 , (3.1)
0 0 —ir/2

where

1/t 0 O t 0 O

0 1 OJe0 1 O

0O 0 1 0 0 1

is holomorphic in an open neighborhood of ¢ = .

Because of the large number of constraints imposed
upon u(t ) by Egs. (3.1), it is not immediately obvious how to
generalize the procedure which we employed in the vacuum
case. Following Hauser and Ernst,®” we find that it is advan-
tageous to switch from the ¢-plane to the so-called 7-plane
representation of the K—C group. We have

vi(7)iGu(r) = i€, detv(r)=1,

where
0 i O
i€: =( —i 0 0 )
0 0 172

J. Math. Phys., Vol. 25, No. 7, July 1984

(3.2)

and

2287

I/t 0 O t 0 0
vir:=} 0 1 OJiz)JO0 1 O0Of,

0 0 1 0 0 1
T=1/2t.

v(7) must be holomorphic in an open neighborhood of 7 = 0.
Now, following Cosgrove,® we shall introduce a & such
that

b(7)/ [det 5(r)]'/? = v(7). (3.3)
One then automatically satisfies det v(r) = 1, while
Y (7)iG0(r) = i€ [det B(r)]"/*[det i(r*)]'/>*. (3.4)

We shall consider the case in which #(r) is a polynomial in 7,
ie.,

ﬁ(T) = UO + UIT + 027'2 + een + Un Tn. (3.5)
We shall also stipulate that
v} iGv, = f,iG, (3.6)

where vg, vy, ..., U, are 3 X3 constant matrices and the real
constant f;, #0. Then the holomorphy requirement for v(7) at
7 = 0 is satisfied automatically.

We can see from the left side of Eq. (3.4) that

[det #(7)]'/?[det 5{r)]'/** = f(7) (3.7
must be a real polynomial in 7:
fO=fo+ Aim+ o7+ + L™ (fo#0).  (3.8)

Equations (3.7) and (3.8) show that /() has 2n nonvanishing
roots, either complex conjugate pairs or doubly repeated real
roots.

Combining Eqgs. (3.4), (3.7}, and (3.8), we obtain the fol-
lowing relations involving vg, vy, ..., U,,:

vyiGu, = f3€  (fo7#0),
vl iGv, + v} iGv, = £,i6,

(3.9)

S oGy, = £,iG,
k

i+j=

v} iGu, = f,,iG.

These equations are completely equivalent to the single
equation

B ()iCi(r) = iGf (7). (3.10)

We developed a technique involving projection matri-
ces which can be used to solve the general case. We shall now
describe this projection matrix technique.

Let m and m* be a pair of complex conjugate roots of
f(7) = 0. Then we have

' (m)i€d(m) = 0,

(3.11)

oY (m*)i€5(m*) = 0.

We can always find projection matrices P,, and P,,,., and
nonsingular matrices W,, and W,.., such that
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P W, =0lm), P,bim)=_im),
(3.12)
P W, . =0m*), P,.0m* =7im*).
It follows from Eqs. (3.11) and (3.12) that we can find P,, and

P,. satisfying the following equations:

P}.iGP, =0,
Pt =P, (3.13)
P, =P ..

We are dealing with a three-dimensional linear space. Some
solutions of Egs. (3.13) can be written according to the fol-
lowing types:

(1) P, =hh1iC, hliGh =1,

(3.14)
P, =I—hnliG
) P, =hhliG,
(3.15)
P,. =hh}iG;
(3) P, = kA1,
(3.16)

P,.=hhli€ + hhti€, or P,.=hh;iG,

@4) P, =hhliG, hliGh =1,
(3.17)
P, =hh}iC, hiiGh,=1, h}iCh, =0.

hy, h,, and A are column matrices. For type 2 and type 3 they
satisfy

ki
(hhyha)i®| A
hi

It
M~

For type 2 one can use the pair of conditions

(P, — I)b(m) =0,
(3.18)
(P, — Ib{m*) =0,

and analogous equations corresponding to other roots, to
solve for v, vy, ..., v,,. One finds that solutions exist when
m = m*, We shall defer the discussion of such repeated real
roots until later. We shall at this time concentrate upon the
case of type 1 projection matrices with nonreal roots, where

Pum. =0, Pm + Pm. =1, (319)
and P, and P,.. are given by Egs. (3.14).

Equations (3.12) and (3.19) give us

P,.vo(m)=0,

(3.20)

P, om*) =0,
and, therefore,

P,.5(m) + P, b(m*) = 0. (3.21)
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Let us define a matrix

E: = (1/m)I + igg'iG, (3.22)
where
g = h,[im* — m)/mm*]1"2, (3.23)

It follows from the previously assumed normalization of 4,
that

g'iGg = i(l/m — 1/m*).
Equation (3.21) may be replaced by
E" '+ E" %, 4+ Ev, ,+v,=—E",

(3.24)
where E* means the pth power of E.
If we have n pairs of nonreal roots,
m,, m¥, m,, m¥, ..., m,, m*,
we can introduce # matrices
E, =(1/m)I +iggli€ (i=12,.,n), (3.25)
where g, satisfies
gliGg, = i(1/m; — 1/m¥*) (i = 1,2,...,n). (3.26)
In this way we obtain
E}" i+ Ef "+ 4v, = —Elu,
(3.27)
E 4+ E 4 40, = —E
or
Er-' E'?* . E I v, 0,
E;~' E;7* - E I} Q.
E*~' E'?* .. E,  IJ\W Q.

(3.28)
where O, = — E7v, (i = 1,2,..,n). By direct calculation we
know that

mf —m}? 1
E?=(E, —(1/m)I) : +—1I
(m¥m,f~m; ~m¥) m?
(3.29)

Equation (3.28) can be solved by several methods, namely,
the determinant method, inverse matrix method, and Gaus-
sian elimination.

The solution of Eq. (3.28) can be written in the form

o Ei~' EY"* ~ E INT'4Q,

L E;~' E3}* - E, I Q,

U Er-' E? .. E, I 0,
(3.30)

It turns out that the result is even valid in the case of
repeated real roots, although the method of proof is differ-
ent. From Eqgs. (3.19) and (3.20) we know that the matrix
{m) — b(m*) is a rank 3 matrix which has an inverse. We
may write
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v(m) — b{m¥)
=(m—m*p, + (M2 —m Y, + -+ (m" —m",.
(3.31)
Hence, the matrix
(6(m) — B(m*}}/(m — m*) = v, + (m + m*)v; + -
also has an inverse. Since #(7) is a polynomial, holomorphic

at 7 =m, b(m): = di(r)/d7|. _ ,, does not depend on the di-
rection of approach as one takes the limit

B{m) — 5(m*) _ -

lim U(m) (m real). {3.32}
tm—m*—0  m—m*

This shows that, for real m, 5(m) has an inverse.
From Eq. (3.10) we know that for real m the following
equations should be satisfied:

(m)"i€d(m) = 0,
. . (3.33)
B(m)'i€b(m) + b(m)'i€v(m) = 0.

Define a 3 X 3 matrix
r: = bim)i(m)~",

ie., (3.34)
ri(m) = b(m).

Then r obeys the following equations:
i€ + i€Gr =0,

(3.35)
r=0.
The complete solution of Egs. (3.35) is
r=ih'h"G,
(3.36)
h'ti€h’' =0,

where 4 ' is an arbitrary column matrix.
As in the complex case, we define

E = (1/m) + igg"iG.
Here g: = A '/m. Then Eq. (3.34) is equivalent to
E"" v, +E" v, 4 +Ev,_, +v, = — E ",
and g still satisfies the relation
gli€g; = i(l/m, — 1/m¥*) (i=12,.,n).

In this way we generalize Eqs. (3.25), (3.26), and {3.28) so that
the roots may be real or complex (or even infinite, as we shall
see later).

Our final result is given by

i(r) = vy — (v1,7°1,...,7'T)

E7~' E?"%* . E, I\"'/E"
E:~' E~%* . E, I E!

x| z 2 2 b (337)
E"~' E"-* .. E I E"

where E, = (1/m; ) + ig,gi€, gli€g, = i(1/m, — 1/m¥). As
an example, for n = 1 we have

() = [IT — 7{(1/m)I + igg'i€)]v,,
where g satisfies
g'iGg = i(1/m — 1/m*).

(3.38)
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m can be complex, real, or infinite. When m is complex, we
get the Cosgrove transformation.? His original form is equi-
valent to

r)=[—ml+(m—m* hh'iC€) +Ir, h'iCGh=1,(3.39)
which corresponds to choosing

vo= — (I/m)I + igg'i€)~*.
When m is real, we get a charged HKX transformation.®
When m is infinite, we get a degenerate case of the HKX
transformation.

Here we shall show how to treat a simple degenerate

case. Let us consider the case of one infinite root, say m,,
= . Then, we have

E,=ig,gliC, gliGg, =0, E2 =E}=..=E" =0.

(3.40)
Equations (3.27) reduce to the following:
Ei v+ +Ep,_ +v, = —Ev,
{(3.41)
E v, ++E,_v,_+v,= —E}_ v,
E,v, | +v,=0.
In particular, for n = 2, one has
Ew +v,= —Elv,
(3.42)
E,y, +v,=0.
The solution of Egs. (3.42) is given by
v, =(E, — E\)"'E?v,
(3.43)

v, = Ey(E, — Ez)_lE%Uo-
Thus we obtain a transformation with nontrivial structure:
b(r)= [{ +{I — E;7)E, — E,)“‘E%r] Vo. (3.44)

One may check that this result indeed satisfies Egs. (3.9) and
(3.10).
We shall solve the HHP in the 7-plane. We assume that

172 0 O 2r 0 O
im{ 0 1 op|Oo 1 oO|=u (3.45)
N0 o0 1 0 0 1

exists. In the event this condition is not satisfied, one can
perform a simple Ehlers transformation to make it true.
After solving the HHP, we can use the inverse Ehlers trans-
formation to construct the solution for the desired case.

In the nondegenerate case v, ! is the Ehlers transforma-
tion

Vi€, = £,,i€ (f,, #0), (3.46)
Br) =or, =0, + vj7+ - + I (3.47)
In the degenerate case
v} iGy, =0. (3.48)
(i) Suppose v, can be diagonalized, so that
v, =Rl O A, O Yhhohy) 0 (3.49)
0 0 O
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Then
hl
h} v} iCv, (h hohs)
hi
A¥ARTiGh, A*Ah1iGH, O
=|A2,h1iGh, A2,hLiCGH, O].
0 0 0
If 1,0 and 4,0, then
h1iGh, h1iGh,
(h’{i@hl h;i@hz)z

(3.50)

Thus
hi
det] A}
h}
which contradicts the assumption that (A, 4,h,) is nonsingu-
lar. Hence at least one of A, and A, must vanish. We can
always arrange it so that A; = 0. If 4,50, then h }iGh, = 0.

In the linear subspace spanned by 4, and %, we can always
choose 2 | and /4 such that

hi'i€h; =0, h3iliCh; =1

After normalizing, we can always choose abasis 2, h 5, h %
such that

'@(h 1h2h3) =0,

hy
hyt W€k rh R y) =6, (3.51)
Ryt
v,hy=0.
Therefore,
alh Th5h5)=Oh3 k) =v, (3.52)

and

1/2r 0 O 2r
lim{ O 1 Op,l O
e 0 1 0

0]
exists.
(ii) Supposing v, can be expressed in the canonical form
A 1 0
v, = (hhshs ] O A O Khhyhs)™ "
0 0 O
Then
v, hy=Ah,, v hy=h,+Ah, v,k =0 (3.53)
It follows that
& M 0
b e = * 7).
3
where
AA *h TiGh, AA *h[i€h, + A *h {iCh,
M= AA*hliGh, AL *h}i€h, + h1i€h,
+ AhtiGh, + A *h3iGh, + Ah iGh,
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If 4 0, then

hliGh, = h1iCGh, = h}iCh, = h]iCh, =0,
which contradicts the assumption that (#,A,4,) is nonsingu-
lar. Therefore, we conclude that A = 0 and & [ i€h, = 0.

As in the first case, we can construct an (hy,h,,h,) which
satisfies

hi
h3 ViG(h hyhs) = iG.
hl
The Ehlers transformation (4,,4,,4;) results in
v, (hhohs) = (0h,0) = v, (3.54)
It then follows that
1/2r 0 O 2r 0 O
711:1010 0 1 opilO 1 Of=vr.
0 0 1 0 0 1

(iii) Suppose v,, can be expressed in the canonical form

0 1 0
v, = ()| 0 0 0)(h,h2h3)—*. (3.55)
0 0 A
Then
hi 0 0 0
h3 WliGv,(hhh) =0 O 0
R 0 0 AA*hliGh,

If A = 0, we get the same case as in (ii). If 4 0, then
h1iGh, = 0. We can always choose | = ahs, b}, and b}
such that

hi

3t V€(h 1 hsh3) =€,

hyt

v,hi =0.
Thus

volhihsh3)=0v,h;v,h5)=v,
and

172 0 0O 2r 0 O

lim| 0 1 oo 1t 0)=u;’ (3.56)

™\ o o0 1/ \o o0 1
exists.

Assuming condition (3.45), we shall attempt to solve the
HHP, which has the following form in the r-plane:

P'(AB(nP (1)~ = [det 5(r)]'*Y (7), (3.57)
where
t 0 O
P(T)=F(t)(0 1 0), t:zi, (3.58)
0 0 1 T
and
r 0 0
Pir)=F'(t )(0 1 0) (3.59)
0 0 1
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are the P potential of the seed space-time and the trans-
formed space-time, respectively. At 7 = oo the limiting form

of the P-potential is given by

2r 0 0 0 /i O
imP'(7§ 0 1 O]=2:=| —i 0 O]. (3.60)
e 0 0 1 0 0 1

The right-hand side of Eq. (3.57) is holomorphic in a neigh-
borhood of 7 = 0. Therefore, we may write

PrI5iriP(r) ! = Co+ Cy + Cyr + o + Cy7 4 -

(3.61)
However, when we take the limit
’ - -1
lim EL"(ZLQ(T)_ — 0 (3.62)

T+ 0

under the assumption (3.45), we know the expansion (3.61)
has to terminate at the nth term. Thus,

P'(0)p(r)P(r)"' = Cy + Cy7 + - + C, 7", (3.63)
where
Cn = v 0. (3.64)

By using Eq. (3.10), we can express the new P potential in the
form

P'(r) = (Cy + Cy7 + - + C, 7P (7)(i€) = 5N (n)iC/f (7).
3

The P-potential given by Eq. (3.65) should not have poles
where the roots of f(7) are located. When m, m* are nonreal
roots, we have

(Co + Cym + - + C,m")B(m) =0,

. (3.66)
(Cot+ Cim* + .+ C,m" )B(m*) =0,
where
B(r): = P(7)(i€) 'b'(7). (3.67)
Equivalently, one may write
CoSolm) + CSy(m) + -+ C,_, S, _,(m)= — C,S,(m),
(3.68)
where
S, (m) = m*B (m) — m**B (m*). (3.69)
For the case of repeated real roots m, we have
(Cy +2Cym + «-nC,m"~ "\B(m)
+ (Co + Cym + - + C,m")B (m) = 0. (3.70)
If for real m we define
Si(m): = km*~'B (m) + m*B (m), (3.71)

then Eq. (3.68) again follows.
In summation, for any selected pair of roots m, m*, we
have

CoSolmy) + C,Syimy) + -+ C,_, S, _ 1{my)

= - CnSn (ml)’
(3.72)
CO‘SO(mn) + Clsl(mn) + Cn — 1Sn —1 (mn)
= - CnSn (mn )’
2291 J. Math. Phys,, Vol. 25, No. 7, July 1984

where
m*B (m) — m**B (m*) (when m is not real)
Si(m) = . e .
km*~'B(m) + m*B (m) (when m is real).
(3.73)
Equation (3.72) can also be written in the form
Solm,) Solm,,)
(CoCrC,_ 1) = (RRyR,),
Sn—l(ml) SnAl(mn)
(3.74)
where
R, = —C,S,im) (k=1,.,n). (3.75)

As we did when we identified the group element, we can
solve the above linear system in several ways. The element
(Ck)pg (P:g = 3,4,5) of the matrix C, (k =1,...,n — 1) can be

written
(Ci)pg = Dipg/D,
Solmy)
D=ded S, _ ((m))
Solmy)
Sk —1(m,y)
R
kaq — de kpq(ml)
S, _1(my)

(3.76)
SO(mn)
Sn —1 (mn) ’
Solm.,)
(3.77)
Sk—l(mn)
Rkpq(mn)
Sn —1 (mn)

where R, (m,) is defined as a 3 X 3 matrix having the same
elements as S, (m;) except that the gth row of S, (m,) is re-

placed by the pth row of R,.

We can also express the solution in the form
(COCI"'Cn -1 ) = - (CnSn (ml)"'CnSn (mn ))

Solm,) Solm,) \ !
X
S, 1(my) S y(m,)
(3.78)
The final result for the transformed P potential is
P'(r)=| = (C,S,(m)C,S,(m,))
Solm,) Solm,) \ !
X
S_1lm,) S, _1(m,)
I
x[ : |+c,7|Pmsmn, (3.79)
e
where
S,(m) = {m"B (m) — m**B (m*)  (whenm %s not real)
km*~1B(m)+ m*B(m) (whenmisreal) '

B(m) = P(m)(i€)~'v'(m).
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The new F potential can be obtained by using the rela-
tion (3.64). In the Hauser-Ernst formalism,® the H potential
which characterizes the space-time, and the ¢ potential
which characterizes the electromagnetic field, are related to
the F potential by

dF H ®
F. = 47 — ( ) . 3.80
dr l.—o 2iL  2iK ( )
Thus, for the new space-time, we have
HI ¢7 r )
"1y __
F= (ZiL’ 2K’
=[2C,_, 2+ C . FV— 270,y Jor
(3.81)

where v is given by Eq. (3.45), the constant matrix C, and
the t-independent matrix C, _ ; are given by Eqgs. (3.64) and
(3.76), and u _ , _,, is a constant matrix given by

“—m*n:liigd[u[(l—tt)t]
P t 0 O : 1/t 0 0
=timZ {0 1 0 V(z— 0o 1 o}l
=°ati\o o 1 No o0 1
(3.82)

In this way Eq. (3.81) yields the Ernst potentials correspond-
ing to a new solution of the Einstein equations.

What we have presented in this paper is a general proce-
dure for solving a quite large class of problems. By using this
general technique, one should be able to work out explicitly
the Ernst potentials, the metric components, and the electro-
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magnetic field quantities for any given case which is of inter-
est.

Although we worked out the n = 1 electrovac transfor-
mation explicitly, neither we nor Cosgrove have yet discov-
ered a K—C transformation which generates directly the
charged Kerr-NUT solution with @ + &* < m*.
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Pure radiation fields admitting nontrivial null symmetries
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The sixteen types of geometrical symmetries corresponding to the continuous groups of
collineations and motions generated by a null vector n are considered. The common propagation
vector of a pure electromagnetic radiation field and a pure gravitational radiation field is chosen
to be n. For such radiation fields all the sixteen symmetries are expressed in terms of the
Newman-Penrose (NP) spin coefficients and then it is shown that when n is a gradient field there
are only five independent symmetries. The existence of these five nontrivial null symmetries is
established by finding exact solutions of Einstein—-Maxwell field equations when » satisfies
freedom conditions and when / of the NP null tetrad (/, m, m, n) is shear-free. Thus a class of space-
times of pure radiation fields that admit (i) a Ricci collineation which is not a curvature
collineation (CC), (i} a CC which is not a special curvature collineation (SCC), (iii) a SCC which is
not an affine collineation (AC), (iv) an AC which is not a motion, and (v) a motion is determined.

PACS numbers: 04.20.Jb, 04.40. 4 ¢

1. INTRODUCTION

In the general theory of relativity, all the symmetries of
the stress tensor need not be shared by the metric tensor.
Hence, a dynamical symmetry need not necessarily be a geo-
metrical symmetry. For instance in a non-null electrovac
universe, the electromagnetic field tensor has four symme-
tries while the metric tensor has only three.! In this context
Katzin et al.? have introduced the concept of collineations
for a systematic study of the various types of geometrical
symmetries admitted by the gravitational fields due to distri-
butions of matter in motion. QOut of the sixteen symmetries,
which consist of motions and collineations, the curvature
tensor representing the permanent gravitational field expli-
citly enters in collineations. The role of continuous groups of
collineations to generate conservation laws of a dynamical
system in the general theory of relativity has been described
by Davis and his collaborators in a series of papers.2 This
work is analogous to Petrov’s classification of gravitational
field based on the continuous groups of motions.>

The sixteen geometrical symmetries™* under investiga-
tion are enumerated in Sec. 3. Curvature collineations (CC)
in the absence of free gravitational field (conformally flat
spaces) have been studied by Levine and Katzin,* while CC’s
in the absence of a matter field (empty spaces) have been
investigated by Collinson.® Tariq and Tupper’ have shown
that every CC admitted by null source-free Einstein—-Max-
well fields ia a conformal motion except when the Weyl ten-
sor is of Petrov type N or O. McIntosh® has surveyed the
work on CC’s from the point of view of generating exact
solutions of Einstein’s field equations and opined that there
exist very few space-times compatible with these symmetries
since a CC is almost always a conformal motion. Halford et
al® have investigated Petrov-type N vacuum metrics which
admit nontrivial CC’s. Pure gravitational-radiation fields
amenable for motions and conformal motions in Einstein
spaces are considered by Leroy.' Lukacs et al.!! have con-
fined themselves to null motions in electrovacuum. Ho-
mothetic motions in vacuum and perfect fluid space-times
have been analyzed by McIntosh.'? For a thermodynamical
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magnetofluid admitting a RC with respect to the flow vector,
Asgekar and Date'® have shown that (a) the stream lines are
expansion-free if and only if the heat-flux vector is diver-
gence-free, and (b) the stream lines are geodesic if and only if
the heat-flux vector remains invariant along the system of
stream lines. Radhakrishna and Rao'* have established the
compatibility of RC with respect to irrotational flow in per-
fect fluids collapsing by neutrino emission. Hall'> has shown
that a CC is necessarily a homothetic motion in (a} all non-
null as well as (b) all null source free electromagnetic fields
with Petrov types of gravitational fields except possibly type
N or O, and (¢} all perfect fluids except possibly the stiff
matter. “Actually, in practice, it will be difficult to distin-
guish proper RC, proper CC and proper SCC in given situa-
tions where the explicit form of the symmetry vector is not
determined.”'®

In this paper we consider the free gravitational field to
be the transverse gravitational wave zone which can be iden-
tified as Petrov-type N (Ref. 17) or as a self-conjugate gravita-
tional field® or as a pure radiation field.'® Thus we confine
our attention to the interaction of the pure electromagnetic-
radiation field and the pure gravitational-radiation field
with the common propagation vector n. For brevity these
two interacting radiation felds are referred as the PR fields.
Such PR fields have been discussed by McIntosh and Hal-
ford® and also Hall."* However, they do not obtain exact
solutions of Einstein field equations and they are concerned
with the one symmetry—the curvature collineation. The
aim of this paper is to transcribe all the tensor relations char-
acterizing the sixteen symmetries into the “amazingly use-
ful” Newman-Penrose formalism in the case of pure electro-
magnetic radiation fields with pure gravitaional-radiation
fields and to identify the nontrivial ones. The infinitesimal
generator of each one of the sixteen symmetries is chosen to
be n of the Newman—Penrose (NP} nulil tetrad (1, m?, m°,
na ).21

Section 2 deals with the relations governing the symme-
tries of the PR fields. The enumeration of commutative rela-
tions, NP equations as well as Bianchi identities gives the

© 1984 American Institute of Physics 2293



complete mathematical characterization of the interaction
of a pure gravitational-radiation field with a pure electro-
magnetic-radiation field. Section 3 contains the NP spin-
coefficient characterization of all the symmetries for the PR
fields. It also demonstrates the reduction of the sixteen sym-
metries to five independent symmetries for the fields in ques-
tion and thus the nontrivial null symmetries are identified
when the symmetric vector is a gradient field. Section 4 de-
termines the space-times corresponding to these five nontri-
vial null symmetries, under certain conditions. The New-
man-Penrose expressions for n° ., are given in an appendix.

Katzin ef al.? call a RC which does not degenerate to
CCas a proper RC, while Halford, et al.,’ callsuchaRCas a
nontrivial RC. In this paper we follow the nomenclature of
Halford, et al.

2. RELATIONS GOVERNING THE PR FIELDS

The electromagnetic radiation fields

In NP formalism, the Maxwell scalar characterizing
the null electromagnetic field with the propagation vector »
is

¢ =¢,=0,¢=¢,#0,
and the electromagnetic field tensor? is

F, = _an[amb]_¢n[amb]! (2.1)
where 2n,n, | = n,m, — n,m,. In the absence of the

charge-current vector (J° = 0), the Maxwell equations for
the null electromagnetic field are

v=A=0, (2.2a)

44 =2y — p)é, (2.2b)

8¢ = (2a — m)¢. (2.2¢)
From (2.2b) we have

A(pg)= 2y +7) — (1 + 7)1 4. (2.2d)

The pure gravitational radiation fields

The Weyl scalar # characterizing a pure gravitational-
radiation field with the propagation vector » is given by

¢’1 = ¢2 = ¢3 =1, =0, ¢E¢o%0.

The Bianchi identities for PR fields

We designate the Bianchiidentities as B,, B,, ...,B;;. the
enumeration follows the sequence of equations given in Fla-
herty.? The nontrivial Bianchi identities B,, By and B,, B,
for PR fields yield, respectively,

#=0, (2.3a)
Ay =4y ¢, (2.3b)
8¢ — xlpd) = (da — My + (7 — 2@ — 2B )xdd,  (2.3¢)
where y = — 87G /c* is a universal constant, and the Ricci

scalars for an electromagnetic field are

b4p =XPad5 (4,B=0,1,2).
Remarks: From the definition of the optical scalars for
n (after scaling n: y + y = 0}, viz,,
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divergence: n°, =(u + ),

twist: i[2n1, 10 V2 = — (u —m),

shear: 4[24, 0% — (n )]V = A4,
where

Nap =vmyl, —Am,m, —um,m, + wm,n, + vm,l,
— A, R, — pim,m, + 7m,n,
— (¥ + Vnaly + @+ Bngm,

+ (& +B)namb - (6 + g‘)nanb’
(2.4)

we infer that all the optical scalars for the PR fields vanish by
virtue of (2.2a) and (2.3a), and so we have the reduced expres-
sion

na;b =mm, nb + 1_7.;7-1:1 nb + (a + B )na mb

+ @+ Bn, 7y — (€ + €nyn,.

Ricci identities for the PR fields

The NP equations which are equivalent to the Ricci
identities with the conditions (2.1a) and (2.3a) are

Dp — 8k =p* + 06+ e+ €p —kr

— k(3a + B — 7) + x4, (2.5a)

Do — 6k = (p + plo + (3¢ — €)o

—(r—7+a+3Bk+4, (2.5b)
Dr—dk=(r+mp+(T+ 7o

+le—&r—CBr+vik (2.5¢)
Da—Sez(p+E—26)a + 85 — Be

—ky + (e + p)m, (2.5d)
DB—be=a+mo+(p—€B—yk—(a—me (2.5
Dy —Ae=(r+Ta+ T+ 7B — e+ &y

— (¥ + Ve + 7, (2.5f)
br= — 1 —(a—B)m, (2.5g)
or = — 7 +ma —B), (2.5h)
Ar= —(y—m, (2.5i)
8p — 80 =p(@ +B) —o3a —B)+ (p — P (2.5))
Sa — 8B =aa + BB — 2B + vip —b), (2.5k)
Sy—AB=(r—a—Bly—Blr—7) (2.51)
é6r—Aoc=(r+p—a)r— 3y — yo, (2.5m)
dp—br=B—a—"r+ ¥+ 7vp, (2.5n)
Aa — 8y =ya + (B —T)y. (2.50)

The commutation relations are

[AD]=(y + 9D+ (e + 84 — (r + 78 — (7 + 75, (2.6a)
[6DY=(@+B—7D+kd ~06—(p+€—F€5, (2.6b)
[8A]l=(r—a—B)A+ -7 (2.6¢)
1881 =(p—p)d —(@—AB)8—B—aP. (2.6d)

The Weyl conformal tensor characterizing the trans-
verse gravitational field is
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Cus® = —2Re(pU, U,°), (2.7)
where the bivector is

Uy =2my,n,.
The Ricci tensor for the source-free null electromagnetic
field with the propagation vector » is

Rab = - ;X¢ananb'
For the PR fields the curvature tensor is given by

R;s* = —2Re(yU, U,?) — Ax¢$ (vdc Uy + Udcvba)'
(2.9)

Similarly one can obtain the Weyl projective curvature ten-
sor

(2.8)

Waw® =Rur® — 3(84°Rep —8arR.) (2.10)

by using (2.8) and (2.9). We observe that for the PR fields
F,n* =R, ,n" =0, (2.11)
Ry on® = Cypon® = Cyp®n®=0.

Equation (2.11) implies that z is the common propagation
vector for the gravitational-radiation field as well as the elec-
tromagnetic-radiation field.

3. NULL SYMMETRIES IN TERMS OF SPIN
COEFFICIENTS

(i) Ricci Collineation (RC)

A space-time is said to admit RC if there exists a vector
field £, such that

LR, =0, (3.1)

where .#, denotes the Lie derivative with respect to §*.
Singh, Radhakrishna, and Sharan®* have studied these rela-
tions (3.1) for cylindrically-symmetric space-times permeat-
ed by a source-free non-null electromagnetic field and have
shown that these are all purely electric. For studying the PR
fields we choose the symmetry vector £ “ = n°. Using the
expression n,, (2.4) and (2.2a), (2.3a), we get from (2.8)

&L \Ray = —4x[A(¢8) — 2y +7)pd Inam,.  (3.2)
Now by virtue of the Maxwell equation (2.2d) we have
LRy =0 (3.3)

identically. Thus we infer
Theorem 1: The PR fields always admit a RC with re-
spect to n.

(i) Curvature Collineation (CC)

The CC with respect to the vector field » is defined by
the condition

&Ry =0.
The curvature tensor R ., @ by definition consists of two
parts viz., the free-gravitational part

R ;0 = Cue®,s
(F)

and the matter part
(ﬁ)dcb“ = —}8sR.* —84°Rop +8.°Rypy — 8 Ru°).

For the PR fields in question, we obtain

gn‘R;)dcba = —2[¢{(y + Vm,n® —(mr+a+B)n,n® Y, + Py + VImn® — (F+a + Binyn® Jmgn,]

(3.4a)

fn(ﬁ’dcb" = “%XWZ [(7’+7—/)m[d B myn® — (T +a+p)mgyn, n,n®

+(y+ ;’)’T’[d n.myn’ — (T +a +B)m[d nonyn® |

(3.4b)

by using (2.2a), (2.3a), and (2.3b), (2.6), and (2.8). Then we get from (3.4a) and (3.4b)

“gancba = fnR dcba + an dcba’
(F) (M)

It

— [c.c.].

—2[r+ N{YFan.) + ddmgn}F,n — (m+a+BW + L x(7 + @+ B)pd neyn,n’|

(3.5)

Here the symbol [c.c.] denotes the complex conjugate of the terms of the preceding bracket. Thus

L Ryp® =0

if and only if
Y+v=0, (3.6a)
(m+a+BYW+ix(@+a+B)é=0. (3.6b)

Gradient field n

The evaluation and analysis of SCC and AC is very
cumbersome, as is evident from the expression given in Ap-
pendices I, and II, even in the inevitable case 7 = 0. We
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|
henceforth impose the condition that » is a gradient field,

ie.,
(3.7a)

(3.7b)

v=p+p=0,
y+y=n—(@+B)=0.

We note that (3.7a) is already taken care of by (2.2a), and
(2.3a).

Now for the case of CC Eq. (3.6b) yields by 7 = @ + B,
TV + § x74d = 0. (3.8)
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This equation admits two types of solutions, herein termed
as free curvature collineation (i.e., 7 = 0) and matter curva-
ture collineation (i.e., 7#0).

(8) Free Curvature collineation (Free CC)
By virtue of (3.7b), we have from 3.4a) and (3.4b)

F R4y =0 and L, R 4, =0
(F) (M)

when

7=0. {3.9)
Thus we get

L Ry =0,

This case is referred by us as free CC since this symmetry is
induced by the Weyl conformal tensor, ie., the symmetry of
the curvature field due to the nonlocal matter.

(b) Matter Curvature Collineation (Matter CC)

This symmetry is induced by the matter part of the cur-
vature tensor, when 750. In factin RC (3.3), 7 is unrestrict-
ed. Now Eq. (3.8) implies

b= —ixod(@/m) (3.10a)
and so
=L (66 . (3.10b)

This satisfies Maxwell equation (2.2b) and Bianchi iden-
tities (2.3b). However, Eqgs. (2.2c) and (2.3c) with (3.10a) give,
by using NP equations (2.5g), and (2.5h).

7$ (56 — 208) + 1 7 (54 — 24B) =,
which is of the form 4 + AZ = 0, where 4 is complex. Con-
sequently we infer that

8¢ = 2¢B
for = #£0.

Remarks: If Im 7 =0 (i.e, 7= 1_r), m#0, it follows
from (3.8) that the Weyl scalar ¢ is real, i.e.,

Y= —ixes. (3.17)
Since 7 is real, the NP equations (2.5g), and (2.5h) yield
a — B = 0 and hence, (2.2¢) and (2.3c) give 7é¢$ = 0 which
implies ¢ = 0. This is incompatible with the existence of the
source-free null electromagnetic field. Thus equations (3.8),
(3.9), and (3.10) yield the following:

Theorem 2. The PR fields having n as a gradient field,
admit (a) a free CCiff 7 = O and (b) a matter CCiff 6¢ = 2¢p.

(3.10c)

(iif) Weyl conformal collineation (WCC) and its
degeneracy

The Weyl conformal collineation with respect to # is
defined

L, Cup® =0. (3.12)
As a sequel to (2.7) and (3.4a), we get for the PR fields

L0 Cap® =0
if and only if

y+v=0, 7+a+B=0. (3.13)
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For a gradient n, we have
r=a+B=0. (3.14)

Thus, WCCis a trivial symmetry, since it degenerates to CC
(3.9).

(iv) Special Curvature Collineation

A space-time is said to admit a SCC generated by & “ if
and only if

(Ll 5e)a =0, (3.15)
where I";_ is the Christoffel symbol of the second kind and
Ly =E6% + Ry

With the choice & = n° for the PR fields these equations
(3.15) reduce to

n? g =0

(3.16)

since R,;.,® n“ = 0. On covariantly differentiating n° , given
in the Appendix and using the NP expressions [vide Ref.
22b)} for the covariant derivatives of the tetrad vectors, we
infer after a tedious but straightforward computation that
(3.16) are equivalent to 36 complex equations. If the symme-
try vector # is a gradient field (3.7) these 36 equations for
SCC reduce to

r=a+B=0, (3.17a)
Ale+&=6+e=0D(€+€=0, (3.17b)
DF —3F (e +& =0, (3.17¢)

where
F= —D(e+&+2e+6~

Thus, PR fields admitting SCC are nontrivial. It should be
noted that we have used, in getting (3.17), the condition
b (€ + €) = 0, obtainable from NP equations (2.5d) and (2.5e¢).

(v) Affine collineation

A space-time is said to admit an AC if there exists a
vector field £%, such that

Ll =6 +Ryp26?=0. (3.18)
For the PR fields, we choose £ = n“ and so (3.18) becomes
Loy =n" =0, (3.19)

by virtue of (2.11). Now the translation of (19) in the NP spin
coefficients gives eight complex equations including 7 = 0,
which is the coefficient of the term I° n, n, (vide Appendix I).
By (3.7) these eight equations reduce to

r=a+B=0, (3.20a)
Ale+8=05+e=0, (3.20b)
D(e+8—2e+e*=0. (3.20c)

Thus AC is nontrivial for the PR fields and exists when (3.20)
is valid.

(vi) Degeneracy of Projective Collineation to AC
A projective collineation with respect to » is defined by
LIy =8,4., +8.94,, (3.21)

where A4 is an arbitrary function and 4., can be written as
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A, =A.g,' = DAn, + AAl, — 84m, —8Am,. (3.22)
Since R, n¢ =0, for the PR fields, we have

n . =08,94,. +68.94,. (3.23)
Now these tensor equations are equivalent to

T=a+B=0, (3.24a)

DA=44=64=064=0, (3.24b)

Ale+e=5le+8=0, (3.24¢)

De+€—2e+€°=0 (3.24d)

by (3.7) and (3.22). The condition (3.24b) implies that A4 is
constant, and it follows from (3.24a)—(3.24d) that the projec-
tive collineation for the PR fields degenerates to AC. Simi-
larly one can show the degeneracy of the following five col-
lineations to AC:

(vii) Special Projective Collineation
L. i =6,°4, +6.24,, A, =0.

(viii) Conformal Collineation
fnr?)c = 6baB;c + 5caB;b - gbcgadB;d’

where B is an arbitrary function.
(Ix) Special Conformal Collineation

“anla;c =5baB;c +5CGB;b —gbcgadB;d’B;bc =O'
J

(x) Null Geodesic Collineation
jnr‘;c =gbcgadE;d’

where E is an arbitrary function.

(xi) Special Null Geodesic Collineation
2 A =gbcgadE;d’ E, =0.

(xii) Motion
A motion with respect to n is described by
Z .8 =0, ie, n,, +ny, =0. (3.25)

For the PR fields with (2.2a) and (2.3a), the translation of
(3.25) in terms of the spin coefficients is, by using (2.4),

T+a+B=e+E=y+y=0. (3.26)
Thus with (3.7) we have
L8 =0 iffr=a+B=€+&=0. (3.27)

Now it is interesting to note that

(xiii) Conformal motion

L n8ab = hgap, h isascalar.

(xiv) Special conformal motion
zngab = hgab) h;ab = 0

(xv) Homothetic motion

f ngab = hgab ’
all degenerate to motion.

h is constant

(xvi) Weyl projective collineation (WPC) and its degeneracy

For the PR fields, we get from (2.10)

L Wit =2[lv + 7_’)'/”71[d nem,n® — ixﬂ( 7+?)m[dnc]mbna +{r+a+B)+ ixtm+a + B migneyn,n® ]
+ [cc] — ix¢3 [(m+a +B)m1d”b; + (7 + a+ B)myn,, — (€ +€ngn, — (v + ?_’)m(d’?’b) Jn.n®,

by virtue of (2.2a), {2.2d), (2.3a), and (2.3b). Consequently the
Weyl projective collineation with respect to n described by

L Wipe =0 (3.29)
is equivalent to

r+a+B=€+E=y+y=0.

Thus WPC is trivial since it degenerates to motion (vide 3.26
and 3.27).

Now we conclude that for the PR fields the sixteen geo-
metrical symmetries are not all independent when 7 is a gra-
dient field. They reduce to five nontrivial symmetries viz.,
RC, CC, SCC, AC, and M. Here we summarize them in a
tabular form

Symmetry T a+pB €+ FE
(i) RC - —_ —
(i)  Matter CC — (3.10¢) —

Free CC 0 0 —
(iiif SCC 0 0 (3.17b), (3.17¢)
(iv) AC 0 0 {3.20b), (3.20¢)
vy M 0 0 0
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-
where ' — ' denotes unrestricted. The table shows how the

symmetries become stronger and stronger. In order to estab-
lish their existence, we determine a corresponding class of
space-times explicitly under certain conditions in the follow-
ing section.

4. METRICS CORRESPONDING TO THE NONTRIVIAL
SYMMETRIES

Since the field equations (2.2b), (2.2¢), (2.3b}, (2.3¢c), and
(2.5a)—{2.50) are too cumbersome for analytical work, we as-
sume that / is a shear-free and that » satisfies freedom condi-
tions. In terms of NP scalars.

(a) the real null vector / is shear-free:

o=0, (4.1a)
(b) the complex null tetrad Z,2 = {1, m® m° n°} is
parallelly propagated®? along n:

v=y=7=0. (4.1b)
(c} n is a gradient field**:
T=a+pBu=p. (4.1c)

However, (4.1c) are already taken care of in equation (3.7).
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The null tetrad

Since we consider the real null vector » to be an infinite-
simal generator in the study of symmetries, we choose the

complex null tetrad Z_ ° as follows:
1 U x? x?
0 w § 2 é— 3
Z a = - — s 4
a 0 @ é- 2 § 3 ( 2)
o1 0 ©

wherew, £, U, and X' (i = 2,3) are six arbitrary functions of
coordinates. The intrinsic derivative operators D, 8, 6, A
take the following forms:

_d W, X0
dgu I o’
J
_wd 5_2, (4.3)
ar X
— §}'a
5= ,
8r + ax’
sl
ar

where j = 2,3. (Note: The operators D,4 correspond respec-
tively to 4, D of the NP formalism?'). Then the completeness
relation is

g =Fnt +n®l® — m*m® — mm". (4.4)

Metric Equations

Under the conditions (4.1) we obtain the so-called met-
ric equations by using {4.2) in the commutation relation {D-4)
of Ref. 25 as follows:

AU= —mw — 7o + (€ + €), (4.5a)
AXi= _ﬂ.é-i_,ﬁ.g—i’ (4.5b)
Ao =T, (4.5¢)
A& =0, (4.5d)
SU —Dw =« —(p+ € — €, (4.5¢)

—D§'= —(p+e—8K, (4.51)
bo—bw=[FB—aw+@—-B@+(p—p), (45
SEi—8¢'=B—a)k'+@—PE" (4.5h)

(i) A class of metrics admitting RC

For solving Bianchi identities (2.3b}, (2.3¢), the Max-
well’s Egs. (2.2b), (2.2c), the NP Egs. (2.5a)—2.50), and the
metric Eqs. (4.5a)—(4.5h) under the conditions (2.2a), (2.3a)
and (4.1a}-{4.1c) we follow the method described by New-
man and Tamburino,?® and Collinson and Morris.”” The so-
lution of these equations is

V:?/:T:U:/l :u:o’

B = BO)

a=a,=Pf,+2P(log P),,

7= 0= 2B, + 2P (l0g P),

wo|(55))
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=po = (4.6)
P=P = )

2298

=K, —IT exp[j d']/f(u),
€ = €y — N7 + TobBo)s
U= U, + e, + &) — 4770

= —HmoP + ToP), X = — inmoP — oP),

©=ri, = —if*=P, 4.7
X2=X3=w,=0,
¢ = ¢, = PA (u), (4.8a)
¥ =1y = 2(8y — PI/FT)2PU o; — UyTy), (4.8b)

where A, f are functions of u only, a subscript O denotes
independence with respect to » and

P=Plux*x®,z=x*+ix*
iy = 2PU ,; (4.9)

Hence the components of the metric (4.4) determining the
RC which is not a CC are

g10:g01 — 1’g23=g00___g02=g03=0’
H'=2[U, + Heo + &) — 47w ),
g = —2rmy + Fobo/A,
go = —2irm, — 7o)po/A,
g7 =g"= —2(¢/A), (4 #0).
Here ¢, characterizes the pure electromagnetic-radiation

field and U, is related to the pure gravitational-radiation
field by {4.8a) and (4.8b).

— Uy,

(4.10)

(ii) Space-time admitting nontrivial Matter CC

The metric determining matter CCis the same asin RC
except for the relations [vide (3.10c) and (2.3¢) with (2.2c} and
(3.10c), respectively]

t-oo(1a)s

¥ =¢PH,

where Q, H are functions of u alone.

(4.11a)

(4.11b)

(iif) Metrics admitting Free-CC, SCC, AC
Using the tetrad rotation®® m® = m* exp(i6 ), where 6

is real and independent of r, we set

P=P (4.12)
such that we infer from (4.5f)
€=F¢. (4.13)

Then as a sequel to (4.5d), (4.5¢), and (4.13), we obtain

€ = €lu), (4.14)

where € is an arbitrary function of u only. Therefore, the
components of the metric tensor determining free CC which
is not a SCC, have the form

glo =gOI — 1,g11 — Z(Uo + 2r€) gOO — 02 _g03 — 0’
=g =g"=0,g"=¢"= —2ps/4), *15
where U, is related to the pure gravitational-radiation field
as follows:

Yo= — 4(P2UO,E),E (4-16)
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and the electromagnetic field is given by (4.8a). Then the
nontrivial nature of the metrics corrresponding to the three
collineations (3.9), (3.17), and (3.20) can be distinguished as
follows:

Free CC: € is an arbitrary function of u. (4.17)

SCC: €” — l4e€’ + 24€> =0, € #4€°. (4.18)
AC:¢€ —4€ =0, or e= —B{4uB+1)"', (4.19)

where €' = de/du and B is a nonzero constant. It may be
noted that, when B = 0, AC will degenerate to motion.

(iv) Metric admitting motion
We observe from (3.27) that the salient feature of mo-
tion is
€=0, (4.20)
and the line element is
ds’ = —2U(du)® — 2 dudr — } (4 /¢o)*{(dX? + (dx*},
(4.21)

where U, A4, ¢,, ¥, are the same as in AC (vide 4.19).

5. DISCUSSION

The choice of PR fields in this paper is in consonance
with the Tariq and Tupper’s theorem,” “The only curvature
collineations admitted by null source-free Einstein—-Maxwell

fields, not of Petrov-type N or O, are conformal motions.”
)

APPENDIX |

However, they did not aim at getting exact solutions of Ein-
stein-Maxwell field equations. We have obtained nontrivial
metrics describing the PR fields propagating along the real
null vector n.

If one considers the real null vector / of the complex null
tetrad Z, as a symmetry vector instead of » in the above
investigation, the corresponding pure radiation fields are
characterized by the two scalars ¢, 0 and ¢,7#0, since / will
then be the common propagation vector of both the radi-
ation fields. Accordingly instead of «, €, 7, p, @, 5, 0 we have
to consider the nonzero spin coefficients, v, ¥, 7, ¢, @, 5, 4 in
the case of /. However, it may be noted that the form of the
nontrivial metrics given in Sec. 4 is essentially unaltered.

For an isolated system, the gravitational-radiation field
(with the propagation vector #) is given®' by

Y=y =0().
Since ¥ is independent of r [vide Eq. (2.3b)], we infer that the
metrics obtained in this paper do not represent self-gravitat-
ing systems.
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The Newman-Penrose concomitant of n®., under the conditions v = A =y = 0 are given below:

n® o =2m7nn, + [A(y + VMl + (2Ae+Ey+7)—A(e+ & — 77— 77 — (@ + B)r — (@ + B)7} .
+ (D +N+la+BT+@+Bminl. + (4(a+B)+2rta +B) =7y + V)ilym,
+{41@+B)+2v@+B) — 1y + VL. ~ 8y + V), L. — 8y + vim, L,

T{=8la+B)+2Bl@+B)+r+yaimym, +{—8@a+B)+28@+B)+ W+ yo}m,m,

+{—8@+B)+2a+8)a+ply+7)m,m,

+ { —8l@ +B) +2a+B)a+ply + y)im,m, + {D@+p)

— 2€e(@+ B) — Te + & —kly + V)}ny . + {D(a + B) — 2€(a + B)

— e + & — &(y + V)}nym. + {Bl€ + € — 2(e + &a + B) + mp + 75 + pla + B)

+ @+ B)5}m,n, + {8(€ + & — 2(e + &)@+ B) + 7B + 70 + p@ + B) + (@ + B)o)#i,n,
+{—Dle+e&+2e+ef—(@+BK—(a+Bk

— 7k — mkinyn, In® + [{Dr — m(3€ + €)jn,n, + (A7 — 27y} ,n. + 7ly + ¥)nyl.
+{—br+w@+pB)}m,n, +{ — 6w + 2B }myn,

+ {7 + (@ + B)rin,m, + {77 + 2m(@ + B)}n, /. Jm® + [c.c.],

where the symbol [c.c.] denotes the complex conjugate of the terms of the preceeding bracket.

r
APPENDIX I

NP equivalentof 7° .., =0
Under the condition v =y = A =0, we get that
n" icbd = 0

are equivalent to
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T =0,

DA+ Ae+§=0,
44+A4(y+7)=0,
SA+A@+pB)=0,
DC—Cle+&—Lk—Lk=0,
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AC—Cy+y)—L7—Lr=0,
8C—C@+pB)—Lp—Lo=0,
8C—Cla+B)—Lo—Lp=0,
DL+ L(E—¢)— Ak =0,
AL+ L(y—y)—Ar =0,
8L —L(B—a)— Ao =0,
8L —L{@—pB)—A4p=0,
DB —B(e + € — Ex — Ex =0,

AB—B(y+y)—Er—Er=0,
6B—Bla+p)—Ep—Eo=0,

5B—-B@+pB)—Eo—Ep=0,
DE =E (e — & — Ak =0,
AE4+ E(y—y)— A7 =0,
SE—-E@—pB)—4p=0,
SE—E{B—a)— A5 =0,

DI —I(3¢ + & — Cx — Hk — Gk =0,
AI—I(3y+y)— Cr— Hr — Gr =0,
8I—I@+38)—Co—Ho—Gp=0,
8I — I+ 3a)— Cp— Hp — Go =0,

DG+ Gle—38 —(L+E]k=0,
AG+Gy—3)—(L+EF=0,
6G+G3a—B)—(L+Ep=0,
5G—G(3B—a)—(L+E)F=0,
DH—H(e+&— Lk —Exk=0,
AH —H(y+7%) —Lr—Er=0,
SH—H@+pB)—Lo—Ep=0,
SH—H(a+pB)—Lp—E5=0,

G= Sla+B)+2Ba+B)+(r+o,
H= —8@+pB)+2a@+B)+ply +7)
I=D(@+p)—2e@+B)— v+ vk
J=8(€ + & — 2(e + &a+5)
+pla +B) + (@ + B),
F= —Dle+&+2e+8 —(@+Bk—(a+Bk
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Taking a Riemannian submersion as our starting point, we obtain some formulas derived from
O’Neill’s fundamental equations of a submersion and compare them with the basic equations of
Bergmann’s approach to Kaluza—Klein theory in five dimensions. Having imposed Hermann’s
sufficient conditions for the submersion to be a principal fiber bundle, we study the conclusions

that can be drawn from the derived formulas.

PACS numbers: 04.50 + h, 02.40.Ky

1. INTRODUCTION

The use of principal fiber bundles possessing Rieman-
nian metrics for studying the Kaluza-Klein'~ approach to
the Einstein—-Maxwell theory, and its generalization to the
Einstein—Yang-Mills theory, was initiated by Trautman,*?
worked through by Kerner® and Cho,” and further studied
and developed by Kopczynski,® Bradfield and Kantowski,”
Cho and Freund,'® and others. In all of these cases the bun-
dle considered resembled a Riemannian submersion. We
note that if M and B are C* Riemannian manifolds, then a
Riemannian submersion is a C* map 7: M—B having the
properties that (i) 7 is of maximal rank and (i) 7, preserves
the lengths of horizontal vectors, i.e., vectors orthogonal to
the fiber 7~ ' (b) for b € B. Here 7, is the derivative map
induced by 7.

The purpose of the present paper is to study Kaluza-
Klein theory taking a Riemannian submersion as starting
point. In Sec. 2 we establish some consequences of the funda-
mental equations of a submersion developed by O’Neill.!!
This is followed in Sec. 3 by a comparison with Bergmann’s>
approach to Kaluza—Klein theory in the special case of five
dimensions. In Sec. 4 we invoke the theorem of Hermann, '
giving sufficient conditions for the submersion to be a fiber
bundle, and study the consequences of the equations ob-
tained in Sec. 2. The paper ends with a discussion in Sec. 5.

2. DEDUCTIONS FROM THE FUNDAMENTAL
EQUATIONS

The fibers of a submersion 7: M—B, denoted ' (b) for
b € B, are submanifolds of M of dimension dim M — dim B
as a consequence of property (i) of a submersion.!* Vector
fields on M which are tangent to the fibers will be called
“vertical”” while vector fields orthogonal to the fibers are
“horizontal.” If E is a vector field on M, it may be decom-
posed into its horizontal and vertical parts, which we write
as

E=%E+ VE. 2.1)
O’Neill'! defines the tensors 4 and T by
T.F=235D, 7 F+ 7D, %F,
ApF = 9"Dyp F + Dy VF,

(2.2a)
(2.2b)

where E and F are vector fields on M and D is the Rieman-
nian connection on M. Both Tand 4 are tensors of type (1,2).
If V,W are vertical vector fields, then!!
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DW=2D,W+T,W, (2.3)
showing that T'is the second fundamental tensor {cf. Ref. 13,

p. 75) of the fibers while if X and Y are horizontal vector
fields"!

Ay Y=47[XY], (2.4)

indicating that A is the integrability tensor of the horizontal
distribution 7 on M. Many useful properties of the tensors
T and A4 are derived in Ref. 11.

Denoting by (,) the Riemannian metric on M, the Rie-
mann—Christoffel curvature tensor R is given by

R(EF,PL)= (ERp (F)), (2.5)
with

Ry (F)=Dp F—DpD F+ D, D,F, (2.6)
where E, F, P, and L are vector fields on M. O’Neill's'! fun-
damental equations of a submersion consist of the compo-
nents of the curvature tensor R expressed in terms of the
tensors 7 and A and their covariant derivatives. If X, ¥, Z,

and H are horizontal vector fields and U, ¥, W, and F are
vertical vector fields, then he finds that

R(FEW,UV)= (FRyW)) — (T, W,T,F)

+ (T, W,T F), (2.7a)
R (X,VV,U»V) = ((DVT)UW,X) - ((DUT)VW’X),
(2.7b)

RHZX,Y)= (HR%(Z))

—2(4xY,4,H)

+ {4y ZAH ) + (A XA H ), (2.7¢)
R(V.ZXY)= (D, A)x V) + (4, V,T,Z)

—(4yZ,T,X) — (A X,T, Y), (2.7d)
RWYX,V)=((DxT), W,Y) + ((DyA)x Y, W)

ATy X, Ty Y) + (Ax VA, W).
(2.7¢)

In (2.7a) the first term on the right-hand side is the curvature
tensor of the fiber metric while the first term on the right-
hand side of (2.7¢} is the horizontal lift of the curvature ten-
sor of B. The covariant derivative of T and 4 appearing in
(2.7b), (2.7d), and (2.7e) is given, for example, by
DyT)yW=Dy(TyW)—Tp y(W)—Ty(D, W)
(2.8)
We shall find it convenient to specify basis vector fields
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on M as follows: Suppose dim B = n, dim 7~ '(b ) = m for
b € B; then dim M = m + n. Let Greek indices take values
1,2,3,...,n and Latin indices take values 1,2,3,...m. Let {¢'} be
a set of m linearly independent vertical vector fields and let
{e, ] be a set of n linearly independent horizontal vector
fields which are 7-related to a set of n linearly independent
vector fields on B. Such horizontal vector fields on M are
called basic vector fields by O’Neill. If { 64,6 #] is a dual basis
of 1-form fields on M, then the metric tensorg = (, ) on M
may be written

g=g,0'06'+g,0"80" (2.9)
with g; = (e..e;), g, = (e, e, ).

The vector fields Aeﬂ e, are vertical and so we may write

4,6, = — \F' e, (2.10)

with F’,, = — F' , following from (2.4). The vector fields
Ae“e,- are horizontal and thus we have

A e =W, %,. (2.11)

We can show that F ‘“V = W',,, whereindices are raised and
lowered with the use of the metric (2.9). This follows using

(2.2b) and the fact that D is Riemannian, i.e., torsion-free and
compatible with the metric (2.9), since

f}yv = - 2(eere“ev>) (212)
and also
W, =2(e,.D, ¢) = —2(D, e,¢;) =F,,. (2.13)

For future reference we note that since {e,, ] are basic, if
V is vertical then

Vie,e) =0 (2.14a)
and, since 7, ¥ = 0, [V,e, ] is vertical and thus, in particular,
H[ee, ] =0. (2.14b)

We can now prove the following:

Lemma I If the submersion 7: M—B has totally geo-
desic fibers, then the Ricci scalar of M may be written

R=R*+R—1|F|3 (2.15)
where R * is the Ricci scalar of B lifted to M via 7, R is the
Ricci scalar of the fibers, and

|F|? = F,, F*. (2.16)

Proof: Since the fibers are totally geodesic (cf. Ref. 14, p.
180), the tensor 7 vanishes and thus (2.7) gives the following
components of the curvature tensor on the basis {e, e, }:

Ry = f!,-,u, (2.17a)
R, =0, (2.17b)
Rpo =RX,. — 204, e,.4,¢,)

+ (Aeae,,,Aepe#) +(4,.e,4.¢,) (2.17¢)
Ry, =(D.A4).e,e), (2.17d)
Ripy = (DA ) e00:) + (A, €14, €:), (2.17¢)

where R 5cp = R (e4,€5,2c,¢p), With capital letters taking
values 1,2,3,...,n + m. From (2.10), (2.17a), and (2.17¢)

R=R*—}|F|*+2g"g'R,,, +R. (2.18)

ivpj
In (2.17¢) the first term on the right-hand side is skew-sym-
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metric in p,v (this is a consequence of Lemma 6 of Ref. 11)
and so

8'8"R..,; =887 (A, ¢, 4. ;)
=1|IF|I% (219
using (2.11) and (2.13). Thus, combining (2.18) and {2.19), we
find that the Ricci scalar of M is given by (2.15) which has the
general form of the Lagrangian density appearing in the Ka-
luza—Klein approach to the Einstein—Yang—Mills theory.”
We end this section by giving two further lemmas. The
first is O’Neill’s'' Lemma 7 which we state without proof:

Lemma 2: If Vis vertical and ® denotes the cyclic sum
over the horizontal vector fields X, Y, and Z, then
O(DA4 ) Y, V) =84, Y, T, Z). (2.20)

We shall see in what follows that this equation coincides
with the Bianchi identities satisfied by the Yang-Mills field
when we make the necessary specializations.

Lemma 3: If X,Y are basic and V, W are vertical vector
fields, then
(Dy(AxY)W) + (Dy(AxY),V)

=(DyT)wV.X) = ((DxT)w V.Y ).

Proof: The proof follows from the observation of
O’Neill'! that identities involving the derivatives of Tand A4
can be obtained from (2.7) using the symmetries of the curva-
ture tensor. We begin, however, with the identity

<(DVA Jx Y:W) = <DV(AX Y),W> - (ADVX(Y)’W>

— (4x(DyY)W). (2.22)
Using the properties of 4, the fact that D is Riemannian, and
also that X, W] =0 = F1Y,W ] since X,Y are basic, we
have

(Apx(Y), W) = — (4y(D,X ), W)

(2.21)

= - (A Y(DX V)» W>
= — (A Ay V,W)
= (A, V.AyW). (2.23)
Thus (2.22) may be written
(DyA )y Y, W) = (Dy(Ax Y ), W) — (A V,Ay W)
+ (A V Ay W). (2.24)
From the symmetry of the curvature tensor
R(VXY,W)=R(W,Y.X,V), (2.25)
together with (2.24) and
(DyT)w VX)) =((DyT)y WX ) (2.26)

(cf. Ref. 11, Lemma 6), we arrive at (2.21) above.
If we denote covariant differentiation in the fibers by a

caret, i.e., if V,W are vertical vector fields,
D,W=2D,W,

we see that the left-hand side of (2.21) may be written
DyAx Y\ W) + (Dyld YV ).

Hence, if the fibers are totally geodesic the right-hand side of
(2.21) vanishes and we obtain Killing’s equations {cf. Ref. 15,
p. 88) satisfied by 4, Y, i.e., A, Y is a Killing vector field of

(2.27)
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the fiber metric. This result is due to Bishop,'® who gave an
elegant geometrical proof.

3. BERGMANN'S FIVE-DIMENSIONAL THEORY

In his approach to the five-dimensional Kaluza-Klein
theory, Bergmann’ first developed some useful formulas for
the study of a unit vector field in a five-dimensional Rieman-
nian space. Making use of the notation of Sec. 2, we take
m = 1, n = 4, choose a local coordinate system {x* ] with
A =1,2,3,4,5, and write

a a

e/‘ = e: (—9;, €, = A 8 ﬁ
and assume that {e,,e,) = 1. We raise and lower capital in-
dices using the metric tensor components

4 (3‘1)

Jd 4 >
= {——,—}, 3.2)
8az <c9x” Ix® (
and define
Azc ZAB;C —Acyar B, =4, [BA i (3.3)

with the stroke indicating covariant differentiation with re-
spect to the metric (3.2). Bergmann® obtains the following
formulas [his Eqgs. (17.15), (17.24), (17.29), and (17.51), re-
spectively]:

e‘éeégw,AA”::ABlC +Adgp —AgBc —AcBp, (3.4a)
¢7;tv,BA P= e:ef(BA 8 — Bpa ), (3.4b)
ep (wﬂv) + ev(¢pﬂ) + e/l (¢vp)
= e‘,;efef(BAAcg + BpA o + BcApy)s (3.4¢)
R =R*-4 D’CAD!C —~(4°p) +ByB®
—2(AD|D)[CAC+ ZBD‘D. (3.4dj

Hereg,, = (e,.e,) with Greek indices being raised and
lowered with this metric. Partial differentiation is indicated
by a comma. Also

¢),uv = e:efAAE; (3’5)

and these quantities are related to Maxwell’s electromagnet-
ic tensor in this theory. In deriving (3.4c) we have to assume
e, ,e,] = 0. This is equivalent to Bergmann’s Eq. (17.28)
and can always be guaranteed to hold at a point, which is
sufficient for our purposes. In {3.4d) R is the Ricci scalar of
the metric g,5. The scalar R * (denoted &, g“R,,," in Berg-
mann’s Eq. (17.51), in which the opposite sign convention to
oursin (2.6) is used) is interpreted from the submersion view-
point following (3.20).

We will now assume that we are working on the space
M of the submersion discussed in Sec. 2 and study the valid-
ity and interpretation of formulas (3.4) in that case.

With /= 1and e, and e, given by (3.1}, Eq. (2.14b) can
be written in the form

epude, =A% el (3.6)

Multiplying by eZ. and e, and using eze,, =8cp — AcAp
yields

else,uCMAA =Ac\p —BpAc — BcAp. (3.7)

A direct calculation gives
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ell;eé gyv,AA 4 = déeyc |,4A 4 - e/ée,uD ’AA AA DAC
tete,y A" —ehe,p A A Ay
(3.8)

Substitution of (3.7) into this and use of B4 € = O results in
(3.4a). However, (2.14a) implies in the present case

Ozel(gpv) =g/4v,AA A’ (39)
and so A% must satisfy
Ay +Acip — AgBe — AcBg =0, (3.10)

This means that the integral curves of 42 constitute a rigid
congruence.

We next look at (3.4b). That this question is a special
case of (2.21) can be seen as follows: Putting V' = W =e¢,,
X =e,,and Y = e, and using (2.10), the left-hand side of
(2.21) becomes

- (Del(F;lzvel)’eI> = _el(F;]zv)= —ABF];zv,B'

(3.11)
Using (2.4), (2.10), {3.3), and (3.5), we find
Fly= —eleldyp = —g,, (3.12)
From the definition (2.2a) of the tensor 7,
T,e,= —B,ele, T, e =Be,. (3.13)

Substituting into the right-hand side of (2.21) and using (2.8),
we obtain the right-hand side of (3.4b).

Consider now (3.4c). This is a special case of (2.20) for
using (2.10), (3.3}, (3.12) and the first of (3.13), we have

,e,T.e)=—} enelecd B (3.14)
Hence, if & denotes the cyclic sum over g, v, and p, we find
®(Ae”ev’Telep> = %eﬁefe;?(BAAca + BpA c + BcApy).

(3.15)
On the other hand, assuming #7Te,,.e,] =0,
(D, 4). .8, =B(D, (4, e,)e)
= — e, (F'un)+elF, ) +elFl,))
(3.16)
The first equality here is established in Ref. 11, Lemma 7.
Substituting (3.12), (3.15), and (3.16) into (2.22) yields (3.4c).

Finally, turning to {3.4d}, the fundamental equations
(2.7) together with (2.10) yield, in this five-dimensional case,

R=R*—3|F|*+ 28R ... 3.17)

with |F||>=F', F',, . However, using (2.8) and (3.13), we
have

gﬂvRullv

=gluv<(DeHT)e,el’ev> —g%(T, e, T.e,)+}]|F|?
=g"((D,,T).ee,) —B*B, +4F|’

=B", +1L|F|? (3.18)
and so (3.17) becomes
R=R*-L|F|*+2B4,. {3.19)

On the other hand, (3.10} and (3.12) can be used to show that

VIIF|?=A4""4,,c — B*B,, (3.20)
and, when this is substituted into (3.19), we obtain agreement
with (3.4d) on account of (3.10). From the submersion point
of view, we see that R * in (3.4d) is the Ricci scalar of B lifted
to M via 7.
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To obtain the Kaluza—Klein theory from this formal-
ism, Bergmann® begins by assuming that A% is a Killing vec-
tor and thus B, = Oand (3.10) is satisfied. We see from (3.13)
that from the submersion point of view Bergmann’s assump-
tion is equivalent to the vanishing of the tensor 7, i.e., the
fibers are totally geodesic. In this case (3.19) has the form of
the Lagrangian density appearing in the Einstein-Maxwell
theory and, of course, it is a special case of Lemma 1 in Sec. 2.
In addition, with B, = 0, (3.4b) facilitates the introduction
of a special coordinate system’ in which ¢,,, is independent
of the fifth coordinate. The relationship between (3.4c) and
the Bianchi identities for Maxwell’s electromagnetic tensor
emerges as a special case from the argument of Sec. 4.

4. THE BUNDLE VIEWPOINT

Sufficient conditions for a Riemannian submersion to
be a fiber bundle are given in the following theorem due to
Hermann'Z:

Theorem: If M is complete as a Riemannian space, so is
B. M is then a locally trivial fiber space. If in addition the
fibers of 7 are totally geodesic submanifolds of M, then 7:
M— B is a fiber bundle with structure group the Lie group of
isometries of the fiber.

We shall henceforth assume that the conditions of this
theorem are satisfied. Thus in Sec. 2 we take thetensor 7= 0
and if {e*} are a basis for the Lie algebra of the structure
group we may take {e;} to be the corresponding fundamen-
tal vector fields on M. Thus in addition to having [e;,e; ]
vertical, we now have

[ee;] = C*yen, (4.1)
where C*; are the structure constants of the Lie algebra of
the structure group with respect to the basis {e;*}. We also
have, from the theorem above, that {e;} are Killing vector

fields of the fiber metric. The analytical form of this property
is given by

e.lgy) + 2g1(jclnk =0, (4.2)
where the subscript parentheses denote symmetrization over
iandj.

Defining the Lie algebra-valued 1-form field on M,”*

w=0', (4.3)
one easily shows that

wle,)=¢e*, L o0=[we’], (4.4)

where the left-hand side of the second equation is the Lie
derivative of » with respect to the vector field e; and the
bracket on the right-hand side is the Lie algebra bracket. The
second equation in (4.4) states, in infinitesimal form, that o is
type Ad. Thus (4.3) is a (pseudotensorial) connection 1-form
on the bundle. Defining the (tensorial) curvature 2-form of
in the usual way

2 =do + o] =12°,,0“N0%, (4.5)
we have from (4.3)
do'+1C 0N =102, 0 NO" =0, (4-6)
Using the fact that
dbie,e,) = —101[e..e.])
—\F, 4.7)
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[the last equality coming from (2.4} and (2.10})}], we have
0, =F,. (4.8)

Taking the covariant exterior derivative of the second of
(4.4), we obtain

L A2 = [£2,7], {4.9)
which can be rewritten in the form
ej(F"W) = C‘kjF",,v (4.10)

This states, in infinitesimal form, that {2 is of type Ad.
When T = 0, we can write (2.20), at a point at which
HTe,,e,] =0, in the form
®e, (F',,)=0.
Using (4.6), we find that at a point at which #Te,
have

4.11)

,e,] =0we

dn "(eu,ev,ep) =(1/3))8e, (F',,), (4.12)
and so (4.11) is equivalent to the Bianchi identities
A+ CLEe A2 =0 (4.13)

(cf. Ref. 14, p. 78). Since this is a tensorial equation, the
special choice of horizontal vector fields {e, } used to obtain
it is legitimate.

When T =0, (2.21) can be written, using (4.1) and the
fact that D is Riemannian, in the form

ei(kav)glq + €; (Fk )glk

+ F*, {e.(g;) +28,,C'x} =0. (4.14)
Using (4.10), we find
F* eg;)=0 (4.15)
Hence, to have no restriction on F*,,, could take
e.(gy) =0. (4.16)

Then g; must be constant along the fiber, and by (4.2), C;,,
= g,C ", is skew-symmetric under interchange of any pair
of indices.

5. DISCUSSION

When the conditions of Sec. 4 are satisfied (2.15) be-
comes the Lagrangian density of the Kaluza—Klein theory.
The Ricci scalar R is then calculated with the invariant met-
ric g; and plays the role of a cosmological constant. It has
been pointed out by Bradfield and Kantowski® that R=0
for certain Lie algebras and Kopczynski® has described a
mechanism for removing it in general. The 1-form w and the
2-form {2, pulled back to the base space B via a local cross
section, are the gauge potential and the Yang-Mills field,
respectively.
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“Polynomial constants” for the quantized NLS equation
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The classical nonlinear Schrodinger equation (NLS) is known to have an infinite number of
polynomial constants. While recursion relations to compute these are available, no general
expressions in terms of the fields have been found. However, general expressions have been
obtained in terms of the reflection coefficients. When we turn to the quantum case where the fields
become operators with conventional commutation relations, the polynomials with suitable
ordering are still constants. The classical expression for the constants in terms of the reflection
coefficients strongly suggests what the quantum form should be. This conjecture is proved for the
repulsive case. The expression is significantly simpler than the classical one. It is

I, =(1727)f= _(k)"R *(k)R (k )dk.
PACS numbers: 11.10.Lm, 02.90. 4 p

I. INTRODUCTION

Classically, the nonlinear Schrédinger equation

iV, = — W, — 206¥P*PY¥ 1
{o = + 1for the attractive case and ¢ = — 1 for the repul-

sive case) is known to have an infinite number of polynomial
constants of motion.! Thus, the first five are

I1i=N= J ¥y dx,

- E)
I{EP=f w* X wdx,
— o0 H

I;EH=f (0.W* 3, ¥ — oxW*W)dx,
Ingf (W* P+ oW I, W?)dx, 2)

I = j (U ¥, — 20k ¥+, (02), — ok WP, ]
s SN T 2 Z R 2L A R RV

(Of course classically the order in which the ¥* and ¥ are
written is unimportant. However, it will be seen that the
order given will be useful later when the ¥°s are operators.)

We present some remarks.

(1) These constants are in involution.

(2) They can be obtained from the coefficients in the
Laurent expansion of a{¢ ) (defined below).

{3) While recursion relations permit us to calculate
these polynomials successively, no general closed form
expression for these seems to be available. However, a rela-
tively simple closed form expression does exist in terms of
reflection coefficients.

(4) Comments on the construction of  ;,, n > 4, are given
in Appendix B.

Here we wish to investigate the quantum case.” Thus,
W, ¥* are assumed to be operators satisfying

[P(x),¥(x')] =0=[¥*x)¥*x], (3)
and

[¥(x),¥*x")] = b6x —x'}).
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It is known that 1}, 7 |, and 7 are again constants.
Further, when expressed” in terms of the reflection operators
R (k), R *(k ) they have the form

’ 1 ” *
I)= > f—wR (k)R (k )dk,
, 1 o0 .
I = > J, 3 kR *(k )R (k )dk, (4)

IgzLj k 2R *(k )R (k \dk.
27 J_

Qur purpose is the following: From the commutation
relations of the reflection coefficients it is readily shown that
if we define I, by

1 (0,
I, = Ef,wk R *(k )R (k \dk, (5)

then
[1,,1.] =0, allnm. (6)

Thus, we have an infinite set of commuting constants of mo-
tion. Here we will show that the /,, defined by Eq. (5) are
precisely the quantum analog of the classical polynomial
constants, i.e., when expressed in the field variables they are
polynomials.

It will be seen that the following hold.

(i) When a(£ ) is expanded in powers of 1/£, we obtain in
each successive term a new constant.

{ii) The quantum form of the constants when expressed
in terms of the reflection operators are significantly simpler
than the classical form.

The program to be followed is so. In Sec. II, we briefly
summarize well-known results to have them in the notation
we want to use. Section III recalls what is a dispersion rela-
tion for the Zakharov-Shabat function . (Here we are re-
stricted to 0 = — 1.} Passing to the limit x— — o, gives a
singular integral equation for a(£ ) in terms of the reflection
coefficients. In the classical case, this is solved in closed
form. Expanding In ¢ in terms of 1/£ gives the well-known
result.> From this we can readily conjecture what the quan-
tum result should be. However, to treat the quantum case
rigorously, we solve the integral equation by a Neumann
series. The constants are then obtained by further expanding
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in 1/£. An essential simplification occurs. Only a finite num-
ber of terms of the Neumann series contribute to the coeffi-
cient of a given power of 1/£. As we go from the coefficient of
£~ " tothatof £ ~" ', we obtain precisely one new constant
I,. The other terms in the coefficient are merely polynomials
in the lower-order constants.

It is then shown that the (quantum) 7 ;, of Eqgs. (2) give
precisely the same result when acting on a large class of
states as do the I, in Egs. (5). For the repulsive case these
states are complete. Hence, we have the identification.

ll. SUMMARY OF NEEDED FORMULAS

To the quantized nonlinear Schrodinger equation, we
associate an operator Zakharov-Shabat eigenvalue problem
v — (i€ /20, = k"0, ¥,
(7)
Uy, + (i€ /20, = — ok 2 *p,.
Conventionally, one defines four different solutions by
boundary conditions at + . Thus, ¢ is defined by

by

e ()
Y by

tm e = (), o
and ¥ by

e ()

The boundary conditions and the differential equation
can be combined in the integral equations

¢1(x) — ei§x/2 + Kl/2f et i§|x—x’)/2¢2w dx’,
. (12)
bix) =~ [ eexoageg, ax,
B = w7 [ ey i,
e (13)
ZZ(X) = —e— iEx/2 O,KI/Z J- e~ i (x — x’)/ZW *(xl)zl dxl’

i) = =07 [ ey e, »

¢2(x) —e— i€x/2 + a.K.l/zf

X

e~ i£(x — x')/2v/ "‘(X')ilrl(x')dx',

hx) = e _ 12 f T e Vg (v
_ . (15)
¢2(x) = 0K1/2f e-ig(x—x'}/ZW *(x,)zl(x’)dx’.

From these integral equations and the commutation re-
lations of Egs. (3), we readily find the following.

(1) At the same x the solutions of Eqs. (7) defined with
boundary conditions at — o commute with those defined
by conditions at + o0, e.g.,
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[#:(x).¥;(x)] =0. (16)
(2)

[84(x),¥ (x)] = 0 = [¢,(x), ¥ *(x)], (17)
[6,x), ¥ (x)] = (0x'/?/2),(x), (18)
[8(x), ¥ *(x)] = (k"/*/2)8,(x), (19)
[¥1(x), ¥ (x)] = 0 = [¢h(x), ¥ *(x)], (20)
[4,(x), ¥ *(x)] = (— &2/ 2),(x), (21)
[¥,(x),¥ (x)] = (— ox'*/2)4h,(x), (22)
[#,(x), ¥ (x)] =0 = [¢,(x), ¥ *(x)], (23)
[1(x), ¥ *(x)] = (— &'12/2),(x), (24)
[4,(x), ¥ (x)] = (— ox'2/2),(x). (25)

Comments about the derivation of these results are given in
Appendix C. The scattering data a,b are defined by

limg\(x,§)e ™= = alf), (26)

lim @,(x,¢ )** = b (£ ). (27)
It follows that

b(§) = limg,x&)e 7, (28)
and o

ag)=— xlij:@(x{ e+ 2, (29)

wherea@ = a*,b = ob *,and * denotes the complex conjugate
classically and Hermitian conjugate quantum mechanically.
More generally we have

a(§) = 1% alx.& ) — olx.6 (%€ ), (30)
from which we can also obtain a formula that will be very
useful

al) = lim goix.£)e? B1)
Similarly, we hav:
b(§) = dix. hi(x.) — $1x6 alx.6 ). (32)

Given Egs. (30) and {32) and the commutation relations
of Eqgs. {16)—(25), one readily computes the commutation re-
lations of the scattering data with ¥ and ¥ *. These are con-
veniently summarized as follows.

Let v,v’ be commuting solutions of Eq. (7). Then the
three-vector y constructed as

X1= l)é U,

X2= —vjvy, (33)

X3 = [viv, +v50,)/2,
satisfies the equations

X1 + iy, = — 2062y,

=9 x2 + iy, = 2y, Y, (34)

3. X3 = K"\ W 4 ok 2P *y,.

Then for A = a,b,3,b we can associate a y * such that

[A4,¥(x)] = ox' 2y ),

(35)

[A4,9*x)] = &'y (x),
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and
(x5 x), ¥ (%))

= [, ¥ *x)] = [x5 %) ¥ (x)] (36)
= [x5"'x), ¥ *(x)] =0.

Further
[x*,¥ ] = (ok'2/2)4,

and (37)

[X(zA )’q/*] — (KI/Z/Z)A.
It is amusing to note that in virtue of these commuta-

tion relations, the Egs. (34) for y ' are quite insensitive to
ordering. Indeed if & 4+ 8 = 1, we see that

axX(IA) + lf)(({‘) — 20.K1/2(ag/*)(13/1) +BX(3A)W *)’
— X + kxS =2 Hay W + B, (38)
xS =k ay? W + By

+ ok @ W) + By W H),

Explicitly we have
Bolx,8 Ja(x.8)
Yg)=| — dix.& W(x.8) ;

13,6 Walx.§ ) + bax,6 Jh1(x.€ )}
(39)

— Bl & W% )
X(b)(x7§) = ¢1(x’§ )El(x’é‘)

— P& Walx £ ) + olx.£ (%6 )]

Other important commutation relations obtained in the

referenced work®™ (for the case ¢ = — 1) are the following.
Let

R*E)=(i/Nkb(€)a "), (40)
then

RERE)=SEERER(E),

R*ER*E)=STHEER*ER*E), (41)

RERME)=SELIR*ERE) + 2m8(6 — &)
Here S (£,£ ') is a c-number whose only properties we need
here are

STHEE) =S E)=S*EL), (42)
and S(£,5)= — L

I1l. THE INTEGRAL EQUATION
In Ref. 3, a dispersion relation for the repulsive case has
been obtained. With the present notation this is

e~ &) = ((1)) + _;/%J.jw R ¥ )px,g fe” % d§'_

§' —&—ie
Since in the case 0 = — 1, we have
— Ux
U= ( 2. (44)
¥?
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(43)

the Egs. (43) are
eyt g )

=14 _\/_’E_ * R*ENW(x,£e EdE"
2m J - §'—E—ie ’

e B YHx L)
_ K [ RHE Wl e~
wr ). & —&—ie ’
Taking the limit x— — « and noting the expression of
Eq. (31) for a{£ ) gives

w BE N ngEr
) —1— £ [T RUEMEREE g
2miJ_ . & — & +ie

We now plan to solve this for a(£ ) as a function of R *,R.
It is well known that a{£ ) is a constant for all £. (Below this
will be seen to follow as one of a set of relations.) In particu-
lar, then if we expand a(£ ) [or any function of a(£ )] in a Laur-
ent series in £, each coefficient will be a constant.

IV. THE CLASSICAL SOLUTION

Nothing in the derivation of Eq. (46) is changed if all
quantities are treated classically, i.e., they commute. It is
interesting to treat this case to see that this singular integral
equation does indeed have a solution. In addition, this leads
to a rather convincing {if heuristic) “proof ” of our general
result.

The solution is as follows. Since all quantities are now
classical, we can write Eq. (46) as

—1_ K (7 flg)alg)dE "
wi=t 27ifvw§'-(§—i€)’ e
where
SIETV=R*EIRE) (48}
Let
Nz =1-— _K_ ” j_:(_§’)a_(§’)d_§_” (49)
miJ_w &' —z

then (i) ¥ (z) is analytic in the complex z plane cut along the
real axis; (i) NV (z}—1 as |z]— co; (iii) the boundary value
(N_(&)) as z approaches the real axis from below is
k (7 flgalg)ds’
N_(f)=1—- — ———
& 2mi ) £ — (£ —ie€)

and (iv) The difference of the boundary values of ¥ is

N,E)—N_(§)= —«a§)(5)
Thus, Eq. (47) says that

N, —(1l—&kfIN_=0. (50)

Let

1" In[l —«fE)1dE’ ]
27 J - w £ —z ’

then X (z) is analytic and nonzero in the cut plane, and

X (z)—1 as |z| > 0. Further X_(&)/X , (£) =1 —&f(£).
Equation (50) reads X /N, —X_N_ =0.

..M (z) = X (z)N (z)is analyticeverywhereand goesto 1 at oo.
We conclude M (z) = 1 and thus NV {z) = 1/X{z). But Eq. {47)
then tells us that g(£ ) = N_(£ ). We conclude that

X(z)=exp[—
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na)= — - [ nll=«fE)de" (51)
i) g ——
If we write In a(£ ) = —2,,=0d,,/ n+1 expand the right

side of Eq. (51} in powers of 1/£, and equate coefficients we
obtain
d,=— sz (€)"In{1 — xR *(£")R (£))d5".(52)

What should the quantum form for these constants be?
A reasonable conjecture is that it should be Eq. (52) with
normal ordering, i.e., all R to the right of all R *. Then Eq.
(52) becomes
d «© “—_R*R?
2

n

21rz f er (KR R+ 5

L Rort )

However, the commutation rules of Egs. (41} and (42) tell us
that R **(£') = 0 = R *(£’). Therefore, we expect the
quantum constants d,, to be d,, = (x/i)(1/2n)

The general term is obviously

X5 (EVR*E)R (&')dE'. We verify this in the next sec-
tion.

V. THE QUANTUM SOLUTION

We now want to solve Eq. (46) when a, R, and R * are
operators. The simple approach using the theory of func-
tions of a complex variable does not seem to be applicable.
However, formally we can obtain a solution by a Neumann
series. Thus, we imagine « being replaced by ex and iterative-
ly obtain a power series in €. Aside from the possible compli-
cated structure of the solution so obtained, we have to con-
sider whether the series so found for quantities of interest
converges as é—1. We write

o

a)= Y a.). (53)

n=0

Choose ay(£ ) = 1, and obtain from Eq. (46) the recursion re-
lation
* R *(kn )an —1 (kn )R (kn )dk

= — -, 1.
o) 21rz &E—k, —ie ">

dk,-dk, R *(k, )R *(k,)R (k)R (k,)
wer= () | 5o : . (54)
2mi = (ki — k; —i€)l§ — k, — ie)
i
If we expand in powers of 1/§‘, we obtain i Cw— 2LJ‘ k™R *(k )R (k \dk = E_I,,,. (60)
mJ o i
ag)=1+ Z § m+ (53) (Here the second line is a definition of I,,.)
where [using Eqs. (53) and (54)] (ii) For n> 1, C') is a sum of products of C'), where
- 2.m;<m — 1. In particular then when we go from m to
C,= E cin (56)  m + 1, we obtain the one new constant I,,, , ,

n=1

with

cw— (_"__)"
” 2mi

o Jm f f dky-dk, (k,)"F,(ky,...k,)
- =) (k. —k —ie)

j=1

Here
F, =R*k,)-R*kyR (k)R (k,). (57)
VL.LPROPERTIES OF THE C?

Notice that F, is a symmetric function. Indeed inter-
changing two R * gives a factor just inverse to that obtained
by interchanging the corresponding two R ’s. Further F, =0
when any two arguments are equal since

R%k)=0=R*k). (58)
Two immediate consequences are that the ie can be

omitted and the singularities can be interpreted as principal
values. Also orders of integration can be arbitrarily inter-

changed.
From this a basic theorem follows. It is
C=0 ifn>m—+ 1. {59)

Thus, the question of convergence of the series for C,, is
answered. It is the sum of a finite number of terms. Some
other consequences are as follows.
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(iii) For m>n - 1,

N

1; y Sm(kb rkn)) (61)
where S, isa homogeneous symmetric polynomial of degree
— (n — 1). For example,

S,_,=1/n,
n ki
S, = —,
= n
S = { j—l(k)2+21<jkk}
n+

n!

The proofs of these properties are somewhat tedious if
straightforward. Accordingly, we relegate them to an Ap-
pendix. However, they are essentially based on the simple
lemma.

Lemma: If g(k,,...,k, ) is symmetric and vanishes when
any two arguments are equal, then

f f dk,-d f(f;;(’ K J o =0 (62)

1
Proof: Let the integrand in Eq. (62) be { },. With our
assumptions relabel with j—j + 1, n—1. The integrand is

then
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Next do the same permutation on { },. We obtain
e k3 _ k2
[ h=2=2 I
Do this n — 1 times and average the n equivalent integrands.
Then
1 Sk — k)
I e LT
1 kn - kl ]
= — 1 + :0.
IR T}

VII. EXPLICIT EXPRESSIONS FOR THE C,,,

With the properties obtained we have for lowest-order
constants: for m =0,

£

K

CE)“ = 5 Fdky;
2

form=1

c= 2Lm k,F, dk,,

2 0

c®= (5’7(77) f f dk, dk, F;
form =

cY= ﬁl— k2F, dk,,

277'1
Weeﬁaﬂgﬁwm%%

and form =3

K

1

Cg)— —
2

cg2>=( ) ” dk, dk, [k§+ ut
2
cw _( ) H fdk dk, dk, k.,
2w
co— (L) ”J fdkldk2dk3dk4F4.
2mi —

The commutation relations (Egs. 41) show that
R *{k,)R (k)R (k;) = R (k;)R *(k))R (k1)
— 2m8(k, — k)R (k,). From this it follows that
F, = R (ky)R (k)R *(k,)R (k,) — 2m6(ky — ka)R *(k))R (k1)
and
F; = R¥(k3)R (k3)R *(k)R (ko)R *(k )R (k1)
— 27R *(k;)R (k)R *(k\)R (k)8(ks — k)
— 2R *{k3)R (k3)R *(ky)R (ko)b(ky — k)
— 27R *(k3)R (k3)R *(ky)R (k,)8(k; — k1)
+ (27)°R *(k3)R (k3)6(k, — k3)b(k; — k)
+ (27Y’R *(k3)R (k3)0(ky — Ko)b(k, — k).
Inserting these expressions into the C' then yields
C, = (k/D),,

ki dk, F,,

2} F29
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) 3 Il — 1)y — 2)

Q=_5+(1u_n+()__77_ﬁ

Cs= 51+ (5 (htty— 1)+ w0 - 1)
i i
XY Lilo— Uy —2)
+(5) 1
* Loy — VLo — 2){fp — 3)

+ (1) 4!
[Remember: Our definition is I, = (1/27)§> _ k,
X R *(k)R (k)dk.]

VIIl. IDENTIFICATION OF THE /, and /;,

We want to identify the 7, just introduced with the
“polynomials” described in the Introduction. To do so, first
let us see the effect of the 7, on a complete set of states. For
the repulsive case such a set are the vacuum |0) and

|ky-k,, Y=R *(ky)--R *(k,)|0),
m=12,., — o<k <. (63)

From the commutation relations of Eqs. (41), we see
that

[ R *1ki)] = (VR ¥(5s) (64
and [using R (k }|0) = 0] that
Llkvkn) = (3 ) ek 63

What is the result of applying the I ;, of the Introduction
to these states? To find this, we need the commutators
[R*k:) 7],

i.e., in virtue of the definition of Eq. (40), we need

[A1,], forA=ab.

We maintain that the fundamental relation

[AEM] =662 (66)
holds. Since the y*’ are combinations of ¢, , ¥, and ¥ we
know the limits at + . In particular,

X008 ) = ¥ — 0,6) =al€)/2, (67)
and
¥ o) = — ¥V (— 0, ) = —b(£)/2. (68)
Therefore,
[a)l,]=0, (69)
and
[6E),]= —&"b(E) (70)

From Eq. (69) with n = 2 we conclude that a(£ ) is a
constant for all £. For general n we then see that

[1..1,]=0, allnm. (71)
Combining Egs. (69) and (70) yields
(1, R*k;)] = (k;)"R *(k;), (72)
and thus
Iilkken) = (8 ) k). 73)
i=1
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Remark: This result holds for both the repulsive and
attractive case. However, only in the repulsive case are the
states |k,---k,, ) complete. Thus, only in the repulsive case
can we conclude that

I,=1, (74)

IX. JUSTIFICATION OF THE FUNDAMENTAL RELATION

To verify Eq. (66) one can proceed so: Note that in the
classical case (commutators replaced by Poisson brackets)
the equation is easily proved. Thus, one shows the analog of
Eq. (66) holds for n = 0 and using a recursion relation for the
I}, that

(AGW L} =E{AE)M, 1} (75)
The analog of Eq. (66) is thus obtained by induction.

In the quantum case one would expect there are polyno-
mial constants of the classical form with some suitable order-
ing. This is how the quantum constants I ;, of Egs. (2) were
constructed. Thus with the ordering given they satisfy

[AE)M] = xENsz 12 (76)
and

(AW} =6[AEM 1] (77)

Let us see how this comes about. We have
[A13] = r [A,W *(x)¥ (x)]dx
= [7 (A m + (A e

Using the comr:utation relations of Egs. (35) this becomes

[A15] = on [ *orc 2 + VMW Jdx.  (78)
The last of Eq. (34; ;1en shows that

()= [ o =xmeNz . 09
Next consider a

s

waig= [ e’

® a a
[ et 2
— o 1 l

o 1/2 1/2
= [ e - ot |
(80)

W]dx

[A,W*])SI/] dx

The first two of Egs. (34) then show that

®© 1/2
[A,I:]=f {W*‘”‘ (g — 220w

i

_ /2

2
= §f [P *ox" 250 + k2 Vdx,
Comparing this with Eq. (78) indeed shows that

[AL{]=&[AT4). (81)
Consider one more example:

X (—i§x‘{"—20x”2&1/*x‘3’”)¥/]dx
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[A,IE]EF [A,0,9* 3, W — oxW¥ *¥?]dx.

(a) [A,r axwaxwx]
=f° (0, 9% 3, [A.¥] +(0,[A,9*1)3, ¥ dx
= f {3, W*aKk'2 3 ) + V23 y\M )3, W Jdx

= [T awron g — axyw)

+ &M (— iy — 2062w )3, W Vdx,

where Egs. (34) have been used.
Integrating by parts we obtain

[A,J‘ axw*axwx]

w 1/2 1/2
o R AR o | ax

—w i i

+ ZU'KJ‘ V*a yv.¥.
Comparing with Eq. (80) we see that
[A,f 8XW*6Xde]

—E[A] + 2axf W* 3y dx. (82)

Also,
(b) [A, f A dx]

- r (W2 [A,92] + [A,¥*]¥2)dx

=2f VH{ox 2@ ) 4 VAW W dx

=2J°° v*a v 'Wdx. (83)
Combining Eqgs. (8m2) and (83) we then see
[A1;]=¢&[AT1]. (84)
Similarly, one shows that
[A13]=¢&[A15]. (85)

Thus, we have shown that the classical polynomial con-
stants I, I {, I ; and I'; (when fields are replaced by opera-
tors and properly ordered) are operators which satisfy Eqs.
(66). It may be noted that the ordering is that which one
might have guessed.The order is normal, i.e., all creation
operators are to the left of all annihilation operators. This
does not persist to higher order as seen in the last term of
in Egs. (2).

It can be shown that with the choice given

[ALi] =£[AT5]. (86)
Note: The calculation is a little delicate. One must regard the
field operators as tempered distributions.

The main point is that for the higher-order polynomi-
als, non-normal ordered terms arise in the commutator
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[A.], ] from the commutator with normal ordered terms in
I, with sufficiently high numbers of derivations. However,
it can be shown that by suitably arranging the order of terms
with fewer derivatives in  , these can be canceled. For ex-

ample: In the commutator of I with A the commutator of

—axf (P2, (P7), + ¢ 4 (V0 dx,

with A gives rise to non-normal ordered terms which are
canceled by the commutator of A with the non-normal terms
in I'{ which have no derivatives. Again suitable delicacy is
needed.

X. CONCLUSION

It has been shown that the polynomial constants of the
classical nonlinear Schrddinger equation become quantum
constants when the fields are promoted to operators and are
appropriately ordered.

As in the classical case these constants have a particu-
larly simple general form when expressed in terms of reflec-
tion coefficients. Indeed the classical expression strongly
suggests the quantum form. Surprisingly, the quantum form
is much simpler than the classical one.
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APPENDIX A: PROOF OF PROPERTIES OF C

In Sec. VI various properties of the C'/” were listed.
Here it is shown how these can be derived.

The general integral we encounter is

- Ky Kyen.ske ey odk
I = ff ey 2t =z Whvda )
— (k0 — k)

where g, is a symmetric function of its arguments which
vanishes when any two are equal.
The most important result is the following theorem.

Theorem:

JW=0, n>m+1. (A2)
Proof: This proceeds by induction.

(1} The lemma of Sec. VI (Eq. 62) tells us that

JP=0, n>1. (A3)

(2) We show that for n >m + 1,J 7 can be expressed in
terms of J ') with n’ > m’ + 1, n>n’', m> m'. Therefore, the
integrals can be successively reduced to J " and are thus
zero.

To show the reduction property, we write

k -k, (k
K, =J0 = Jf d ldk( "8 (A4)
— o I J+l—kj)

n times. Thus,
dkdk, [(k,)"

Kok = [[ Sl
e

ke [ drdh, )" — (K, ]g,

3 N f J-J!Zk,.--dk,,(k,,l)ri(—)(k,,z)"g,,’
- T

I

(kn -1 )m]gn

1
_ ”w ke [ )" = () 4 [l " =y o)) (R = (] + R,
- I ) I )
|
Now average the n expressions for K, i.e., The generic term is
m—1— r r,
J— 7;11( (A5) Jf dk -k, k) o (K n_,xn
Four types of terms appear in Eq. (A5): 3} j= it « ¢ ’
© (k )m — JJ‘ dk,-"dkn_l n_nz—l 8n 1 .
lef dk dk, z} e (A6) . -2k, , — k)
. ’7k m_(k m whereg, | = = _dk,(k,)” ' ~'g,. Thus, the expression
= fJ dk--dk, [Ven)” ~ ko) ]g,,, (A7)  isof the form J\" ~ ! where r<m — 1, i.e,, this is J") where
— o{ ) n' =n— 1 <n,m =r<m. Here T;is clearly the same as T,
°° [(k)™ — (ky)" 180 with relabeling.
I = JJ_ dk,--dk, o ) ’ (A8) We are left with 7. If we divide out the common factor
and (if n>4) of k — k,_,, T,then becomes
© k)" —(k, _ dk --dk,
T, = ” ey, L1 - len EJ f
- ) I
n— 1}1}3 (Ag) H] 2(k _ )HnA l( _ )’
By the lemma T, = 0. To treat T,, we eliminate the J=1 1 J=130
with n>4,n — 1133,

common factor k, — k,,_, in the numerator and denomina-
tor. Then

m—1
T,="3 H dk ~dk,
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)m—l—’(kn~l}’gn
Hn—Z( e _kj)

j=1

2312

This is of the general form

= I+1
-1 -1+ 1)
2 JE‘ )J(r:—l—r'

r=0

T,=
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We now use the induction argument to show that at
least one of the two factors in each of the terms in the sum are
zero.

Thus, consider J Y~ Y. This is of the form J ) where
n' <n, m' <m. Therefore, it is zero unless n' — m'<1, i.e.,

! —1—r<torl =r+ 2 — a,wherea>0. The second factor

Jro!'+ ! is of the form J ., where n” <n, m" <m. But
n-m"=n+4+1l—(r+2—a)—-{m—1—rl=n—m
+a>1+a. Thus, J2 '[!, is zero.

The nonzero J'?: As indicated in the main text, general
results can be obtained. However, it is probably more infor-
mative to see how simply these can be computed for the
small m values. Thus we have the following.

For m = 0, the only nonzero integral is

I = f dk, g,(ky).

For m = 1, there are two nonzero integrals

J = f k, dk, g,(k),

and

J(z) JI kzgz(knkz)dk dk
o« —k,

To evaluate J ¥, we write this

G BT
-

- f f g, dk, dky — I,
ie.,

T = %ff g, dk, dk,.

For m = 2, there are now three nonzero integrals:

1= Kidkg,

Jm‘ff k2 dk, dk2g2

cw k,—k, Tk —k,

I = J‘f szdk dk, dk, g,
(ks — ko)ky — k)

We write
—k?+k3)g,dk,dk,

e[ (ks
. PRy

- ] f (ks + k,Jg, dk,y diey — T,

RVASES ff kg, dk, dk,.

[Here we have interchanged some dummy labels and used
the symmetry g,(k,k,) = g,(k,,k,).]

The evaluation of J §*) is most instructive since it illus-
trates the full range of tricks needed in the general case. We
write J 5 in three equivalent forms:

J'”"ff f kg dk, dk, dk,
(ks — ko), — Ky’

2313
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k2 + k2)g, dk, dk, dk,

bl

v JJ 5=

(ks — ks)(ks — Ky}
Ju._”“’ J'(kg—ki-i-k%—k}+kf)g3dk,dk2dk3
TR (ks — kallkz — k)

Now take the average of these three expressions and
note that

”‘” [k} +k3+k3)]gs
(k3 — ky)(ky — k)
in virtue of our Lemma. Therefore,

ff f2(k2 —k2)+ (k3 — k3)g, dk, dk, dk,
3

(ks — k), — ky)
Jf JERRE - )
X8 dk:;kz dks. B

(ks — k)
The terms proportional to k; and &, are zero in virtue of the
antisymmetry of the denominator.
Interchanging the labels 1 and 3 in the second term we
see it is of the same form as the first (with a minus sign).
Therefore,

1 * k

L

_ _” Jk “kl”‘ g, dk, dk, dk,
= f f f g, dk, dk, dkey — ),

TP = %” fgg dk, dk, dk,.

The calculation of the nonzero J & for higher m pro-
ceeds in exactly the same fashion, e.g., for m = 3 we have the
four nonzero integrals:

T = j (P, dky,

72— ff (k§ + "12"2)g2ark1 dk,,

TP = % f f f ks, dk, dk, dk,,
w_ L[

=2 g, dk, dk, dk, dk,

APPENDIX B: THE HIGHER-ORDER /,

We give a heuristic procedure to calculate these.
First introduce 7,,. (These are essentially the classical
constants put in normal ordered form.) Define

’

g, dk, dk, dk,

" =(£yQ", (B1)
where
lp*

and
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qbl)
< (o)

~ ,(axqb, +20kW* 37 (D, W) + W * O (WD) )
T\ = 0,0, — 20x[3; (WD) ¥ — [0 (@, 9)]¥)

(B3)
Then we compute 7, from
oy =[I,¥*],
oY =o[l,,¥]. (B4)

The I}, are then to be obtained from the I, by reorder-
ing. The rules are the following.

(1) At least one annihilation operator appears at the ex-
treme right in all terms. (This guarantees 7 ;,|0) = 0.) In par-
ticular, the term of highest order in the derivatives is unique-
ly determined by this requirement.

(2) Choose the ordering of the remaining terms such
that [A,1,] =& [A.],_,]. Itis very tedious, but possible,
to show this.

APPENDIX C: COMMENTS ON THE COMMUTATION
RELATIONS BETWEEN FIELD OPERATORS AND ZS
FUNCTIONS

A “conventional’”® derivation of these runs so: Consid-
er, for example, [¢,(x), ¥ *(x)]. Using Egs. (12) and (3), we
obtain

[#1(x), ¥ *(x)]
— 112 fx et i§(x—x')/2¢2(xr)
X [W(;’:W*(x)]dx
— 112 fx eig(x—x';/2¢2(xr)5(x, — x)dx’

= (k'/2/2)g,(x). (C1)

Here we have used: (i) the fact that ¢,(x") involves only ¥, ¥ *
for arguments less than x and so [¢,(x’), ¥ *(x)] = O; and (ii)
the convention that

2314 J. Math. Phys., Vol. 25, No. 7, July 1984

f Six)dx = % (C2)

While this seems very reasonable, a purist might ask for
a further justification. There are two approaches.

The first, using the theory of tempered distributions is
very technical, rigorous, and tedious.

The second is slightly heuristic but very convincing,
Thus, we note that the only use of the commutation relations
of ¥,¥* with the ZS functions is to obtain Egs. (35){37).

Note that the commutation relations of Eq. (3) are ob-
tained from the classical Poisson brackets via the correspon-
dence principle. Hence we might expect the same for other
commutators.

Consider the classical form of Eq. (12) and take the
Poisson bracket with ¥ *(x). We obtain

{@1lx), ¥ *(x))
— 2 J'x e X120 (X)W (x'), ¥ *(x)}dx

= —ix'/? J- et =XV (x"8(x' — x)dx’. (€3)
Now using the convention of Eq. (C2) this gives
[6:1x), ¥ *x)} = (— ix'2/2)y(x). (C4)

Similarly, using the same convention, we obtain the classical
analog of our commutators with the other ZS functions.
Combining these, we then obtain the classical analog of Egs.
(35)-(37). However, in Ref. 6 these relations are obtained
completely rigorously with no use of Eq. (C2).
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Conformally invariant wave equations for massless particles
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The invariance of wave equations for massless particles under conformal transformations of
space-time is briefly summarized. Particular attention is given to a recent paper by Bracken and
Jessup in which it is claimed that results obtained by the author are in error. Their paper contains
several misleading statements based on a misreading of the author’s paper, and in addition an
argument of theirs, intended to show error, is itself invalid. Their claims of error on the author’s

part are therefore unfounded.

PACS numbers: 11.10.Qr, 11.30.Ly

I. INTRODUCTION

It was demonstrated long ago that the scalar wave equa-
tion,! Maxwell’s equations,” and the Dirac equation with
zero mass® are invariant under the conformal transforma-
tions of space-time. The conformal invariance in these cases
was clearly related to the absence of mass, and the question
arose whether other equations for massless particles were
also conformally invariant. This question was investigated
by the author,* the equations considered being those con-
structed by Gérding for massless particles of arbitrary spin.

Recently Bracken and Jessup® have claimed that CI is
in error in several respects. However they have not accurate-
ly represented the content of CI, and an argument which
they employ is lacking in precision and therefore unable to
demonstrate their point. Consequently they have not in fact
found errors in CI. The purpose of this note is to rectify the
inaccuracies in the paper of Bracken and Jessup, and to sum-
marize in elementary terms the situation regarding the con-
formal invariance of the equations in question.

lil. REPRESENTATIONS OF THE CONFORMAL GROUP

The method used in CI was to extend the standard
spinor representations of the Lorentz group to the conformal
group, and then to apply the resulting transformations on a
case-by-case basis to the equations at hand. The method of
construction of representations of the conformal group can
be described as follows. Let C denote the conformal group
(onspace-time)and L the homogeneous Lorentz group; their
parts connected to the identity will be denoted by C; and L,
Under a conformal transformation x—x' [where
x = { X4, X}, X4, X;) and we use a metric with signature

4+ — — —]theinterval is changed by

dx"? = p* dx*. (1)
The scale factor u is related to the Jacobian J of the transfor-
mation by |/ | = |d *x'/d *x| = u*. If we write

dx] =uQ/ dxj’ (2)

then Q is a Lorentz matrix. Thus the transformations in-
duced by C on differential forms at x differ by only a scale
factor from Lorentz transformations and the same is then
true of the transformations induced on the tangent space at
x. (This was noted in the early work of Bateman and Cun-
ningham.”) Hence we can immediately apply the theory of
representations of the Lorentz group’ in the following way.
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The standard expression of a point in Minkowski space
as a matrix on C? (complex two-space) is

X=(i°+),63 xl_ixz). 3)
1 HIXy Xg— X3
From the fact that Q is a Lorentz matrix it follows that, for
every element in C,, there exists a matrix g on C ? (which is
determined uniquely except for sign) such that
dX'=q*dXgq. (4)
Taking determinants we find |det ¢|* = 2. For the full
group C it is necessary to consider transformations from C?

to C?(where the bar denotes the complex conjugate), just as
for the Lorentz group. By applying two transformations in
succession, it is readily confirmed that i and ¢ satisfy the
composition laws

uig', gx) uig, x) = plg'g,x),
q(8,x)q(g’, gx) = qlg’g, x), (5)

where g, g’ are elements of C,. The matrix r which occurs in
the transformation for tangent vectors satisfies

rg, x)qlg, x) = 1, rlg’, gx)rig, x) = rig'g, x). (6)
Thus u and r are “multipliers” in the sense of Bargmann.?

Consider the transformations u—u' = 7T'(g) u on func-
tions u( x) with values in C?,

(T'(g)u)lgx) =~ (g, x)rlg, x)u( x). (7
Thesesatisfy T'(g) T'(g’) = T (gg’) and so provide a representa-
tion of C,, or rather a family of representations which is
labeled by the parameter ¢. (Actually this is a two-valued
representation, or a representation of the covering group, as
are also the other representations discussed below for half-
integral spin.) The generalization to any of the finite irreduc-
bile representations D (m,n) of L, is immediate. [Here we la-
bel the representations by integers, the relation to Cartan’s
notation being D (m,n)= <, ,, ,,,. The D (m,n) can be ex-
pressed as a set of transformations on a symmetric spinor
with m undotted and » dotted indices.] If 4 carries the repre-
sentation D (m,n) of L,, then the corresponding representa-
tion of C, is provided by the transformations which we again
denote by 7'{g),

=" (g, X)F4 (g, X)...P2, (g, X)..u P ( x). (8)

Here for clarity the spinor indices have been written out and
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7, is the complex conjugate of /°,. These representations
will be denoted by C (m,n,z).

Except for a factor u, 7 has algebraically the same form
as its restriction to L,, and so the standard Lorentz scalars
are conformal scalars modulo a power of y. Thus if u-v de-
notes the Lorentz-invariant bilinear form associated with
the representation D (m, n), then u'-v" = u ~* u-v, where
w = m + n + 2t. By choosing ¢, one can make u-v d *x a con-
formal invariant, which leads to the construction of confor-
mally invariant action principles.®

The scale factor u corresponding to any element of C
can be evaluated by calculating the Jacobian. To evaluate 7,
let U{Q) denote the standard mapping of L, to SL{2). Then
since U is unimodular while 7 (as normalized above) satisfies
detr =p~', wehave r{g, x) = u~'2 U(Q), where Q is the
Lorentz matrix associated with the pair g,x according to

. 0x]
Ri=— {9)
ox;
In CI, r was worked out explicitly for the accelerations (or
special conformal transformations) and the inversion. The
results are as follows. The acceleration is

ij zﬂ-IR«'j’

x{=p[x;, —a;x*], p=I[1-2ax+ax*]1"", (10
and the associated matrix r is given by

i =85 +a% X5 (11)
Here X,; denotes the elements of the matrix (3) (e.g.,
X3 =x; —ix,)and a; is related to @, in the same way.

[The result {11) is given in CI for infinitesimal a, but has the
same form for finite a.] The inversion is

x{= —kx;/x* p=k/x. (12)
This requires a mapping from C2to C2, and the matrix 7 is
given by

Tag =k ~V7X 5. (13)

For the dilatations x; = ux,(u = const), we have r =y~ /2,

For integral spin, Eq. (8) can be written as a transformation
on a tensor,

ul;, =p " "'R*R™uy, . (14)

Il. GARDING’S EQUATIONS AND THEIR BEHAVIOR
UNDER CONFORMAL TRANSFORMATIONS

Once the above representations were constructed, they
were used in CI to discuss the conformal invariance of Gard-
ing’s equations. These can be described as follows. Let u, as
above, carry theirreducible representation D (m,n) of L,, and
put p; = d/3x;. From the quantities p; # one can form (by
multiplying the representations for p; and u, then reducing)
four objects which transform irreducibly according to the
representations D(m + 1,n 4+ 1),Dim+ 1,n — 1),
Dim—1,n+1),and D(m — 1, n — 1). (There are obvicus
exceptions when m or n vanish.) On setting these four quan-
tities equal to zero, Garding’s irreducible equations are ob-
tained. There are slight modifications in the procedure when
equations invariant under L are desired. (The situation here
is similar to that in the theory of the neutrino; the equations
constructed for L are also invariant under L if transforma-
tions between « and its complex conjugate are allowed.)
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The equations which transformas D (m + 1, n 4 1}are
not physically interesting since they do not have plane-wave
solutions. This is easily seen when m = n = 0 as then the
equations for the scalar » become p, u = 0; the proof for arbi-
trary m,n is not difficult. Hence when m vanishes there is
only one interesting equation, which transforms as
D{1, n — 1); a similar situation occurs if n = 0.

Each of Garding’s irreducible equations applies to a
massless particle in the sense that they have solutions which
are also solutions to the wave equation Ou = 0. Garding
then constructed “minimum sets” which have the property
that every solution to the equations in a minimum setis also a
solution to the wave equation. It was found that if m or n
vanishes then any single irreducible equation is a minimum
set; otherwise any two equations form a minimum set, with
an exception to be noted below. (Clearly a minimum set
which is composed of two irreducible equations does not
itself transform according to an irreducible representation.)
If the equations without plane-wave solutions are eliminat-
ed, the remaining minimum sets fall into only four classes,
which we shall proceed to list here.

In case I either m or n vanishes and a minimum set
consists of a set of equations which transforms irreducibly
according to the representation D (1, n — 1}, or D (m — 1,1).
If neither m nor n vanishes, the following additional cases
occur. In case II the minimum sets consist of two irreducible
equations transforming according to D (m + 1, n — 1) and
D{m —1,n — 1), or according to D (m — 1, n + 1) and
D(m — 1, n — 1).'° In case III the minimum sets contain
equations transforming according to D (m + 1, n — 1) and
D (m — 1, n 4 1). However there is an exception when
m = n, as then these two equations do not form a minimum
set. These three cases have been described in terms appropri-
ate to L. The structure of the minimum sets applicable to L
is similar, but if m = n there is a special case which will be
called case IV: a minimum set consists of two equations, one
of which transforms irreducibly (under L ) as
Dim+1,m—1)eD(m— 1, m+ 1), and the other as
D(m — 1, m — 1). In this case it can be shown that u is a
symmetric tensor with zero trace and the minimum set re-
duces to

u,. =Pin“'1/” O¢=0. (15)
The scalar wave equation does not occur in Garding’s mini-
mum sets except through this reduction.

The results obtained in CI regarding the conformal in-
variance of Garding’s equations and minimum sets can be
summarized as follows. First, all of the irreducible equations
are conformally invariant. If the irreducible equation is Lor-
entz invariant when u transforms according to the represen-
tation D (m, n), then it is conformally invariant with the
transformations corresponding to the representation
C (m,n,t ) for a particular value of #; the value of ¢ is different
for each of the irreducible equations which can be written for
a given u. {These values of ¢ are listed in a table in CI. Note
that m, n have slightly different meanings there than here.)
For the minimum sets, conformal invariance was not consid-
ered in those cases which do not have plane-wave solutions.
It was also not considered for case IV since these minimum
sets can be reduced to the scalar wave equation and so were

James A. McLennan 2316



not felt to be of interest in themselves. In case I, the confor-
mal invariance is an immediate consequence of that for the
irreducible equations. In this case m or n vanishes and Table
I of CI yields the value # = 1, so the representation which
yields invariance is C (m,0,1) or C (0,n,1). In case I the trans-
formation law which results in invariance is different for the
two irreducible equations (they have different values for ¢},
and so neither transformation law leaves the minimum set
invariant. However it is invariant with a third transforma-
tion law which corresponds to the representation
1,,,©C(0n1) [or C(m0,1)®1,, ], where 1, denotes
the p-dimensional identity representation. In case I1], the
minimum sets were shown not to be conformally invariant.
(Here for brevity no distinction has been made between in-
variance under C, and under C. Details on this point are
available in CI.)

The reducibility of the representations in case II merits
further comment. Consider a minimum set composed of
equations transforming irreducibly under L, according to
D(m—1,n+ 1)and D (m — 1, n — 1), respectively. As
shown by Garding, the combination of equations can be
written as

P u™ P =0, (16
This equation does not transform irreducibly under L, since
the left-hand side is not symmetric in the dotted indices; the
irreducible equations can be retrieved by forming symmetric
parts in the dotted indices. Transformations which leave this
equation invariant under C; are

(T (ghu)™ " Pigx)

=g, x)r™ (g, X}y (g, X)u PP x). (17)

Since the indices ﬂ,ﬁ,, are not summed over, these trans-
formations correspond to the representation
C(m,0,1)® 1, ,.1fn>Othisrepresentation can immediate-
ly be reduced to a direct sum of 7 + 1 representations
C(m,0,1). If n = 0, the indices 3,3, are absent and we have
case L. If »> 0, then for fixed values of Blﬁ’,, , Eq. (16) is
identical to the case I equation, that is, Eq. (16) is a collection
of n + 1 independent case I equations. The conformal invar-
iance in case I1, with the transformation law (17), is therefore
an immediate consequence of that in case I. Lorentz invar-
iance of the irreducible equations individually requires u to
transform (except for a constant factor) according to D (m,n),
but as is usually the case the invariance properties of the set
of equations are different from those of its individual equa-
tions or subsets. Thus Eq. (16) is Lorentz invariant if u trans-
forms according to the representation D (m,n) but it is also
invariant with the reducible representation D {m,0)e 1, , ,,
(see Ref. 11) indeed even with D (m,0)® GL(n + 1), as is
manifest from the form of the equation. Similar remarks ap-
ply when the roles of m and n are interchanged. In such cases
the transformation law under L, is not determined by the
free-field equations but might become definite if interactions
were included.

Weinberg'? has shown that any free massless field can
be expressed as a linear combination of certain fundamental
fields and their derivatives, where the fundamental fields
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transform under L according to D (m,0)or D (0,n). Garding’s
minimum sets reduce to equations for the fundamental fields
as follows. In case I the fields already transform as funda-
mental fields. In case II the minimum sets admit the reduc-
ible representations described in the previous paragraph so u
is a collection of fundamental fields. Case IV has the reduc-
tion (15) to a scalar field. In case III there is a similar reduc-
tion (which was not realized when CI was written}: If for
example n > m, then it can be shown from the case III equa-
tions that u is an mth derivative of a quantity which trans-
forms according to D (0,n — m) and satisfies the case I equa-
tions. Thus one way or another all of Garding’s minimum
sets lead to case I or to the scalar wave equation, in accor-
dance with Weinberg’s theorem.

IV. DISCUSSION

Now we turn to the paper by Bracken and Jessup. First
of all, this paper contains several statements regarding CI
which are not in accord with the actual content of that refer-
ence. In the abstract they state: ““...it is confirmed that not all
Poincaré-invariant sets of massless Type-Ia field equations
are conformal invariant, contrary to some often-quoted re-
sults of McLennan, which are shown to be invalid.” Con-
trary to this statement, in CI not all minimum sets were
considered {even beyond those without plane-wave solu-
tions), and of those treated some were shown not to be con-
formally invariant. That some minimum sets are not confor-
mally invariant is stated explicitly in the Introduction, in the
section devoted to the minimum sets, and again in the Sum-
mary of CI. (Only minimum sets qualify as massless field
equations in the sense of the above quotation, as those irre-
ducible equations which are not minimum sets do not imply
the wave equation.) Then in their Introduction, Bracken and
Jessup say: “McLennan claimed to prove the invariance of
each of Garding’s ‘irreducible sets’... .” Garding did not
have “irreducible sets,” and the term is not used in CI. If
they said instead “irreducible equations™ the statement
would be true; each of the irreducible equations is confor-
mally invariant. If they meant to say “minimum sets,” then
as already noted the statement would be false.

Particular emphasis is placed by Bracken and Jessup on
alleged error with regard to case IV, but as stated above
conformal invariance in this case was not considered. They
quote the following: (such sets of equations) “...are equiva-
lent to the scalar or pseudo-scalar wave equations,” imply-
ing incorrectly that the statement of equivalence constituted
a claim of conformal invariance. In CI the reduction {15} is
given and the sentence immediately following in full quota-
tion is ““Thus the minimum sets made up from (3.11) and
(3.12) are equivalent [in the sense of (3.15)] to the scalar or
pseudo-scalar wave equation.” There Egs. (3.11) and (3.12)
constitute the case IV minimum set, and Eq. (3.15) is the
same as (15) above. Contrary to the implication of the incom-
plete quotation by Bracken and Jessup, it is not stated that
the case IV minimum sets are conformally invariant. Instead
they were removed from further consideration once the
equivalence (15} was established, and Sec. III closes with an
unambiguous statement to this effect. Bracken and Jessup
attribute error in this case to misunderstanding of a point
that p, is not “conformal covariant.” What they mean is not
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clear; the derivative operator always behaves as a contravar-
iant vector under transformations of the coordinates. How-
ever it is to be emphasized that the results of CI were based
on specific, detailed calculations rather than on a casual ap-
plication of some unsupported rule of covariance.

Bracken and Jessup are correct that the case IV mini-
mum sets are not conformally invariant, but this fact seems
not to have much significance. The natural description of a
scalar particle is by the scalar wave equation rather than the
more complicated case IV equations.

Apparently Bracken and Jessup confirm the results of
Clinregard to case I, as they state “We detected no errors in
this part of McLennan’s work.” However in regard to case
IL, they assert “This contradicts a claim made by McLennan,
but it is easy to find an error in his analysis.” As noted above,
the conformal invariance in case II is an immediate conse-
quence of that in case I, so there is no additional analysis to
be in error. Indeed Bracken and Jessup do not, as they claim,
locate any error in analysis, but instead construct an inde-
pendent argument which leads to what they believe to be a
contradiction. They note that the generators of infinitesimal
rotations can be obtained by commuting generators of trans-
lations and accelerations. The acceleration transformations
given in CI, having the form (17), act trivially on the space
labeled by the dotted indices, and so will the rotations ob-
tained this way. Contradiction is then claimed because the
infinitesimal rotations “‘will affect all dotted and undotted
indices.” This argument makes no contact with the equa-
tions in question, so the claim is not merely that the equa-
tions are not invariant, but that the transformation itself is
somehow in contradiction. Indeed they say “McLennan’s
proposed transformation law is not consistent if p#0.”
However it is nothing more than a nonsingular linear trans-
formation on the components of #, which violates no math-
ematical requirements whatsoever. There is no mathemat-
ical necessity for a rotation or a Lorentz transformation to
affect all Greek indices, dotted or undotted. The indices oc-
cur only as a matter of notation and have no mathematical
content in themselves, while the transformation law is deter-
mined mathematically by a requirement of invariance.

A referee has maintained that Bracken and Jessup use a
different definition of invariance, according to which the be-
havior of u is regarded as “predetermined, being defined by
the spinor indices present,” and furthermore that “these
equations are not conformal-invariant in the usual sense of
the term, when applied to a relativistic wave equation for a
field whose Lorentz transformation properties have already
been prescribed.” The definition of invariance given by
Bracken and Jessup contains no clear statement to this ef-
fect, and in any case the use of a different definition cannot
provide grounds for the claim that the analysis of CI is in
error. However there is evidently need for some discussion of
the meaning of invariance.

The traditional definition of invariance can be stated as
follows.'? Let D, be a differential operator. If for an inverti-
ble transformation x—x' = gx on the coordinates there ex-
ists a transformation #—u' = su such that D,y = 0 is equi-
valent to D,. #' = 0, then the equation D, u = Qis said tobe
invariant under g. It is readily confirmed that the set of all
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such g forms a group G, and one speaks of invariance under
G. The set of all s also forms a group S, and there is a homo-
morphism from S onto G whose kernel consists of gauge
transformations. The group S (or more properly, the pair G,
S') is called the symmetry group of the equation.

Thus ““invariant” has its everyday meaning of “un-
changed”; the equation is invariant if its form after the trans-
formation is the same as before. The phrase “invariant under
g means that there exists a corresponding transformation s
on u such that the pair g, s leaves the equation invariant; the
existence of other transformations on ¥ which do not meet
the requirement does not disprove invariance under g.

In CI the discussion of the invariance under C, of the
case II minimum sets is contained entirely in one sentence
which reads “For the transformation (4.6), the minimum set
(3.19) is invariant if the wave function transforms like,...”
where (4.6) is the infinitesimal acceleration and the equation
then displayed is the corresponding form of (17) above. This
plain-English statement has the unambiguous meaning that
when the transformations are carried out, one recovers the
original equation, unchanged in form.

The notion that invariance of an equation entails a “pre-
scribed” or “‘predetermined” transformation is a confusion
of concepts. One can stipulate that # transforms in a certain
way for a variety of reasons, such as to illustrate a notation,
or to study the transformations themselves, or to construct
equations which are invariant with a given representation.
However an equation determines its own symmetry group
and once the equation is established one has no more free-
dom. The term would lose all useful meaning if an equation
could be invariant or not depending on the prescription or on
such fashions as the notation.

Restrictions on the transformations to be allowed can
destroy expected group-theoretical properties. The straight-
forward and general demonstration that G and .S are groups
depends on the supposition that all transformations which
leave the equation invariant are included (otherwise the set
of transformations might not be closed). Equation (16) has an
obvious group of gauge transformations which consist of lin-
ear transformations with constant coefficients on the space
labeled by the indices £3,...3, . The representation
D(m,0)® 1, , can be obtained by combining transforma-
tions from D (m, n) with gauge transformations. If it is de-
sired to retain the group property and the gauge transforma-
tions are admitted, then Lorentz invariance according to
D (m, n)requires theacceptanceof D (m, 0)® 1, , , . The pro-
hibition, for whatever reason, of D (m, 0)® 1, | yields a
subset of S which is not a group. In particular, this subset is
not homomorphic to C,, whereas the argument by which
Bracken and Jessup claim to find a contradiction assumes
the existence of a homomorphism.

Electromagnetic theory provides a familiar example
with features similar to the case at issue. The theory using
Lorentz gauge is Lorentz invariant if the potentials trans-
form as a four-vector, but in Coulomb gauge it is necessary to
augment the four-vector transformation law with a gauge
transformation. One cannot claim that the potentials trans-
form as a four-vector merely because they are labeled by a
four-valued index.
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One can infer correctly from the invariance under acce-
lerations as stated in CI that Eq. (16) must be Lorentz invar-
iant with the representation D (m, 0)® 1, | , but this is evi-
dent from the form of the equation. Furthermore it is
necessary in order for these minimum sets to conform to
Weinberg’s theorem.

In the Appendix below detailed calculations are pro-
vided to confirm that the case II minimum sets are confor-
mally invariant. Detailed calculations were not given in CI
for any of the minimum sets since the computations are simi-
lar to those which were provided for one of the irreducible
equations.

In summary, Bracken and Jessup have found no errors
in CI, and they have misrepresented the content of CI. It is
hoped that their misunderstanding will not be propagated in
the literature.

APPENDIX: PROOF OF CONFORMAL INVARIANCE FOR
CASE | AND CASE Il MINIMUM SETS

In this Appendix it will be shown that Eq. (16} is invar-
iant under C, for arbitrary values of m and n.

We recall some of the rules of spinor analysis.'* Spinor
indices are raised and lowered according to a' = a,,

a*> = — a,. This can be expressed by

e, =d'e,,, (A1)
where €,,, is the antisymmetric symbol with
€, = — €, = 1. Wehavea®, = — g, soifaissymmetric

then a®, = 0. In addition we have the identities

a,;d* =a;,a" = & detq,

bazb™ =807,

bb,, —b%bP =b26588. (A2)
Note that b “°b,; = 2b 2. The above identities are easily
proven by writing them out fully, for example,

11 11 12
apa’=ana +appa T =a,,a, —apa,, =deta.

(A3)

We first consider the behavior of the derivative opera-

tor p* = 3/3X,,; under conformal transformations. We
have

pot = e (Ad)
oX .

For the inversion,

X = —kXp/x? x?=k?/x%. (AS5)
We then obtain

j—;i;; = — k7' [x%6385 —~ X, X . (A6)
Using Eq. (19) we get

:;Z =7, (A7)
where 7 is given by Eq. (13). Hence

P =rprip, (A8)

which confirms the remarks near the beginning of the paper
that the derivative operator transforms according to a pro-
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duct of transformations on C? (or, in this case, between C?
and C?). The accelerations can be obtained from an inver-
sion followed by a translation followed by the inversion
again:

X'y = =k [(—kx;/x*) = ;1[( — kx/x*) — 1] 7% (A9)
This reduces immediately to Eq. (10) witha; = — ¢, /k. Ap-
plying the same sequence of transformations to », we obtain
the result (11), with the transformation law for the derivative
operator having the form

PP =P, p, (A10)

We now proceed with the calculation to show that Eq.
(16) is invariant under the accelerations with u transforming
according to Eq. (17). Starting out with Eq. (16) in the primed
coordinates, we obtain

P,go u,al...a”pl...ﬁn
a

_ By —1.e a b, Ayd BB
—’ﬂp’a,/l/-‘ T oaer mA,,,PApu "

P pa [P ey TP (ALY

Now

P, = — a8}, (A12)
and in addition

pPut= —a* 4+ aPx®. (A13)
The first of the identities (A2) yields

Faa? 4, =€ detr=p""¢, ;, (A14)
so we get

ra],ira’,llp'{""r"’,12 = —p"a“’pe,{y{l. (A15)

This and similar terms give no contribution in (A 11) since u
is symmetric in the superscripts 4;...4,, . In addition we have

2

ral"»plp:u—lr Ay
= Fa [ (= @082 ) + 7 (= @+ a2X )]
=p7[ =@, — e 40X, 7). (Al6)

When Eq. (11) for 7 is used, this expression reduces to zero.
Thus the last term in Eq. (A 11) vanishes, and we are left with

Bo 1y, BB,

P U

=p l’ﬁop Taa?"'a, "-raMAMPA"uA""'{”‘B""B". (A17)
Use of Eq. (A 14) yields
P'BDa,u'alma BB,

=ﬂ—2'ﬂopra2/12 "'ramgm [pi’;.‘u’tx"'/lnﬂr"ﬁn]

=0. (A18)

This completes the proof of invariance under accelerations.

The above demonstration applies to Eq. (16), which is
the same (except for notation) as Eq. (3.17) in CI. A similar
argument applies to Eq. (3.19) in CI. Invariance under C,
follows from the (evident) invariance under dilatations,
translations, and Lorentz transformations. Equation (3.19)
is also invariant under C, as follows from its invariance un-
der L. The same analysis also applies to the case I equations,
it only being necessary to suppress the indices B,B,, .
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It may be useful to provide an alternative calculation
using the more familiar four-vector notation. The simplest
case which illustrates the point involved is whenm = n = 1
and Eq. (16) becomes

Pou =0. (A19)

This is a set of two independent two-component neutrino
equations, but « can couple to other fields as a four-vector.
Let u,z correspond to u;, in the manner of Eq. (3). By a
straightforward calculation, Eq. (A 19) is converted into

(A20)

where €, ., is the completely antisymmetric symbol with
€0123 = 1. These two equations are (in a different notation)
the same as the two irreducible equations which comprise
the minimum set. That u; satisfies the wave equation follows
immediately from the two equations; neither equation by
itself implies the wave equation. Equations (A20) are not
invariant under L (with linear transformations). The corre-
sponding minimum set which is invariant under L has

p: 4; — p; u; = 0in place of the second of Egs. (A20) and the
reduction (15) then follows.

We will demonstrate the invariance of Egs. (A20) under
accelerations. The manipulations are lengthier than when
spinor notation is used, and so for simplicity only infinitesi-
mal accelerations will be considered. Then the transforma-
tion on the coordinates is

i . k__
pu; =0, Djté; — pitd; — i€y, pTU" = 0,

x! = (1 4+ 2ax)x, — a,x°, (A21)
from which we get

aii_ = (1l — 2a-x)g;; + 2{a;,x;, — a,x;). {A22)

ax;_, L) ] Al

The transformation law for u; under accelerations can be
obtained by transcribing Eq. (17) (with m = n = 1) into four-
vector notation, and for infinitesimal a the result is

u = (1 = 3a-x)u; + x,au — a;x-u — i€ ., @x*u".
(A23)

[This transformation does not have the form (14) since « is
being transformed as two independent spin-} fields.] We then
obtain

pju; = (1 —5axlpu; +(@"x; — a;x")p;u,,

m : m_n P
+2a"x; — a X", u; — i€m,a"x"piu" + 4,5,

(A24)
where
4, =g au—3au, —au; + i€, a"u". (A25)
It is readily confirmed that
4,=0,4,, -4, —ie;;,,A™ =0, (A26)

so 4,; drops out when the left-hand sides of Eqs. (A20) are
formed. For brevity we introduce

U:piu“ Vij =pju; —p;u; — ieijmnpnum’ (A27)
and write Eq. (37)as U =0, V;; = 0. Equation (A24) yields
immediately
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U' =1 —Sa-x)U—a'ij,»j. (A28)
Next we calculate V'/;, using the identities
€imnpA P~ €rinp AL = € junAp + € jnpA Fm — 6ijmpA Pus
é-ijmn 6pqrn = - Z ( i )&5_;18;1 .
(A29)

Here the sum extends over the six permutations of 7, j, m, the
sign being positive or negative depending on whether the
permutation is even or odd. After a tedious but straightfor-
ward manipulation it is found that

Vi=0-=5ax)V,; +(ax; —ax; — i€, ;,,a"x"\U
+ 1 € jpnn (@7X, — @, X"V (A30)

Equations (A20) then show that U’ = 0, ¥/, = 0, which
completes the proof of invariance.
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We study the distribution of 2-plane elements on which infinitesimal parallel displacement of
isovectors yields identity. This yields to an algebraic and differential classification and, in the
generic case, to a quasimetric naturally associated with the field.

PACS numbers: 11.15. — q, 11.30.Jw

I. INTRODUCTION

The mathematical solution of the instanton problem' is
based on the fundamental remark of Ward? that for self-dual
Yang-Mills fields on flat space-time the parallel transport of
“is0” vectors is path independent within any totally null
anti-self-dual 2-plane of flat space. In a different guise, this
was also noted by Yang,? who used these planes as coordi-
nate planes in order to simplify the field equations and to
choose a convenient gauge. In the case of Coleman’s plane-
fronted waves,* and generalizations thereof,’ there is path
independence within the wave hypersurfaces, permitting a
choice of gauge that gets rid of the nonlinearities. This sug-
gested® an investigation of possible integrability properties
of YM fields in order to find simplifying gauges, and we
arrived’ at a classification scheme which is coarser than the
ones published (see, e.g., Ref. 8), but, as it stresses a different
aspect, it might be nevertheless quite useful. In fact, while
the published schemes aim at separating orbits of field ten-
sors under the action of SU (2) X Lorentz group, our ap-
proach uses neither the space-time metric («>Lorentz group)
nor the particular structure of SU (2), but only its dimension-
ality.

The problem is to find submanifolds in space-time, of
dimension >2, on which parallel transport is integrable. In
general, this problem has no solution, and the aim is to sort
out cases where there is one. There are three steps in the
problem: the infinitesimal part, the local part, and the global
part. We shall have to say nothing about the third part.The
infinitesimal part is to find, at each space-time point, those
tangent 2-plane elements on which the YM curvature form
vanishes. The local problem then is to try and fit plane ele-
ments at different points together to form (local) 2-surfaces.

In this paper we describe the solution of the infinitesi-
mal problem. After some general geometric remarks in Sec.
2, we give in Sec. 3 the classification of YM fields that arises
in the process of solving the infinitesimal problem. In the
concluding section 4, we give an indication of the work on
the local problem whose details will appear elsewhere.

2. GENERAL GEOMETRIC REMARKS

When an “iso” vector #(x) at the space-time point x is
parallelly propagated around a closed infinitesimal loop, its
change is

AYx) = pF;, (x)G, P(x), (1)

where G, are the generators of the representation to which ¢
belongs,Fy,, (@ = 1,2,3) are the YM field strengths, and
P*” = u"*v*! ([--] means antisymmetrization) is the bivector

2321 J. Math. Phys. 25 (7), July 1984

0022-2488/84/072321-04$02.50

associated with the 2-plane element spanned by the tangent
vectors u, v that define the loop as an infinitesimal parallelo-
gram. Changing u, v within that plane while keeping them
linearly independent changes p** by a nonzero scalar factor.
The infinitesimal problem, for each x, is thus to find all solu-
tions p*¥ = — p** of the system

Fop=0 (a=123), (2)

together with the condition that p* is simple, i.e., can be
written as p** = ul#p*!:

PPy =0. (3)
[Here we have defined the dual
P,uv: = %euvaﬁpaﬁ’ (4)

and since we are not using any a priori space-time metric,
€.vap 18 just the permutation symbol, so that ‘B,W isonly a
“relative” covariant tensor, which, however, does not mat-
ter, (3) being homogeneous. Note in the following that most
of the equality signs are important only up to a nonzero fac-
tor, so that we shall drop the specification “relative tensor of
weight...” in most cases and just say “tensor.”] If (3} holds,
the factors u,v are determined, up to linear combinations of
each other, as solutions of

Puw”=0. (5)

The algebraic problem posed by Egs. (2) and (3) is a
standard problem in line geometry (see, e.g., Ref. 9. Appen-
dix, for an exposition in physicists’ notation). We shall de-
scribe its solution in the next section, distinguishing several
cases. We shall work in the complexified tangent space, al-
though the interpretation of complex p in the sense of (1)
would require a complexified space-time. Here we make the
following consideration on it. Putting p*” =— u'#v"), we want
to solve

Fi utv” =0, (6)
for u, v. Fix u and put

Fl(u):=u'F,; (7)
then

Fep'=0 (8)

are three linear equations for » which always possess a solu-
tion. One solution is v = u by the antisymmetry of F 4v> and
this solution is unique up to proportionality iff

rank(F$(u)) = 3, which would make p*” = 0 trivial. Hence
we must require rank (F2(u)) < 3. Equating to zero all four
33 determinants in F ¢{u) amounts to writing

(1/30)€ o €“FTF S F4F = 0. (9)
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(Again, €°#” is the permutation symbol that is going to be
used to form duals of covariant tensors.) The 1hs is a (gauge
scalar) vector depending cubically on #, and must therefore
have the form g(u,u)u* where g(u,u)is a scalar quadraticin u,
ie,gluu)=g,, u,u". Assumingg,, =g, , we determine
8.~ by comparing coefficients:

guvi = (— 1/3))€,, F2, FF5 . (10)
Thus from (9) we get g{u,u) = 0, and the same must hold for
all linear combinations of # and v, implying

g uu" =0, g, Uv=0, g, uv"=0. (11)
The solutions p* therefore describe 2-plane elements which
are totally null in the sense of the quasimetric g,,, .

Since (3) also implies that pw is simple, i.e., determin-
ing, up to linear combinations of each other, a pair of covec-
tors a,,, b,, solutions of

e, =0, 5
so that p,,, = ay,b,,, and since F p*’=F*"p, due to
€"7°=45%,6 3 |, there is a dual calculation starting

#vaﬁ
from

F*p,, =0 (2)
that leads to

g°a,a,=0, g°bb, =0, g°ab, =0, ()
where

g =(— 1/3)e,p F#F S F . (10)

The same tensors are also encountered in the following
consideration. There are always nontrivial {possibly com-
plex) coefficients A, such that the linear combination
F, = A,F;, becomes a simple bivector, F*'F,, =0:
choose A, to satisfy

M®A,A, =0, M =F%"F}, . (12)

Then also F*” is simple; F#” = sl !
dent solutions for r* of

F, r=AF; r=0. (13)
Regarding this as a system of linear homogeneous equations
for the nontrivial A, , we again find that the matrix
Fi(r)=F}, r" must have rank <3, implying g{r,} = O for
all vectors r of the plane spanned by s, 7. In a dual manner,
F, =c¢,d,), whereglc,c)= =0,2(dd)=0g(c,d)=0.

In the nonsingular case, det g,,, #0, we can add the fol-
lowing remarks. Since p is characterized uniquely up to a
factor by i’pv w” = 0 for all vectors w from the plane p, and
since g, *w" = 0 = g, v*w", we may take
a, «xg,,u’b, «g, v tospan jw =a,b,,. This leads to
three conclusions:

(1) From g(a,a) = 0 whenever a, =g,,, %" and
glu,u) = 0 it follows that

8°8ua8p F8apr 1€, goug™!, (14)
using an obvious matrix notation. (If a quadratic form van-
ishes on the set of zeros of another, nondegenerate, quadratic

form, it must be a multiple thereof.) A direct inversion of (10)
would have been tedious.

(2) WC getl;,uv O:g,uagvﬂpaﬁi or
o Idet g. ' l/Zg— lyag IVB

, where s, f are indepen-

= *p, (15)

2322 J. Math. Phys., Vol. 25, No. 7, July 1984

i.e., pis self-dual in the sense of the “metric”’ g. Note that this
statement contains a convention, since from **p==sgn

(det g..)p it follows that *p = 4+ ,/sgn(det g..) p. Also note
that the ~ duality carries contravariant into covariant ten-
sors and vice versa, whereas * duality needs an additional
metric {up to a nonzero factor; and, strictly speaking, we
have not provided more than that) and carries contravar-
iants into contravariants, allowing for the concept of self-
duality.

(3) An identical reasoning for the F,, =4, F,, intro-
duced above leads to *F « F, but this tlme the opposne sign
than before has to appear, i.e., the F are anti-self-dual in the
sense of g. This is because by construction of the p we have

0 = €ag PP = €,rpst U, (16)

implying a linear dependence between s, ¢, u, v, which means
that all planes p have vectors in common with each of the
planes F, and vice versa, whereas two self-dual planes with a
nonzero vector in common would have to coincide, as is easy
to verify.

Thus without having used a space-time metric from the
start, we have constructed a “quasimetric” (10}, up to a non-
zero factor, with respect to which the given YM field is (anti-)
self-dual in the generic case. There are degenerate cases,
however, which we shall describe in the classification of the
next section.

€uvap

3. INFINITESIMAL CLASSIFICATION

Case 1. F;,, (@ = 1,2,3) are linearly independent. Form
the 3 X 3 matrix M *, Eq. (12), and determine its rank m.

Case 1.1: m = 3. This is the generic case, for which
det g,, #0. For real F, , the signature of g, is
+ + + + (ellipticjor + + — — {ultrahyperbolic). For
elliptic signature, the p and the F°1, above are complex; for
ultrahyperbolic signature, both are real. In the complex case,
there is a one- (complex) parameter count of solutions for p.

Case 1.2: m = 2. M®® can be written as

M =A°B* + A'B", (17)
where 4 °,B ¢ are linearly independent and unique up to fac-

tors. Then, for arbitrary L °, there are fixed a,,, b,,, u*, V",
such that

€apcALF;, =c,(L)a,,,
€ BL°F;, =d (L)b,,,
wcA "L = w( Ly, (18)
€ BaLbFC'uV_yU‘(L)UV]'

abc

€

a, b as well as u, v are independent, unique up to proportion-
ality, and satisfy

a,u=a, " =b,u"=b,v=0. (19)
Equations (10) and (10) become
8o xa,b, +ayb,, g7cutv’+urt. (20)

Thus the rank of the matrices g, § has dropped down to 2,
and they satisfy g,, *” = 0. The 2-planes we are interested in
are given in this case by

P =u"w"! and p* =W, (21a)
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where w is an arbitrary vector satisfying

bw =0, au =0, (21b)
or, dually, by

~ ~ .

Puv =416, and p,, =b,c,, (21a)
where c is an arbitrary covector satisfying

v¥c, =0. (21b)

In the real case, a and b may be real or complex conjugate;
also, u, v will be real or complex conjugate, respectively. In
the complex case, we have two one-parameter families of
solutions for p.

Case 1.3: m = 1. This case is obtained from 1.2 by put-
ting b, «a, " cu”. We get a one-parameter family of solu-
tions.

Case 1.4: m = 0. Here either

g"=0, g, =a,a,#0 (22)
the F;,, can be written

F: =ct,a,, a,c,indep. (23)
p is determined by

Puv = @y,c,y, ¢, #0 arbitrary (£a,); (24)

or there is the dual case

-~ St

8w =0, g"=utu"#0, (22)
~ N———
For = uwflt) )y, ib*indep., (23)
. \,

P =u"w", w"#0 arbitrary (& u*). (24)

The 2-plane elements p are thus either contained in the hy-
perplane element whose vectors are annihilated by a,,, or
they all pass through a fixed single tangent vector »*. Hence
we get a two-parameter family of plane elements in each
case.

Case 2. The F;;, span only a two-dimensional subspace
of the tensor space and can be more symmetrically written as

F ;atv = p ; ﬁv ’ (25)
where capital indices range and sum over {1,2}, and where
# 4, are independent. We form the 2 X 2 matrix

#AB: — ¢ své Buv __ #BA (26)

and determine its rank 4 which equals the rank of
M > = u*%p%ph, while g,, =0, g“"=0 here.
Case 2.1:;u = 2. Here we may pick ¢ .

uv?
satisfy
$ud=0=¢20" (27)

by going to suitable linear combinations, i. €., we may pick
them to be simple:

2
v such as to

"™ =uy, ¢ =ulvy, u,uyv,v,indep. (28)
The solutions for p** are then

P = (e, + Bw)Hayu, + Bw,)”, (29)
where the coefficients are arbitrary (not all = 0). This gives a
two-parameter family of plane elements. In the real case,
#,, and ¢ are real or complex conjugates. In the latter
case, our formula (29) withu, = %,,v, = 0,,a, = @,, 8, = B,
gives p** purely imaginary, but a factor / is irrelevant for the
reality of the plane element.
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Case 2.2: pp = 1. There is only one combination of the
¢ 7, that can be made to satisfy ¢,,,¢** = 0. Take this as
v WTItE
¢ " =uv), whered) u’"=¢.,v"=0, (30)

and pick some independent ¢ > ; then y2 = 1 implies
¢ ..¢ ¥ = 0. The solutions p** can be written

P = wHuw? — P Z,, (31)
where w is arbitrary but u, v, w independent. This gives a
two-parameter family of plane elements which is real in the
real case.

Case 2.3: u = 0. Here the ¢ 2, can be written

$a, =a,bl, a,b,,bl indep. (32)
Putting

u =e"Pa blb, (33)
the plane elements are given by

P =e"%a,b, and p*=u, (34)

where b, v are arbitrary (indep. of a, , resp.} This gives us
two-parameter families of plane elements (real in the real
case): those passing through the vector ¥ and those being
contained in the hyperplane element through u whose vec-
tors are annihilated by an on scalar multiplication.

Case 3. The F{, span only a one-dimensional space,
Fi, =f°F,,.

Case3.1F, F*'#0. The conditions
F,p*"=0, pwf)“” = 0 define a three-parameter family of
plane elements, real in the real case.

Case 3.2; F, ,wl:"’” = 0. Here we can find independent
a,,b, such that

F, =ayb,, (35)
and then p*¥ is given by
P =e""(ya, + 8b,)cs, (36)

where y, 6 are arbitrary scalars, ¢z an arbitrary covector.
This is again a three-parameter family of plane elements, real
in the real case. It consists of the 2-plane elements which
intersect the 2-plane element given by the simple F“* along
any vector and not just at the origin.

Case 4. This is the trivial case Fj,, =0 (a = 1,2,3)
where p** is arbitrary.

4. CONCLUDING REMARKS

We have now determined, at each point, all 2-plane ele-
ments on which the YM curvature vanishes, and have distin-
guished 10 nontrivial qualitatively different cases. The local
problem is now to try and select, for each x, one p #* (x) out of
the family obtained, in such a way that the corresponding 2-
plane elements are tangent to 2-surfaces. Using the Froben-
ius integrability condition and a convenient parametrization
of the family, one can work out further conditions which
yield a differential classification of each of the above cases.
This will be done elsewhere.
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It would be tempting to speculate on the further phys-
ical significance of the (conformal) metric (10} which we have
distilled out of the SU (2) gauge field strengths in the generic
case, with respect to which the gauge field is (anti-) self-dual,
and which has to be sharply distinguished from any physical
metric. It will, in general, be conformally curved, its Weyl
tensor entering the integrability problem mentioned above.
Apart from this and its properties associated with its very
origin, we have not found any further significance so far.
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This paper shows that, starting from any conserved current generated by some given infinitesimal
symmetry generator, one may use finite dual transformations to induce infinitely many
infinitesimal symmetry generators. Thus, besides starting from ordinary isotopic and space-time
translation, this paper also discovers the infinitesimal generators for Backlund transformation,
for dual symmetry itself and other general cases, and then uses them to generate infinitely many

focal or nonlocal currents, respectively.

PACS numbers: 11.30. —j, 11.10.Lm

I. INTRODUCTION

In this decade, there has been much interest and consid-
erable progress in the nonlinear physical systems and in the
nonlinear mathematics. The two dimensional chiral mod-
el is one of the nonlinear problems under extensive investi-
gation. The chiral model behaves quite similarly with the
four-dimensional Yang—Mills field, e.g., both have topologi-
cally nontrivial solutions such as instantons and merons’
both possess some kind of BT (Bécklund transformation)
with similar structures.’>~'° It is reasonable to expect that
the thorough investigation of this simpler model will be help-
ful for deeper understanding of the more complicated Yang—
Mills field. As a complete integrable system solvable by in-
verse scattering method, the chiral model possesses a lot of
rather interesting and mutually connected properties such as
multisoliton solutions, BT, and sets of infinitely many con-
served currents, either local or nonlocal.!!~'®* What is the
hidden symmetry behind so much conservation laws is a
crucial question to answer for understanding the structure of
the solution space of the chiral model. A lot of work already
shows that this phenomenon is closely related with dual
symmetry. Results of previous papers'® show that speaking
more exactly the infinitesimal operator generating nonlocal
currents is nothing else but the ordinary isospin generator 7"
transformed by DT {dual transformation) U (x;¥). The DT
with parameter ¥ is the origin of the existence of infinitely
many symmetries. Since a U (x;y,) with a fixed ¥, gives one
antomorphism in solution space, it maps one known explicit
symmetry (e.g., constant 7'} into another hidden symmetry
U ~'(x;%)TU (x;y,) generating a conserved current J,, (x;7,)
(cf. Sec. III}. From the same T but with different parameter y
we get different symmetries U ~'(x;¥)TU (x;y) generating dif-
ferent currents J, (x;¥). In summary, dual symmetry is the
symmetry which induces infinitely many symmetries and
maps different currents, but itself is not the symmetry which
generates the conserved currents J, .

Accordingly, this paper tries at first to find out the in-
finitesimal variations which leave the Lagrangian un-
changed, then takes the DT and thus gets the corresponding

* Permanent address: Northwest University, Xian, People’s Republic of
China.
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set of infinitely many symmetry operators generating con-
served currents. In this way, after review the results about
dual transformed T shortly in Sec. II1, we give subsequently

in Sec. IV the current which corresponds to the infinitesimal
generator of dual symmetry itself. We show that it is a

Noether current and a dynamical symmetry of the equation
of motion. The infinitesimal BT plays an important role in
the soliton equation. In Sec. V we find the infinitesimal BT.
For chiral model, it is given by the solution of a matrix Ric-
cati equation; we show also the local current is just the relat-
ed Noether current. In Sec. VI, we give the infinitesimal
generators and Noether currents for more general cases, in-
cluding the ordinary space-time translation and energy mo-
mentum density.

Since the finite dual transformation is quite well known
now, the main role of the second section consists in introduc-
ing notations. By the way, deviating from the current con-
ventions, which deal with gauge transformations within the
isotropic subgroup A only, we discuss somehow in detail the
gauge transformations in the whole group G, so that the dif-
ferent formulations may be treated as gauge equivalent ex-
pressions and the distinction and relation between the con-
nections, the second fundamental forms, and the invariantly
conserved currents are clarified. We use the local involutive
operator N (x) = g(x)ng ™ '(x) of the symmetric space as the
dynamical variable, so that our formulation essentially in-
cludes the O(NV ) nonlinear o-model, the CP(N — 1) model,
the Grassman chiral model, and the principle chiral model.

il. CHIRAL MODEL IN VARIOUS GAUGES, DUAL
SYMMETRY
A. Symmetric space and canonical variable

The chiral field may be defined as a map from space
time x,, (4 = 0,1} onto a symmetric space (G, H, n),i.e., a
coset space G /H with involutive automorphism n,

H={heGnhn=~n}, (2.1)

where G is a connected Lie group with Lie algebra & and
H C Gis a closed subgroup with Lie algebra §. In the ad-
joint representation the same matrix n gives involutive auto-
morphism for the Lie algebra also

n.9]1=0 {nx}=0,

n=1,

(2.2)
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where

Dox=06,

[‘b’@] C ‘6) [@,K] C K,

The elements of G /H are represented by canonical var-
iables

N(x)=glx)ng~'(x), N(xf=1 (2.4)

Then, ifg, and g, are in the same coset class, g, = g, &, hence
g, ng; ' =g, ng;” !, both correspond to the same N.

[«x] C 9. (2.3)

B. Gauges with diagonal connections

The left Maurer Cartan form is divided into vertical
(connection) and horizontal (second fundamental form)
parts and pulled back onto x space

a,(x) =g '(x)d, glx) = h,(x) + k, x), (2.5)
where

[A.(x)n] =0, (2.6)

{k.(x),n} =0, (2.7)

hx) =3[ 8 'x) 9, glx) + ng~'(x) 3, glxin],  (2.8)
k,(x)=4[ g7 '(x) 9, glx) —ng~'(x) 3, glx)n],  (2.9)
in this gauge 4, is diagonal with respect to n. The pure gauge
a, has zero curvature a,,,(x) = d,a, —d,a, + [a,.4,]
= 0; it may be divided into the Gauss equation

a,,(x)+na,(x)n] =3, h,lx)—3, h,ix)
+ [A,(x), A, (x)] + [k, (%), k,(x)]

=f,.(x) + [k.(x), k,{x)] =0 (2.10)
and the Coddazi equation
j[a,.(x) —na,, (x)n] = 3, k. x)+ [h,.x) k,(x)]
- av ku(x) - [hv(x)’ ky(x)]
=D, k,(x)—D, k,(x)=0. (2.11)
C. General gauge transformation
b (x) =S " 'x)h, (xS (x)+ S ~'x)d, Sx)
k/ x)=S8 “(x)k# (x)S (x). (2.12)

Usually S'is restricted in H, then all relations (2.6)—(2.11)
remains unchanged. If we allow S (x) to be any element in G,
then only (2.5), (2.7), (2.10), and (2.11) still remain valid, but
the n therein must be replaced by n'(x) = 5 ~'(x)nS (x); mean-
while, instead of the diagonal of /1, (2.6)and d, n =0, we
have a covariant condition

D, n'(x)=9, n'(x)+ [h,(x),n'(x)] =0, (2.13)

i.e., the reducibility condition for A, *°: “if there exists on
thecosetbundle { {x} G /H,G } asection#’(x)invariant under

parallel displacement with respect to s ,,, then the 4 |, are
reducible to a connection in H.”

2326 J. Math. Phys., Vol. 25, No. 7, July 1984

D. Canonical gauge

Choosing S ~'(x) = g(x), it occurs that both expressions
in (2.12) are expressed solely by the canonical variable N (x)in
(2.4); thus

H,(x)=1N(x)d, N(x),

K,x)= —iN{x)d, N(x).

u

(2.14)
2.15)
In summary, we have the flat Gauss Coddazi equation
F,,(x)=d, H,x) -0, H,(x) + [H,{x), H,(x)]
= — [K,x), K.(x)], (2.16)
€D, K, (x)=¢€"d, K, (x)+ [H,{x), K,{x)]) =0,
0= =1, (2.17)
the reducibility condition
D, N(x)=4d, Nix)+ [H,(x), Nx)] =0, NixP=1,
(2.18)
and the local involutive condition for K,
{K,(x), N(x)} =0. (2.19)
All equations (2.16)—(2.19) are gauge-covariant under (2.12).
In addition we have chosen the canonical gauge condition
A,x)=H,x)+ K, (x}=0; (2.20)

then, from (2.18) and (2.19), we get the expressionsof H,,, K,
in terms of V as (2.14) and (2.15).
It is interesting to point out that, complementary to the
diagonal gauge (1.6), now
{H,(x), N(x})} =0. 2.21)
Connection H,, (x) is fixed by gauge condition (2.21), but we
may further change the canonical gauge without breaking
(2.21) by using S = exp(¢&N (x)), where fis a constant param-
eter; then K/, (x) = i(cos 26N (x) d, N (x)
—isin26d, N(x)),e.g,0=4m K, (x)=H(x)
=1N(x)d, Nx)=14,(x)

wl

E. Dynamics
Let Lagrangian
L{x)={tr(d, N(x)*N(x)), Nx}=1 (2.22)

and with some further constraints. The Euler-Lagrangian
equation

[3,#Nx), Nx)] =0 2.23)
may be expressed in K, as

d, K¥x}=0, (2.24)
or rewritten into covariant form

D, K¥x)=d, K(x)+ [H,(x), K¥x)] =0. (2.25)

F. Intermediate DT, K,, (x) — K, (xG7)

Since {2.17) and {2.25) are mutually dual in two-dimen-
sional space-time, it is obvious that (2.16)—(2.19) and (2.25)
are invariant under DT:

K, (x)— K, (x7)
=K, +7r7 /2 + €, KXy —v V2
K "x) sinh ¢,

=K, (x)cosh ¢ + €, (2.26)
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H,(x)— H,(xp) = H,(x). (2.27)
Thus, ehaveF Jxvy =4, H,(x;) — -d, H Ly
+ [H,(xy), H. (x,r)] = — [K,(xp), K, (x, 7/)] as (2.16),

and (2. 17)—(2 19) and (2. 25) by replacing K, (x) in (2.17)-
(2.19) and (2.25) in terms of K, . (x;7). Since the explicitly pure
condition (2.20) has been broken, H K could not be ex-
pressed directly by some Nasin (2 14) and (2.15). But from
Egs. (2. 16) and (2. 17),A y)=H, + K are pure gauge, so
we may discover some new N (x; y) wh1ch satisfies the dyna-
mical Eq. (2.23) as follows.

G. Final dual transformation NV(x) — N(x;y)

Equations (2.T6) and (2.17) show that 4 . (x;¥) are pure
gauge; therefore there exists an U (x;y) such that

U~'x:7) 3, Uley) =4, 060 =K, (xy) + H, (x)
(2.28)
or
3, Ulxy) = U)K, (%) — K, (x)). (2.29)
If we gauge transform A, (x;) with S (x) = U ~'(x;7), i.e., let
H,(x;7) = U H (x;)U ~'o69) + Ux;) 8, U "),
(2.30)
K, (x;9) = Ux;y)K (U ~'(x;9). (2.31)
Then, using (2.28), we get
A7) =H,(xp) + K, (7)) =0 (2.209)

Now, gauge covariant equations (2.16)~(2.19), (2.55) become
(2.16¥)—(2.19y), (2.25y) after substituting:

K, (xy)— K, (x,9),

9 + [H,x7)]s
Nx)— N (),

U (x;y)N (x)U ~'(x;7). Ingauge (2.20y), Eq.

H,(x;y) — H,(x;7),
D,=D,—D,ly)=
Nixy) =

(2.32)

where N (x;y) =

(2.25y), D, (y)K “(x;¥) = 0, may be simplified as
&K, (xy)=0 (2.249)
From (2.20y) and (2.18y) we have
H,(s7) =1 N(x:7) 3,N (x:7), (2.149)
K, (xy)= — i N(xy) 9, N (x;7). (2.159)

We may check (2.14y) and (2.15y) directly by substituting on
their right-hand sides (2.32) and then use (2.29), (2.19}, (2.19),
(2.30), or (2.31) to attain the left-hand side. Compare (2.32)
with (2.4); we see that if g(x;¥) = U (x;)g(x), then
N (x;7) = glx;¥)ng ™ '(x;¥). Finally from (2.24y) and (2.15%)
we get the dual transformed EL equation (2.23y). (Equations
labeled with ¥, are just the same equation, only with ¥, H,,
K, replaced by N (y), H,(y), K, (7).)

In the latter we shall adopt following abbreviations:

H,=H,x), K,=K,(x)y N=N(x), K, =K,(x)
N{r)=N(xy), H,(y)=H,lxy)

K. (v)=K,(x;y), U=Uxy)
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ill. DUAL TRANSFORMATION OF ISOTOPIC
SYMMETRY OPERATOR
A. Ordinary generator for conserved current

Let
SN (x) = — [N (x), A (x)]be. {3.1)

(For simplicity, we omit the infinitesimal constant de in the
future.) Then

OL = tr(K,, &A). (3.2)
Define

Fx) = 53 =tr(K#A ). (3.3)
Its on-shell (2.24) divergence equals

a,j =tr(K, A)=0L. (3.4)
If we have chosen A (x) such that

tr(K, ¢4 )=0. (3.5)
Then j, (x) is conserved

d, Jhx) = (3.6)
For example, let A (x) = T, where T'is a constant element in
g. Then

J,=tr(K, T) (3.7)

is a conserved current.

B. Dual transformed current

Heuristically, in the dual transformed functional space
with canonical variable N (x;y), let L (x;y)
=} tr(N (¥)N (y)); take SN (y) = — [N (),T]. We get
J,{y) =tr(K,, (¥)T), (3.7y), which is conserved because of
(1.24y). Expanding J,, (y) into series of y; we get an infinite
series of conserved nonlocal currents.

C. Dual transformed generator

Now, return to the original functional space. Tentative-
ly, neglecting the dependence of U ~'(x;y) on T8¢ via
K, (x;7), assume

SN (x) = U (18N (x;1)U (x;7)
— INELU T s TU (x50)); (3-8)

subsequently, j, (x;¥) = tr(K,, (x)U ~'(x;3)TU (x;7)), but it oc-
curs to us that now its on shell divergence

3, Fix;y) =L = tr(K, U ~'TU)) # 0. (3.9)
However, using (2.29}, (2.26), and (2.17), one may show that
0L = —sinh ¢ trle,, K*K*T)
—tanh ¢ g, tr(e¢’K,,, U~'TU)

(3.10)

Put (3.10) together with (3.9); we regain the conserved cur-
rent (3.7y) with some coefficient, i.e.,

J x7)=J.06¥) + i, (x;7) = sech ¢ tr(i'y U~'TU)
— sech ¢ tr(K,, (#)T), (3.11)

where (2.31) has been used.

=d, x;7).
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Thus, we see that just as ju (3.7) is related to the symme-
try of rotation Se around the fixed T axis, J, (¥) (3.7y) or
(3.11) is related to the rotation ¢ around the transformed
axis U ~'TU.

The variation (3.8) satisfies the condition for invariance
of EL equation (2.23) under 6NV

D, D*[N6N]=[K,,[K*[NSN]]] (3.12)
or, using (3.1),
D, D*A — [K,,[K*A]]

—N(D, D*A — [K,,[K*A]]IN=0. (3.13)

At last, we emphasize that K ,, does not conserve invar-
iantly with respect to local gauge transformation, as a covar-
iant quantity; it conserves only covariantly (2.25) in general
gauge. The true invariantly conserved currents are always
gauge-invariant quantities such as projections of K, on 7 or
K,onU " 'TU,etc.,ie.,trK, T)ortr(K, U ~'TU),etc. (cf.
later sections).

IV. INFINITESIMAL DUAL TRANSFORMATION
A. Finite DT

Under finite DT (2.23), the finite variation of L equals
zero

AL =1 tr(K, (K (y) — K, K*)
=4tr(K, K* — K, K*)=0. (4.1)

B. Infinitesimal DT

But in order to find out the corresponding conserved
currents, we must use the infinitesimal DT operator u(x):

u) = (v LD U i)

dy y=1
= — [ Ky x)dx. (4.2)

It satisfies

d, ulx) =€,, K*(x) (4.3)
from (4.2) and (2.24). The covariant form of (4.3) is

D,u= —[K,,u] +¢€,, K" (4.4)
Now let

8N= —[N,ul; (4.5)
we have

OL = tr(K, &u) = tr(¢"'K,, K,) = 0. (4.6)

(Really, K, in L has been changed into its dual ¢, K'.)
Therefore,

J, =tr(K, u) is a conserved current. (4.7)

C. Dual transformed infinitesimal DT

Let
ulx;y) = U~ 'xn)uley)U (x7), (4.2)

where
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" . , auv .. _,
)= = [ Ko xisndxg =y 900
(4.29)
they satisfy
d, ulx;y) = €,, K*(x;p), (4.37)
D, (nyulry = — [K,(v), u{y)] + €., K{(¥), (4.47)
D,i= —[K, @] +€, K" (4.4)
Let
8N = — [N, i]. (4.5)
Then
Julxy) = tr(K, (x)a(x;7)), (4.8)

d, Fxy) =6L = tr(K,, 3 @)
=sinh ¢ tr( — €' [K,, K, |& + K, K*¥)

= —tanh ¢ d, tr(¢'K, 4} = — 4, H(x;y).
(4.9)

T (x5%) =i, (xs7) + i, (x;9) = sech y tr(K, @)

= sech ¢ tr(K,, (P)u(y))
is conserved.
It is easy to check that the EL equation is invariant
under (4.5) by substituting it into (3.12).
In the two-dimensional Euclidean space with self-dual
(anti-dual) solution d, N (x) = + €,, N (x)d"N (x), we get
u(x) = + N(x). All these currents are trivial.

(4.10)

V. BACKLUND TRANSFORMATION
A. Finite BT

It operates on solution V (x) of (2.23); giving a new solu-
tion

N'(x[y) = N(x)B (x|y) = B *(x|y}N (x) (5.1)
when N, N', B satisfy

2K, —2K,=N'd, N'—Nd, N=¢,, I'B, (5.2)

B(x|y)+ B *(x|y)= —2tanh ¢. (5.3)
Let

R =} cosh ¢ (B(x|y)— B *(x|y)); (5.4)
then from (5.1)—(5.3)

D,R=3,R+[H, R]=e"K, +RK,R) (55
It is integrable from (2.16), (2.17), and (2.25}. Conversely,
from R, satisfying (5.5), let

B (x¥) = sec R — tanh ¢ = exp(2(cot ' ¢)R);  (5.6)

we obtain from (5.1) the new solution N '. The BT (5.1), (5.2)
satisfies variational Backlund principle, i.e., 5L equals total
divergence:

AL =K, K* — K, K*)
= —}sech’¢ trK, K* + RK*RK,,)
=} sech® ¢4, tr(e’K, R)
=4cschgtrd, (K R). (5.7)
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B. Infinitesimal BT

Let
5N = [N,B“d—B ]
d}’ y=1
— dR
=2[N,——B+cot‘l y— (5.8)
(1+79) aylly=1

The contribution of the second term in 5L equals
dR
2cot™! tr(K o —)
14 v ay

=2y cot™' ytr(K, K* + RK*RK,)/(1+ V), (5.9)

which is a total divergence as the rhs of (5.7). Hence, we omit
this term, keep the first only. Since we need dual transformed

3, xy) =6L = u(K, & R)
— 2sinh ¢ tr(K, K* + K, RK*R),

— 3, tr(e’K, R )tanh ¢ = — 49, i(x;y).
(5.13)

il

Finally, we get the conserved current
THxy) = xsy) + #xsy) = sech @ (K, R)
= sech ¢ tr(K #{x;¥)R (x;7)). (5.14)
The geometrical meaning are rotations around axis R; B (x|7)
are finite rotations with angle 8 = 2 cot ™! ¥, while the

SN (x;|y) are generated by rotation with infinitesimal con-
stant angle de.

operator later, we replace B (x|1) by VI. GENERAL CASE
R(x;1) =R (x;1) = B (x;1) = R (x), Generally, we must find A (x) such that
where tl'(K’u D#A ) = O. (6. 1)
R (x%) = Ux;YR (x;0)U ~'(x;9). (5.10) The most general equation for A is
It satisfies D, A =a€, K"+ Be,, AK*A
D, (Y)R (x;y) = €,, (K "x7) + R (x;7)K "(x;7)R (x;7)); +a[A, K, ] +s€,,(A,K"); (6.2)
(-37)  jtis integrable if > — s* + af = 1. Let
thus, we take SN=[N,A] (6.3)
8N (x) = [N (x), B(x|1)] = [N (x), R (x)]. (5:11)  Then,
Since now 8L = tr(K,, (x)3*R (x)) = 0, the current Julxsy) =tr(K, A), (6.4)
tr(K, (x)R (x)) are conserved. ]
3, F(x7)
C. Dual transformed BT =6L=1trK, #A)= —tanhptr(e¢*K, D, A)
Let _ = —tanhgtrd, (K, A)= -3, #, (6.5)
SN (x;7) = [N (x}, R (x;7)], (5.117)  so
we have ~ J. =j.57) + i, (x;7) =sech ¢ tr(1~('“ A)
Juxy) =1tr(K, R), (5-12)  are conserved. This includes all currents discussed above:
]
ifa=1, a=B=5=0, A=U"'(xy)TU(xy) in Sec. III
fa=a=1, B=5s=0, A= in Sec. 1V;
fa=F=1, a=5=0, A=§ in Sec. V;
r
more generally, if tr[K#, D, A ] =4, 1+, then let VIl. DISCUSSION
SN =[N, A ]; we get the conserved current Thus, we formulate a general way to get infinitely many
J, =sech ¢ (tr(K L A)— 7” ). (6.6)  Noéther currents from any given Noéther current.
—1 . .
For example, under infinitesimal translation, If we expand the generator U ~'(y)TU (y) [N Sr1es of
) . the parameter 4 = (y — 1)/(y + 1), we would obtain the se-
6N (x;y) =49, N(x;y). Let . 21
. . ries of generators of the so-called Kac-Moody algebra.
8N (x)=U""6N(x;))U=U""9, N (x;))U Meanwhile, to get the recurrence formulas for each order,
= _y-! [N(x;}/), KV(X;Y)] U one may SImply use a”(U_lTU)
- =A€,,(0*U 'TU + [H” — K*, U~'TU]). But the form
= — [N (x), K, (x7)], (6.7) U -1AU shows more apparently the origin of symmetry—
ie., dual transformed isotopic symmetry 7, etc.; and the related
A(xy) =K, (x7). (6.8) current is constructed explicitly from the dual transformed
Th v solution & (y) in the same way as the original current from
e B o i original N. All our currents are related to a given symmetry
trK, D*K,)= —4d, tr(K, K*)= —3,1,. (6.9 of the action. Almost all of them (except the infinitesimal

The current (6.6) becomes energy momentum density M, v
J,=sechotrK, K, —1g,, K, K*).
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BT) keep the equation of motion invariant, while each ele-
ments of the Kac-Moody algebra (except the zero-order one)
does not generate the symmetry of the original equation.
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We have found a lot of new Noéther currents and relat-
ed generators. It is interesting to point out that the infinitesi-
mal generator u(x) of dual transformation (which is the Lie
transformation for the related sine~Gordon equation??) is
just the position vector® of the so-called soliton surface,* in
the case of the O(3) g-model; it is the well-known pseudo-
spherical surface with ¥V (x) as its normal and 3, N, d, N as
its asymptotic directions. Then Eq. (5.2) becomes 2du—-2du’

= cosh ¢ dR, we can identify the Riccati function
R (y) cosh ¢ as the common tangent of two pseudospherical
surfaces.” Using the covariance of our formulation, we can
show that tr(K, (¥)R (y)) gives the series of local conserva-
tion current in the ordinary soliton theory and is related to a
total geodesic differential along the common tangent direc-
tion.

Our formulation is easy to generalize to supersymme-
tric cases.”® Then, from the dual similar of the supersymme-
tric generator, we get infinitely many supersymmetric cur-
rents correspondingly obtaining Kac-Moody algebra with
both anticommutators and commutators.
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The integrability of nonlinear Dirac equations is discussed applying recent results in soliton
theory. Using the Lie point transformation groups of the nonlinear Dirac equations we reduce
these partial differential equations to systems of ordinary differential equations and study
whether these systems are integrable. We also discuss whether Lie-Bicklund vector fields exist.
We conclude that the nonlinear Dirac equations are not integrable.

PACS numbers: 11.30. — j, 11.10.Lm, 02.20. + b

I.INTRODUCTION

Evolution equations which can be solved by the inverse
scattering transform (IST) are usually called soliton equa-
tions. Soliton equations have several properties in common:
(I) the initial value problem can be solved exactly with the
help of the IST; (II) they have an infinite number of conserva-
tion laws; (III) they have auto Bicklund transformations;
(IV) besides Lie point vector fields they admit Lie-Backlund
(LB) vector fields; (V) they describe pseudospherical sur-
faces, i.e., surfaces of constant negative Gaussian curvature;
and (VI) they can be written as covariant exterior derivative
of Lie algebra valued differential forms. It is conjectured that
if property (I) holds, then the properties (II)(V1) also hold. If
one of these conditions is satisfied for an evolution equation,
then this equation is usually called integrable.

Recently several authors'~" have investigated the con-
nection between nonlinear evolution equations and the Pain-
levé property. The following conjecture has been made: “Ev-
ery nonlinear ordinary differential equation (ode) resulting
from a group theoretical reduction of a nonlinear partial
equation (pde) which can be solved by the IST has the Painle-
vé property.” Under the Painlevé property of an ode (consid-
ered in the complex domain) we understand the following:
The only movable singularities of all its solutions are poles.
We notice that a solution of an ode can have poles, essential
singularities, and branch points. Consequently, for an ode to
have the Painlevé property we must require that there are no
movable essential singularities or movable branch points. It
is assumed that if an ode (or a system of ode’s) has the Painle-
vé property, then this system is integrable. However, we can-
not conclude that, in general, an integrable system has the
Painlevé property.

In the present paper we investigate the integrability of
nonlinear Dirac equations. So far efforts have not been suc-
cessful in finding whether nonlinear Dirac equations satisfy
one of the properties given above (even in one space dimen-
sion). First of all we give the Lie point symmetry groups for a
class of nonlinear Dirac equations in three space dimensions.
These groups will be used for reducing the system of pde’s to
systems of ode’s, where we restrict ourselves to one space
dimension. These systems will be investigated as to their in-
tegrability in order to decide whether the nonlinear Dirac
equations are integrable or not. If the systems of ode’s are not
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integrable, then we can conclude that the system of pde’s is
not integrable. On the other hand, if we find that the systems
of ode’s are integrable, then no conclusion can be made. Fur-
thermore we discuss whether a certain nonlinear Dirac
equation (in one space dimension) can be written as a covar-
iant derivative of Lie algebra valued differential forms and
whether LB vector fields exist.

We also consider the massive Thirring model, because it
can be solved by IST.?'° We also give the Lie point symme-
try groups and perform group theoretical reductions. We
show that the massive Thirring model can be written as a
covariant derivative of Lie algebra valued differential forms.
Moreover we give a LB vector field of this model.

ll. SYMMETRY GROUPS OF NONLINEAR DIRAC
EQUATIONS

Nonlinear Dirac equations for constructing models of
extended particles have been investigated by various auth-
ors.'=2* Various types of nonlinearity have been studied. In
particular the interest has been focused on the scalar interac-
tion, i.e., in the Lagrangian the interaction term is given by
( ¢)? (¢ is a four-component Dirac spinor). The Lie point
symmetry vector fields for this interaction have been given in
the papers cited above. Let us summarize the results.

Consider the nonlinear Dirac equations

- _d 9 L
P G e = 5 bl + (i) =0, ()
and
/{kzl ajk (7’1&”—ﬂijij(74¢)+¢+i3€¢('7j¢)=o' )

Equation (2) contains a mass term, whereas Eq. (1) does not.
Both the quantities /and A have the dimension of a length.
Now we give the symmetry groups, i.e., the infinitesimal
generators (symmetry vector fields). With the help of a Lie
series we can find the symmetry group. The technique for
finding the symmetry vector fields has been described by
several authors (for example, in Ref. 25). In the following we
use the notation given by Steeb ez al.'” In this notation we put
Y, =u; + iv;,, wherej =1, ... 4. Consequently, the quanti-
ties u ; and v, are real fields. Thus both Eqs. (1) and (2) are a
coupled system of eight nonlinear pde’s.
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Theorem 1: The nonlinear Dirac equation (1) is invar-

iant under the Lie point symmetry groups which are generat-

ed by the infinitesimal generators

P BT BN B
Ix, Ix, Ix; ox,
Rpx, 0 w8
Ix, Ix, 2 Jdu, 2 Ju,
_b 6 v d w9 4 9
2 du, 2 Jdu, 2 dy, 2 v,
49 4 9
2 dv, 2 (904
Roex, D _x 0 w0 w3
dx, Ox, 2 8u1 2 du,
_ 46 w9 v 9 v 9
2 Ju, 2 du, 2 v, 2 dv,
_ %9 9
2 du, 2 v,
a d v, d v, 4
BT 0x, TCox, 20u, 2 du
md 08 wmd
2 (9u3 2 8u4 2 v,
d u, d | uy 9
+4L 2y
2 dv, 2 8v3 2 8v4
a u, d | u3 d
L,=x +x— + = + =2 —
e x| 16x4 2 8u, 2 du,
+___3_+___5_ b 6
2 Jdu, 2 du, 2 81)1
+ 031 _l.)}__a_+£)l_é_,
2 dv, 2 dv, 2 dv,
d v, d v; d
Ly=x4— +%x— + 22— — 22—
# 48x2 tx ax, 2 du, 2 Jdu,
v, 4 vy d U, 9
2 du, 2 du, 2 81;1
u3 d uy 9 L4 u 9
2 8v2 2 du, 2 c?v4
a u, d u, d
L..=x i A
. “a3+ 38x4+ 2 du 2 du,
uy 4 u 9 w3 9
2 Ju, 2 du, 2 c';’vl
_ % v 9 »nd
2 dv, 2 dv, 2 v,
s a 3)
J,= v, — —u; —J»,
° jg’l(’auj T v,
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3)

d d d Jd

i =uy— —uy— —uy— 4 u, —
Y%, Cou,  Couy | u,
J ) d J
—Vy— tU— F U — =V, —
‘T, Pan, e, o,
a J a
JSHr=v,— —v —v,— + v, —
2 u, 33u2 28u3 18u4
d J a a
tuy— —u —ty—— +u;—,
481 38v2 281)3 18v4

S = i("j J ”fi__'fi_.‘z_),
i=1 c?xj 2 auj 2(9Uj

Theorem 2: The nonlinear Dirac equation (2) is invar-
iant under the Lie point symmetry groups which are generat-
ed by the infinitesimal generators

Xl! XZ’ XS’ X4’ an’ Rl3’ R237 Ll4v L24’ L34; Jo: J1, Jz-
Consequently, if we introduce a mass term, then the

invariance under the scale change S ceases to exist.
In the following we consider a special case where ¢, = 0

and 1, = 0. Moreover, we restrict ourselves to one space
dimension. With this simplification Eq. (1) takes the form
du,  du, av el
b 422 4 Ky, =0, — — — — 4+ eKu,=0,
ax, Ix, ¢ ox, ox, N
4)

— s My gy =0, Pay gy o,

ax, Ix, Ix, Ox,

where K = 13 + v} —ui — v}, x, = ct, and € is a real pa-
rameter. Note that in one space dimension the quantity />
becomes a dimensionless parameter which we call €. The
system of pde’s (4) admits seven symmetry generators, name-
ly X, X4, L 400/ 15/5, and S (restricted to the special case
¥, = ¥, = 0 and one space dimension). From Eq. (4) we find
immediately the conservation law (charge)

Aut + v} + ui + v3) 42
Ix,

Ou s + V0, -0

o, (5)

ll. SYMMETRY GROUPS OF THE MASSIVE THIRRING
MODEL

Let us now consider the one-dimensional massive Thir-
ring model and Lie point symmetry groups. The massive
Thirring model describes the relativistic two-dimensional
massive spinor field with current—current interaction. Sever-
al authors®'° have studied the integrability of the massive
Thirring model. They found that the massive Thirring mod-
el is integrable. This means, this system of pde’s can be
solved by IST. The Gelfand-Levitan integral equations ap-
pear with tedious nonlinearities. Let ,,u,,0;, and v, be real
fields. Then the massive Thirring model can be written as®

L I (6a)
Ix, ax,
LI TR PR (6b)
ax, ox,
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— =4, — (u% + U% Juz, (6¢c)

~ P P gy @+ P, (6d)

We mention that Eq. (6) can be derived from a Lagrangian.
With simple algebraic manipulations we find from Eq. {6) the
conservation law (charge)

Qi +vi 15 +v3) | Ol—wi —viw )
Ix, Ix,
Theorem 3: The massive Thirring model (6) is invariant

under the Lie point symmetry groups which are generated
by the infinitesimal generators

0. (7

X11X4’
d d u, 0 u, d
UM ok, Yox, 2 Guy, 2 du,
_nd %0 )
2 v, 2 v,
a J d J
J*=v,— v, — — Uy — —uy—.
! u, 26u2 lav, 26‘02
If the rest mass is equal to zero (m = 0), then Eq. (6} also
admits the symmetry generator
a d u, d u, 9
S*¥=x, — 4+ x,— — L 2
' ox, + “ox, 2 0u 2 du
_nd _»nd 9)
2 9y, 2 dv,

IV. GROUP THEORETICAL REDUCTIONS

Given Lie point transformation groups which are ad-
mitted by a given system of pde’s, there are standard proce-
dures for finding the similarity ansatz and the system of
ode’s (see for example, Refs. 26-30).

Consider first the nonlinear Dirac equation (4). For re-
ducing the system of pde’s (4) we study three cases, namely
reduction with the help of space-time translation X, 4 X,,
Lorentz transformation L,,, and scale change S.

The space-time translation leads to the similarity ansatz

Uy(x1,%4) = @(7)s-.., ValX1,X4) = Vs(), (10)
where the similarity variable 7 is given by 7 = x, + x,. The
resulting system of ode’s is completely integerable. Thereis a
sufficiently large number of first integrals.

The reduction with the Lorentz transformation L,
leads to the similarity ansatz

u(,,x,) = [cosh(e/2)J, () + [sinh(e/2)] (),
%) = [cosh(e/2))z () + [sinh(e/2)]i, (),

v,(x,,x4) = [cosh(e/2)]v,(n) + [sinh(e/2)]D4(7), (1)

v4(x,,x4) = [cosh(e/2)]v,(n) + [sinh(e/2)]v,(7),
where

€ = arctanh(x,/x,), (12)
and

7’ =xi —xj. (13)
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With this ansatz we obtain

4 +4,/(2n) + €K (@, ... 0
ﬁ; + 51/(277) - GK (171’ sevy _4) = 0’ (14)
T, + 0,/(27) — €K (i, ..., Ty) =0,

0

Ty + 04/(27) + €K (Hy, ...y Tg) = O,

where’ = d /dz. For this nonautonomous system of ode’s we
can give at once two first integrals, namely,

hn,iiyy..., D) = s — 702,

7,8, 4) = MUy — N, (15)
hz(ﬂ:ﬁl» ey 54) = 775% - 775421
As third example, we consider the reduction with the

help of the scale change S. We find the similarity ansatz

1

Uyxy,xy) = x4 2 U1(m); ooy VX1, X4} = x4 1/254(77): (16)

where 7 = x,/x,. By straightforward calculation we find
that

Uy —0,/2 — 0 + €K (ly, .., D) =0,
— @y + 8)/2 + 70} + €K (@, .., B, = O,

— 0] +0/2 + 90, + €K (U, ..., Ug)u, =0, )
0, —uy/2 — iy + €Ky, ..., 0404 =0.
Two first integrals can be given, namely
hy(@yy oy Ug) = K (4, ..., Da)=103 + U7 — 03 — 0j, (18)
By, oy Dg) = U3 — U3 — U3 + D5 — 206,80, + 270, 0,

To summarize, we find that the group theoretical re-
duction leads to systems of ode’s which are integrable.
Therefore the result cannot help us to decide whether the
nonlinear Dirac equation (4) is integrable or not.

When we consider the Thirring model (6) and group
theoretical reduction with the help of the symmetry genera-
tors given by Eq. (8), we find the same result. In this case the
result coincides with the fact that the Thirring model can be
solved with the IST.

V. COVARIANT EXTERIOR DERIVATIVE AND LIE
BACKLUND VECTOR FIELDS

Now let us discuss the integrability of the nonlinear
Dirac equation (4) and the massive Thirring model (6) from
another point of view. As mentioned above the Thirring
model can be solved with the help of IST, and a Biacklund
transformation and an infinite number of conservation laws
have also been given. In the following we describe that the
massive Thirring model can be written as covariant deriva-
tive of a Lie algebra valued differential form, and we also give
a LB vector field. Motivated by this we discuss whether the
nonlinear Dirac equation {4) can be written as covariant deri-
vative and whether LB vector fields exist.

It is well known that the soliton equations like
Korteweg—de Vries, sine—-Gordon, modified Korteweg—de
Vries, nonlinear Schrodinger, and Liouville can be written as
covariant derivatives of Lie algebra valued differential
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forms, where the underlying Lie algebra is given by sl(2, R).
Notice that dim sl (2,R) = 3. Consequently, the Thirring
model cannot be represented within this Lie algebra. In or-
der to represent the Thirring model we are forced to extend
the Lie algebra sl(2,R) to sl(2, C), where dim sl(2, C) = 6. A
convenient choice of the basis of si(2, C) is given by

1 0 0 1 0 0)
X‘”(o —1>’ X2_(0 0)’ X3"(1 0/’

. . (19)
() ()

0 0
Y = .
3 (z‘ 0)

Consider the Lie algebra valued differential one-form

r= }3: (@ ®X, +B eY) (20)

i=1

where

a; = a,(X,,Xa)dX) + A, (x,X,)dX,

(21)

Bi = bi(x.x,)dx, + Bi(x,,x4)dx,.
The covariant derivative of I" with respect to I is given by
DI =dI' + } [I",I"]. From the condition that D,.I" = O we
find the system of pde’s

— 9 | O | gty —at,— 5By + 5,8, =0, (22a)
ax, x,
~ 9% 4 9% | ad; —asd,)— 2bB; — b,B) =0,
ax, ox,
(22b)
~ 9% O ady—asd,) + 26,8, — byB,) =0,
Ix, Ix,
(22¢)
— %1 9Br | 4By — bty — 0B, + by, =0, (224)
9x, 9x,
B
— %2 1 9B | 90,8, — body)— 2asB, — bid) =0,
ox, ox,
(22¢)
— By | OBy 5a,B,— bA,) + 2asB, — budy) =O.
Ox, ax,
(22f)
By suitable choice of a,,..., B, we obtain Eq. (6). We choose
a,=4,=0,
ay=Au;+A tu, Ay=Au —A lu,
by=Av,+ A ", B,=Av,—A v,

2 1 2 2 1 2! (23)
ay= —Au — A uy, Ay= —Au,+ A " 'u,,
by=Av,+4 7", By=Av,— 1 'v,

and
by=A%—A4 72— u} +v] —uj —0v3),
(24)

By=A%4+ 477~ Nu} + v} +uj +03)
Equation (22a) is satisfied identically and Eqgs. (22b), (22c},

{22e), and (22f ) describe the Thirring model (6). Equation
{22d) is given by
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Ot +vi —u3 —v3) i +o] +ud +d)
dx, dx,
— 16(u,v; + uyv,) = 0. (25)

This equation can be obtained from Eq. (6) as follows. We
multiply Eq. (6a) by u, and Eq. (6b} by v, and subtract. It
follows that

ot +93) s +})

+ 8( — uv, + uyv,) =0.

dx, Ix,
(26)
From Eq. (6c) and Eq. (6d) we obtain
A3 + v} Au3 + v3
W +v2) | %) | g, vy =0, (2)
Ix, ax,

When we add Eq. (24) and Eq. (25) we obtain the conserva-
tion law given by Eq. (7). When we subtract Eq. (25) from Eq.
(24), Eq. (23) results.

From the above we are motivated to look for a possible
choice of a,..., B, in order to satisfy the nonlinear Dirac
equation (4). For example, inserting the ansatz

a, = cAuy+cpd 7o+ epduy + e Ty,
A, = cphuy + cpd Tl + epnduy + crd "oy, (28)

Ay = co Ay + cohd 70 + cohuy + cod Ty,
b, = cpduy + cpd Ty + cphug 4 crd "o,

B; = ¢ g dtty + €100 70y + Croadity + €10id "0,
(29)

and

by =k A%+ kA 72 + kyfuguy + vy0,),

B, =kA? + ksd 7% + kgfui + v} +ui +v3)
into Eq. (20) we find that the nonlinear Dirac equation can-
not be represented. The equations for the coefficients
Cy1s--» kg cannot be satisfied.

Let us now discuss the existence of LB vector fields for
the Thirring model (6) and the nonlinear Dirac equation (4).
We adopt the jet bundle technique.®' Within this approach
we consider the local coordinates (x,t,u,..., Usyldy 1,8 145..-)
and instead of Eq. {6) the submanifolds

Fi=—u,+u,—4v,+ (u% + U%)Ul =0,

Fy=v,, _U14—4u2+(u§ +U§)“1=0, (30)

Fy=u,, + ty, — 40, + (U] + 1o, =0,
Fy=— vy — vy — 4uy + (4 + 0])u, =0,

and all its differential consequences with respect to the space
coordinate x. Let

d ad
V=filtys oo Va01) — +Lolttgs ooy V20)) —
du, v,
J ad
+ 51y, s U2yy) T+ Solttns s V211) = (31)
du, v,
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be a LB vector field. Due to the structure of Eq. (6) we can
simplify without loss of generality the vector field ¥, namely

Silteys ooy Vagg) =i (g1 5029
+f.2(“?uwu?l)1u11s U3 U3y)
+ (11 - V211)s

where £, and f, are linear functions. The function /7, is
linear with respect to the arguments w3 u,,, 43 usttyy, ...
v30,,. From the requirement that Ly F, = 0, where ¥ is the
extended vector field of V, Ly(-) denotes the Lie derivative
and = stands for the restriction to solutions of Eq. (6), we
find the vector field where f,; #0 (for further details of this
technique see, for example, Ref. 32). Thus the Thirring mod-
el a LB vector field exists. Furthermore, there is a hierarchy
of LB vector fields. This coincides with the fact that the
Thirring model can be solved within IST.

If we consider the vector field (31) and the nonlinear
Dirac equation (4] {substitute v, — u,, v, — v}, then we find
that the Dirac equation does not admit a LB vector field of
the form given by Eq. (31).

Vi. CONCLUSION

The group theoretical reduction of the nonlinear Dirac
equation does not give a decision whether or not Eq. (4) is
integrable, since the resulting ode’s are integrable. Also the
group theoretical reduction of the Thirring model leads to
integrable ode’s. From further investigations (existence of
LB vector fields and representation as a covariant exterior
derivative) we conclude that the nonlinear Dirac equation is
not integrable, Alvarez and Carreras®' studied Eq. (4) nu-
merically including a mass term. They observed different
types of interactions and bound state formations and con-
clude that this system is not integrable.

Recently, Weiss et al.** have introduced what is called
the Painlevé property for pde’s. Meanwhile various®*3#
authors have applied this approach. It would be interesting
to study the pde’s given above from this point of view.
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Critical properties of pseudospin Hamiltonians
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The thermodynamic critical properties of a simple class of pseudospin model Hamiltonians are
discussed. This class of models includes the spin van der Waals model and the Meshkov-Glick—
Lipkin model as particular cases. Second-order thermodynamic phase transitions occur when the
spin—spin interaction contributes negatively in a particular direction and the linear interaction
term is orthogonal to the direction(s) of greatest energy gain through the spin-spin interaction.

PACS numbers: 75.10. — b, 75.10.Dg, 05.70.Jk

I. INTRODUCTION

The critical properties of the spin van der Waals model
have recently been studied by Lee.! In that analysis the X Y-
like regime and the Ising-like regime were studied separate-
ly.

In the present work a generalization of the spin van der
Waals model is studied. A simple algorithm is applied to this
model to determine both the ground state critical properties
and the thermodynamic critical properties. We also study
the effects of perturbations on the persistence of the second-
order phase transition, if one is present before the perturba-
tion is applied.

Il. THE MODEL

The spin van der Waals model is a mean-field model
describing the interactions among a large number of identi-
cal particles. The ath particle is assumed to have (pseudo)
spin S with components S'®(i = x, y, or z). The spin van der
Waals model Hamiltonian can be expressed in terms of the
total (pseudo) spin operators

N
J=73 s (2.1)

a=1
A convenient generalization of the spin van der Waals model
is defined by the Hamiltonian

1
%Z—ZJ,-QUJJ‘, (22)
Ni,j

where Q is a real symmetric 3 X 3 matrix. Specific choices of
the matrix elements Q, ; lead to the Ising-like and the X Y-like
regimes of the previously studied model.>™

lil. GROUND STATE CRITICAL PROPERTIES

The Hamiltonian (2.2) does not exhibit a phase transi-
tion for finite N . We therefore consider the thermodynamic
limit (NV— o) of (2.2). In this limit, the critical properties of
% are determined by a simple algorithm.>®

(1) Convert the Hamiltonian to “intensive” form:

2050

(2) Replace the intensive operators J, /N by
J1/N—r sin 6 cos ¢,

J/N—rsin 8sin g, 0<r<}

J3/N—sr cos 6.
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(3) Minimize the resulting function (/N ) = h over
the state variables (, 6, ¢ ).

To apply this algorithm to the Hamiltonian (2.2), we let
fi be a unit vector in the (6, ¢ ) direction. Then according to
the algorithm

#/N—h = r* i-Q-i. (3.1)
Let the eigenvalues A, of the matrix Q obey
A1<4,<4,. {3.2)

If 4, > 0, the minimum value of 4 is attained for r = 0. If
A, <0, the minimum value of / is obtained for » = { and /2 an
eigenvector of Q to eigenvalue A,:

min £ = (})* 4,. (3.3)

(r68)
The expectation values of the intensive operators J/N are
given by

(J/N) =rh, (3.4)
where r =0if A, >0and r =1if 4, <O.

IV. THERMODYMANIC CRITICAL PROPERTIES

The thermodynamic critical properties of (2.2) are also
determined by a simple algorithm.>®

(1) The free energy per particle is determined by sub-
tracting the entropy term from the energy term

(F/N) ={F#/N) — kTs(r).

(2) The entropy term is an SU(2) multiplicity factor’

sr)= —({ +7lnl +7) — (4 — An{} — 7).

(3) Minimize the resulting function, (¥ /N ) =f, over
the state variables (7,0, ¢ ).

To apply this algorithm to the Hamiltonian (2.2), we
again assume A, is the minimum eigenvalue of Q. Then
(F/N)=rA,+ kT {{{ + 1} + ) + (, — rn(} — 7)}.

If 4, > O the minimum value of (¥ /N ) occurs for r = O at all
temperatures.

If A, <0 a second-order thermodynamic phase transi-
tion will occur. The relationship between the state variable
Hr = (J2)"?/N) and the temperature 7T is determined
through the minimization condition

%<£>=2r/1,+kT{ln(%+r)——ln(-;— - )] 4.1)

The critical temperature T, is determined by the vanishing
of the second-degree Taylor series coefficient, as is usual for
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a second-order Ginzburg-Landau phase transition:
w2+ <0 )
(4.2)
From {4.2) we determine
—A/2=kT,. (4.3)
This relation between the coupling strength (i.e., the ground

state energy per particle A,) and the critical temperature can
be used to write (4.1} in a simple scaled form

_ 4r
T. In[(1+2°/1—27]

H

=

01, 4>r>0,

{(4.4)

and r = Ofor T'> T, . The relation between the reduced tem-
perature ¢ and the rms expectation value of the (pseudo) an-
gular momentum 7 = (J?)'/2/N is shown in Fig. 1. At any
temperature the expectation values of the angular momen-
tum operators are given by

(J/N) = HT)i, (4.5)

where ii is the unit eigenvector of @ to minimum eigenvalue.

V. PERTURBATIONS

If the model Hamiltonian (2.2) exhibits a second-order
thermodynamic phase transition, then a perturbation may
or may not destroy this phase transition. To determine the
conditions under which the phase transition either persists
or is unhinged, we consider perturbations which possess
only linear and quadratic terms in the total (pseudo) angular
momentum operators J. The perturbed Hamiltonian has the
form

H, =LJ + (1/N)J-Q"J. (5.1

The structural stability of the phase transition is deter-
mined by a simple algorithm.

(1) Choose as coordinate axes the eigenvectors fi,, ii,, fi;
of @, with eigenvalues A,<A,<A4,.

(2) Resolve the linear perturbation into components L,,
L,, L; along the three coordinate directions.

(3) If L has a component in the subspace spanned by
eigenvectors with minimum eigenvalue (L, #0if 4, <A,; L,

7
r =<(U/N)2?
0.5 |

0.3 |

0.2 |

T T

T T
02 o4 06 08 1.0 t="T/T,

FIG. 1. The coupling constants and critical properties of the general spin
van der Waals model are related by a simple scaled curve.
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order phase transition is unhinged; otherwise it will persist if
1<0.

In the generic case® that the phase transition is un-
hinged, the state variables (J/N ) = ri are determined by
minimizing the free energy expression

(F/N) = Q" + rivL — kTs(r). (5.2)

The unit vector fi is determined by introducing a Lagrange
multiplier ¥ through — y{fi‘i — 1). We find

N

ni(r)=rL,/2[¥(r) — PA;], (5.3)
where ¥(r) is determined by the constraint
r\:¢ L}
A _ =1 5.4
(2);;x[y(r)—r2/lf]2 (54

The smallest of the (up to) six values of ¥ which satisfy (5.4) is
used in (5.3). The state variable 7 is related to the temperature
T through

kT = —2y(r)/r Inf{1 + 27)/(1 — 27)}.

The ranges of r and T are related by 0 < 7,,;;,, <7<7pqx <4 and
w0 »T>0.

The critical properties can readily be determined in the
nongeneric case in which the second-order phase transition
is not destroyed. To illustrate, we consider the case in which
the minimum eigenvalue of Q is nondegenerate (1, <4,<4,,
A, <0)and choose L = (0, L,, L,). The alternative possibility
A, =4,<Aj)and L = (0,0, L,) is treated similarly. An easy
calculation shows that the components of the unit vector i
minimizing {5¥°/N ) obey

n=—L/2r4;,, 4, =4 —A1, j=23, {5.5)

provided that n; + n} < 1.Since the maximum value of 7is },
we see that the second-order phase transition persists for L
sufficiently small,

(L/4,) + (Ly/45) <1,
but is destroyed by sufficiently strong linear *“perturba-
tions”: (L,/A,f + (Ly/457 > 1.

For small linear perturbations the critical temperature
T, is determined by

(5.6)

2r.(— Ay =kT, In[(1 + 2r,)/(1 = 2r,)], (5.7)
where
2r, = [(Lo/A,) + (Lo/45) 12 {5.8)

The condition defining the critical temperature (5.7) can be
written in the more familiar gap-equation form

2r, =tanh 1B ( — A4,)(2r.). (5.9)
ForT<T,,r. <r<j, thevaluesof (J/N ) = AT )i are deter-
mined by (5.5), together with the relation
n, = + [1 —n? —n?]"? and the condition defining r:

274, + kT Inf(1 + 27)/(1 — 27)] = O. (5.10)

Forr<r,, T>T., n =0, n; =a—le/A,-,a =[(L,/
4, + (L3/45)*]1""?, and r and T are related by

2 Ly S (L} 1+2r
2ra™? /1(—’) —a™! (—L) kT1 =0.
2\ 2\, ) T

(5.11)

The particular pseudospin model Hamiltonian for which @

J
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has eigenvalues { — |¥'|,0,0)and L = (0, 0, €) corresponds to
the Meshkov-Glick-Lipkin model Hamiltonian®

H#=el, —(|VI/NW? (5.12)

widely studied in nuclear physics.® For this Hamiltonian,
many of the results derived above are well known.

The ground state energy phase transition for this model
is usually studied as a function of increasing value of the
normalized quadrupole interaction strength,| V" |/€ (see Ref.
9). There is a second-order ground state energy phase transi-
tionat |V |/e = 1,by(5.6). For | V| <¢, in the ground state (J/
N) =40,0, — 1) by (5.6). For |V | >¢, we have (J/N )

=11 —(e/[V]f, 0, —e/|V])by(5.5).

For | V'|/e > 1, this model exhibits a second-order ther-
modynamic phase transition'® at 2r, = €/|¥| by (5.8). The
corresponding critical temperature is determined from the
gap equation (| V' |/€)tanh}B, € = 1, which is a direct conse-
quence of (5.9). In the ordered state below the phase transi-
tion we have T< T, r>r., rand T are related by
kT In{(1 + 2r)/(1 — 21] =2r|{V |, and (J/N )

=ry1 —(e/2rV)?, 0, —€/2r|¥|) by (5.10). In the disor-
dered state above the phase transition, we have 7> T,
r<r.,rand T are related by kT In [(1 + 27)/(1 — 2r)] =€,
and (J/N ) = 10,0, — 1) by (5.11). In addition, it is
known®'! that the second-order phase transition (ground
state energy or thermodynamic) is destroyed by addition of
either J,, or J2 to the Hamiltonian (5.12). This result also
follows directly from the algorithm presented in this section.
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Vi. SUMMARY

Critical properties of pseudospin models which are gen-
eralizations of the spin van der Waals model and the Mesh-
kov—Glick-Lipkin models have been studied. These models
are general superpositions of terms linear and quadratic in
the pseudospin operators. The conditions for the occurrence
of a second-order thermodynamic phase transition have
been determined. The structural stability of these transitions
has also been discussed.
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Crystal field effect in an Ising model
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The crystal field effect has been studied in the linear Ising model which can be solved exactly. For
spins § =}, 1, 3 it is easy to diagonalize the transfer matrix analytically, but for spins S > 3, the
transfer matrices are diagonalized numerically. The numerical results are accurate to seven
decimal places and can be treated as exact for all practical purposes. Crystal field has no effect on
spin-} systems, its effect has been studied in systems with spins S > 1. The ferromagnetic as well as
the antiferromagnetic sysceptibilities have been computed for the systems with and without the
crystal field. It has been found that, for small crystal fields, the susceptibility behavior is not much
different from that in the absence of crystal field. But for large crystal fields, not only the
antiferromagnetic susceptibilities but the ferromagnetic susceptibilities also start showing

maxima which appear for integer spins only.

PACS numbers: 75.10.Hk, 75.30.Cr, 71.70.Ch

I. INTRODUCTION

The one-dimensional Ising model with spin } in the ab-
sence of crystal field was solved by Ising’ as early as 1925
using a combinatorial method. Later Kramers and Wannier?
and Kubo® solved the same problem using a matrix method.
The one-dimensional Ising model with general spin was
solved by Suzuki, Tsujiyama, and Katsura® in the year 1967.
First, they developed a perturbation method and then dem-
onstrated an implicit differentiation method. They obtained
exact solutions for § = 3 and § = 1 and numerical results for
these two spin systems were compared with the S = 1 sys-
tem. Finally, they concluded that both the perturbation and
differentiation methods could be applied for the problem of
general spin. In their works there was no mention of the
crystal field which is important in the case of solids. Nobody
has solved the Ising model in the presence of the crystal field
until very recently when Lines’ solved this problem for
S = 1. Lines solved this problem exactly for the comparison
of correlated effective field results with the exact results.

In the present paper the Ising model with general spin
and in presence of a crystal field has been solved exactly. The
crystal field effect has been studied on the susceptibility only.
In order to calculate the susceptibility, first the transfer ma-
trix is constructed and then diagonalized to obtain the eigen-
values and eigenfunctions of this matrix. Using these eigen-
values and eigenfunctions, correlation functions and
susceptibilities (both ferromagnetic and antiferromagnetic)
are calculated. The susceptibilities in the absence of crystal
field are also calculated for comparison. The transfer matri-
ces for § = 4, 1, § can easily be diagonalized analytically and
those for > 3 cannot be diagonalized analytically very easi-
ly and, therefore, these are diagonalized numerically. The
method of diagonalization is due to Jacobi. The exact sus-
ceptibility for any spin is calculated by writing a FORTRAN
program where only the transfer matrix is supplied and the
rest of the calculation is performed numerically.
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Il. THEORY

The Hamiltonian for the one-dimensional Ising prob-
lem for an N-spin ring in the presence of an axial crystal field
is given by

#= 3 [DSTP—2SISZ, ], )

n=1

Since §Z, | =S, regrouping the terms in the form

N
= FUD[SIP+ 87, P ~WsIST, b @
n=1
one notes that the partition function Z can be expressed in §*
representation as

N
Z=Tr [[T,.=Te T", {3)
n=1

where all the transfer matrices 7, have an identical Hermi-
tian form. The transfer matrices are different for different
spin systems. The first term in the Hamiltonian [Eq. (1}] in-
troduces an axial crystal field anisotropy in the system, and
for § =} this term is a constant and therefore has no effect.
The axial crystal field starts showing its effect for .S > 1. Since
all the transfer matrices have an identical Hermitian form

Tn=T=:€_ﬂy, (4)
where = 1/kT and the matrix elements are given by
(S|T|S'y = XSS’ —BD/AUSY + (ST 5)

where S and S are the projections of spin S.
As an example, the transfer matrix for § = 1 is given by

S’
S 1 (0] —1
1 e—B\D—lJ) e—ﬂD/2 e—ﬁ(D+2J) . (6)
T = 0 e—8D2 1 e~ BD/2
—1 e-B(D+2J) e‘BD/Z e—ﬂ(D—ZJ)
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Similarly transfer matrices for any spin can be con- where a, = P4, — 2¢ %P cosh(287 )),
structed, and these matrices can be diagonalized analytically
for § =4, 1, 3. For §'> }, diagonalization is performed nu- 1
merically. Once eigenvalues and eigenfunctions of the trans- |,) = 1 ( ) ,
fer matrices are known, the susceptibility is calculated from (2 +a3)'?
the correlation function® as follows:

= NgzpB g (SkSk. o) (7) where @, = €*P(4, — 2¢~#P cosh(287)), (11)
= —
where . 1
1 _ ) = — 0}.
<SK K+I _Z‘ _,2_:1 l/l/“w 1<¢llsl¢j)<¢jlsl¢l) (8) V/Z -1
n is the dimension of the transfer matrix. A,, 1, and ¢,, ¢, are It is obvious that A, > A,. Again,
the eigenvalues and eigenfunctions of the transfer matrix.
For § = 1, S has the form Ar>4[2e PP cosh(2B87) + 1 + 2e ~#P cosh(2B8J ) — 1)
1 0 0 >2e PP cosh(2B8J )
S={0 0 ©0 ) 9) >2e ~ PP sinh(26J)
0 0 —1 > A;.

. By sol'vmg the tran§ fer math [Eq. (6]), eigenvalues and Thus we see A, is the largest eigenvalue. The partition func-
eigenfunctions are obtained as given below. tion is given by

Eigenvalues: . . N N
A, =1i[2e PP cosh(28J]) Z=TrT"=A7+4; +453. (12)
1 =3 N
1 —BD 132 - BD)1/2], For large N, Z—~A 7.
12 cosh(28]) — 1)7 + 8¢ 72)) Let us find out the matrix elements of the spin operator

A, =4[2e~#P cosh(2BJ ) S:
1 ({2777 cosh(26]) — 1} + 8 ~2)'21, WIS = (BIS1) = (Ws1S]¥s)

200 3] - = WlSI:) = (WISlv) =0,

’ ' (¢sS[¥,) = ([S|es) = [2/(2 + a})]'2,
Eigenvectors: (13}

. 1 (#1S[4h.) = (£|S[ys) = [2/(2 + a3)] V2
v = (2 4+ a?)'? all ’ The correlation function is calculated as follows:
_J

(SkSk o)== 5 AIATHISIN) W8Ik

ij=123

1 2 2 2 2
— ,{l,lN—I( >+/11/1N—1( )—f-/lI/iN_l( )+/{I/{N—I( )]
Z{ 143 1+ 213 *“—‘2+a§ 3t “2+af 342 2+ o
(2724 JAAY T FASAY )+ [2/2 4+ ad)]ASAY T+ AT ’) (14
AN AN AY
As N—>
2 Ay 45 2 (,1
SkS ) 15
(SkSn) 242 AV 2+a, A (13)

From this it follows that when I o0, {S¢.Sy . ;)—0, which means there is no spontaneous magnetization. Using the
correlation function evaluated as above, the susceptibility is calculated as

Ng2 + o Ng*u} 2 +2 1\
225 s =2 §(2)
1= o kT 2+a,1=_w ’11
P | 2 2
=N82#B 2 [1+22(4}_)11]=N82,u3 2 [1 24,/4, ]=Ng% 2 (/1,+,13)’ (16)
kT 2+a% =1 Al kT 2+a? 1'—13/11 kT 2+a% /11—43

where g = 2. 4,, 44, and a, are obtained from Eqgs. (10) and (11).
Using the same procedure, susceptibilities for.§ = § and § = § can be calculated. The analytical formula for the suscepti-

bility for S = § is given by
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X = (Nup/kT)e’ "7,

(17)

using g = 2.
Starting from the Hamiltonian [Eq. (2)], the transfer matrix for § = is obtained in the same way as for § = 1 and is given
by
S ’
3 1 — 1 _3
S 3 2 3 3
% e9K‘9a e3K~5a e—3K—5a e——9K79a
% eJK—Sa eK-a efK~—a e-—3K~5a ’ (18)
T= —3 e-3K-5a ,-K-a eK—a oK —sa
__% e-9K—9a e~3K—5a e}K—Sa e—91(~9a

where K = J /2kT and a = D /4kT. Diagonalizing this transfer matrix, eigenvalues and eigenvectors are obtained as follows:

Eigenvalues:

Ay =e"°*cosh 9K + ¢ ~“ cosh K + [(e ~°* cosh 9K — e ~*/cosh K }* + 4¢ ~ ' cosh? 3K ]'/?,
A, =e " cosh 9K + ¢ ~* cosh K — [(¢ ~°* cosh 9K — e ~* cosh K )* + 4e ~'** cosh® 3K ]/,

Ay =e  **sinh 9K + e ~“sinh K + [(e ~°*sinh 9K — e ~ “ sinh K )* + 4e¢ ~ '**sinh? 3K ]'/?,
Ay =€ **sinh 9K + e ~*sinh K — [(e ~**sinh 9K — e ~*sinh K )* + 4e ~ '%*sinh? 3K ]!/~

It is evident that A, is the largest eigenvalue.

Eivenvectors:
1
1 X,
Y=
[Ipl [2(1 +x%)]l/2 X,
1

where x, = (A, — 2¢~** cosh 9K )/(2e ~ >* cosh 3K ),

2.5

20

X (cgs units)

osl \s=uz

L
5

I
10 15 20
T(°K)

FIG. 1. Ferromagnetic susceptibilities in the absence of the crystal field.
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(19)
r
1
1 X
y=———| ],
92 (200 +x2)]"2 | %
1
where x, = (4, — 2e ~°* cosh 9K )/(2¢ ~ ** cosh 3K ),
1
1 X3
Yo :
)¢3 [2(1+X§)]1/2 — X4
—1
where x; = (1; — 2¢ ~°*sinh 9K )/(2e ~ **sinh 3K ),
2.0
Ds0 Ja-lk
sl 6. S=3I2 S22 Sa 52
lssif2
_§'|or
‘e
®
0.5}
0 5 6 5 20
TCK)

FIG. 2. Antiferromagnetic susceptibilities in the absence of the crystal field.
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25

D=1k J=lk

2.0

o
T

X (cgs units)

[=)
T

0.5

i —l 1
° 5 10 s 20

TCK)
FIG. 3. Ferromagnetic susceptibilities in the presence of the small crystal
field.

1
1 X4
Vo) =———s '
’ 4 [2(1+x2)]l/2 — X,
-1

where x, = (1, — 2¢ ~**sinh 9K )/(2e ~** sinh 3K ).
(20)

Susceptibility is calculated in the same way as for S = 1 and
is obtained as

0.20
Desik J=-1k

Sa312 S=2 S=5/2

0.15)

Q.10

X (cgs units)

005

—l 1
0 5 i0 15 20
TCK)
FIG. 4. Antiferromagnetic susceptibilities in the presence of the small crys-

tal field.
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0.10
g2 D=10k J=lk
oo8|-
0.0GF
£
z
>
kg
=~ Sul
® 004
o.oz%
L 1 -
Y ) 10 15 20
TCK)

FIG. 5. Ferromagnetic susceptibilities for integral spins in the presence of
the large crystal field.

Nyl [ (x,x5 + 3)? ( AL+ A, )

Yoras o) | 1+ \2,-4,
2
+ (X1X4+ 3) (ﬂ'l +/14 )} (21)
14+ x3 A=A

using g = 2. A s and x’s are obtained from Eqgs. (19) and (20).

For any spin §'> 1, the calculation of susceptibility is
performed numerically by writing a FORTRAN program
which is very general. This program yields the same results
for S<3 as obtained analytically.

2.0
D=0k Jeik
— S=3J2
¢ Sa5/2
1.5t
"
2
5
L
2
®
0.5+
a Py A A8 ry (] 2_ e
L ] -}
0 5 10 15 20
TCK)

FIG. 6. Ferromagnetic susceptibilities for half-integral spins in the presence
of the large crystal field.
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0.08
D= 10k J=-lk
Sa2
0.06|
z
5
> 0.04}
o
&
® Sx|
0.02}
. A —
o s 10 15 20
TCK

FIG. 7. Antiferromagnetic susceptibilities for integral spins in the presence
of the large crystal field.

fll. RESULTS AND DISCUSSION

In order to study the crystal field effect in a linear Ising
model, first the ferromagnetic as well as the antiferromag-
netic susceptibilities are calculated in absence of crystal field
(D = O} and the results are shown in Figs. 1 and 2, respective-
ly. The antiferromagnetic susceptibilities are calculated by
reversing the sign of J in the susceptibility formula given in
Sec. II. Suzuki et al.* calculated these susceptibilities by us-
ing different procedures and claimed that the method could
be applied for any spin, though they have shown only the
results for §' = 1, 1, 3. In the present calculation the results
are shown up to § = 3, though the method can be applied for
general spin. The exact ferromagnetic susceptibilities (Fig. 1)
show the usual behavior. The exact antiferromagnetic sus-
ceptibilities (Fig. 2) show maxima at certain temperatures
which are higher for larger spin values. The maxima become

0.15+

D=10k J=-lk

— Su2
e S=5)2

o.10

A (egs units)

0.05

| A —l

o 5 ) 1S 20
TCK)

FIG. 8. Antiferromagnetic susceptibilities for half-integral spins in the pres-
ence of the large crystal field.
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25f

De—ik J=lk ‘}

20}-

w»n
T

X (cgs units)

o
3

0.5

-

L il
0 10 15 20

FIG. 9. Ferromagnetic susceptibilities for the low negative crystal field.

broader as we go to higher spin values. As the axial crystal
field is switched on (D #£0) and its value is small (D = 1k ) the
results do not differ much (from D = 0 case) as shown in
Figs. 3 and 4. But when the crystal field is large (D = 10k ),
the ferromagnetic susceptibilities start showing broad maxi-
ma as indicated in Fig. 5. This happens in the case of integral
spins only, and the temperatures at which these maxima oc-
cur are lower for higher spin values. This means there must
be some critical value of D above which these maxima occur.
To calculate this critical value, let us examine the behavior of
susceptibility near 7'= 0.

For integral spins since we have the analytical formula
of susceptibility for § = 1, let us see how the susceptibility
for this system behaves at 7= 0. From Egs. (10) and (11) we
see in the limit of

T—0,

/i l——)O, /13—“)0, and Cll—-PeBD.

25 D=0k J=lk

X (cgs units)
n
T

o
T

o5k

A F o 1
o 5 i0 [ 20
T(°K)

FIG. 10. Ferromagnetic susceptibilities for the high negative crystal field.
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FIG. 11. Antiferromagnetic susceptibilities for the low negative crystal
field.

This is true when D > 2J. Therefore, the susceptibility evalu-
ated from Eq. {16) becomes

¥ = (Ng*u3/kT)e =P near T=0. (22)

This shows y—0 at T'= 0 for D> 2J. At high temperature
also the susceptibility vanishes. The susceptibility maxima,
therefore, appear for D > 2J. Since, for positive values of D,
D > 2J always favors S Z = 0 {minimum spin) state for inte-
gral spins, the critical value of D (D = 27 }is same for all inte-
gral spins. This has been checked numerically.

On the other hand, half-integral spin susceptibilities
show spin § behavior at 7= O as in these cases S Z = } (mini-
mum spin) state is favored. The results are shown in Fig. 6.
When D < 2J from Egs. (10)and (11), wesee A ,—2 cosh(28J] ),
A;—2 sinh(28J), and a,—0 in the limit of 7—0. Near T =0
the susceptibility from Eq. (16) becomes

X = (NG} /kT e/, (23)

This is similar to behavior of spin } susceptibility given by
Eq. (17) and J is replaced by 4J.

When the crystal field is large (D = 10k ), the antiferro-
magnetic susceptibilities, however, do not differ from the
behavior shown in the presence of the small crystal field, but
broader maxima appear for integral spins as shown in Fig. 7.
These maxima are shifted towards the lower temperatures as
one consider higher spins in contrast to the small crystal field
effect. For half-integral spins the susceptibility maxima be-
come sharper compared to the case of small crystal field and
these results are shown in Fig. 8.

So far we have discussed the role of crystal field when
D>0. When D <0, as it corresponds to the case of D < 2J,
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0.20
D= -0k J=-Ik
Qs -
S:! S=3/2 S=2 S5
£
2
Soiop-
®
0.05
1 L |
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TCK)
FIG. 12. Antiferromagnetic susceptibilities for the high negative crystal
field.

the conclusion regarding the ferromagnetic susceptibility is
same as given by Eq. (23). This means this crystal field
prefers an alignment SZ = + § (maximum spin) and as
T—0, the susceptibility approaches that for a spin-} system
with J—4JS 2. The results for low and high crystal fields are
shown in Figs. 9 and 10. The antiferromagnetic susceptibili-
ties for these crystal fields are shown in Figs. 11 and 12. As
evident from the figures, the ferromagnetic and the antifer-
romagnetic susceptibilities show the usual behavior of the
Ising model in the absence of the crystal field or in the pres-
ence of the small crystal field.

Therefore, from the study of magnetic susceptibilities in
the presence of crystal fields of both postive and negative and
also of high and low values, one can conclude that an axial
crystal field plays an important role in the study of magnetic
properties. Its effect can change the magnetic behavior dras-
tically, especially in the case of ferromagnets with integer
spins.
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