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In a series ofpapersl
-

5 (referred to as I-V) we have de­
veloped a theory of representation of point groups in a uni­
fied manner regarding the corresponding double point 
groups as subgroups ofthe SU(2) group (= Gs )' In particu­
lar, in the last of these, we have constructed the general ex­
pressions of the projective irreducible unitary corepresenta­
tions (counirreps) of the magnetic (or antiunitary or 
Shubnikov) point groups of finite order. The present work is 
its extension to the magnetic point groups of infinite order 
denoted as H ~ . Here H 00 is the halving subgroup which is a 
double point group of infinite order and z is a unitary opera­
tor which defines the augmenting antiunitary operator 
a = (}z together with the time inversion operator (). By defin­
ition, H ~ is a mixed continuous group and thus construc­
tion of its representation group H:: requires algebraic mani­
pulations which are different from those used in V. 
However, we still have the advantage that the representation 
group of a double point group is much simpler in structure 
than that of the corresponding single point group,2 since the 
parameter space of the SU(2) group is simply connected 
while that of the SO(3) group is doubly connected. In fact, all 
proper double point groups continuous or otherwise have 
only one class of factor systems? 

In the present paper we shall first discuss the method of 
constructing the representation groups H:: of the magnetic 
point groups H ~ through a typical example of a grey group 

using the approach which is used for constructing the repre­
sentation group of an ordinary continuous group whose pa­
rameter space is simply connected.6 Then, the representa­
tion groups H:: will be constructed for a characteristic set of 
a total of eight H ~ ; anyone of the remaining H ~ is isomor­
phic to one of them. Then, the vector counirreps of H:: will 
provide all the p-inequivalent projective counirreps of the 
characteristic set of H ~ . 

We shall now discuss how to construct the representa­
tion group of a typical example of the grey group H: . It is 
assumed that the halving subgroup H 00 = {x 1 is a contin­
uous symmetry group whose parameter space is simply con­
nected. The anti unitary operator a is the time inversion oper­
ator itself; e being the identity operator. The grey group H: 
may be characterized by H 00 and the defining relations for 
a( = () ) as follows, 

H: : x E H 00 , ax = xa, a2 = e, e2 = e, (1) 

where e is the 2rr rotation. In constructing H:: we shall limit 
the discussion for the finite-dimensional representations. 

Let D be a n-dimensional general projective corepresen­
tation of H: . Then 

D(x)D(y) = exp[i.B(x,y)]D(xy), 

D(x)D(a) = exp[iS (x)]D (a)D (x)·, 

D (a)D (a)· = TD (e), 

(2) 

(3) 

(4) 

TABLE I. The representation groups of the anti unitary and unitary point groups (of infinite order)." 

2. C:;: XECoo1 xa = ax, a2 =re, r=e, 

3. C::;: XECoo ' xax=a, a2 =re, r=e, 

4. C:,;: XECoo1 xf=fx, j2=e, 

5. C:: i : x,feCCC)jl XQ=ax, fa = tai, a2=re, ;2=r=e, 
6. C":i: x, fE Cooi' xax = a, fa = sai, a2 = re, ;2 = r = e, 

8. D::: X, y E D 00' xa = ax, ya = "lay, 0
2 = re, "12 = r = e, 

9. D'.,,: x,YED oo ' xf=fx, yf=yfy, 12 =e, r=e, 

10. D::,: D :.o,(y), xa = ax, ya = "lay, fa = ;01, a2 = re, "12 =;2 = r = e, 

11. G;( = G,): x, 

12. G~': x E GS1 xa = ax, a2 = re, 

13. G;;: xEGs1 xf=lx, j2=e, 

14. G~:: x,/eG;;, XQ=ax, 70=;a7, a2 =Te, ;2=r=e. 

"Note: For the notations, see Table I of Paper V. 
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for all x and Y E H 00 • Here * denotes the complex conjugate, 
f3 (x, y) and S (x) are real continuous functions of the elements 
over the entire parameter space of the group and are called 
the local exponents. 6 For uniqueness we take the standard 
factor system such that D (e) = 1 and fix the local exponents 
uniquely by 

f3(x,e) =f3(e,Y)=S(e) =0, 'tJx,YEH oo ' (5) 

It is a simple matter now to map off the local exponents 
completely by a gauge transformation. Let the determinant 
of the unitary matrix D (x) be 

detD(x)=exp[i8(x)], 'tJxEHoo ' (6) 

where 8(x) is a real continuous function of x and 8(e) = O. 
Taking the determinants of both sides of both equations (2) 
and (3) we obtain 

TABLE II. The projective counirreps (unirreps) of the antiunitary (unitary) point groups (of infinite order)." 

2. C:'(K) 
K. S(Mo). S(Mm.M_ m). m=m*=!.I ..... oo. 

3. C:(K) 

K. S(Mm). m = mO. 

4. Coo,(KO) 

5. C:',(K" t = It)) 
K,. S{Mo±). S(M';;.M~m). m=m*. 

K2• S(M.;!'.M=m). m=mo. 

6. C:,(K,. t = [t)) 

K,. S(M';;). m=mo. 

K2• S(M.;!'.M;;;). m=mo. 
7. Doo(KO): KO. A,.A2.Em• m=m*. 

8. D:' (K" t = (11)): 

K,. S(Ad. S(A2). Stem; 12, U y). m = mO. 

K2• S(A,. A2). Stem' Em; U y• 12), m = mO. 

9. Doo,(K~. s = [r)): 

K~, A t±, A l, E,;, m = m*, 

10. D:',(K,,, S = I rj, t = [11. t)): 

K II • S(A n. S(A 2±)' S(E';;; 12, U y). m = mO. 

K!2' S(A t.A n. S(A 2+.A 2-)' S(E.;!'. E;;;; 12, U y). m = mO. 

K!3' S(A,±.A 2±). S(E';;.E';;;uy.12). m=mo. 

K'4' S(A,±.Ai). S(E.;!'.E;;;;uy.12). m=mo. 

Kw S(D,,; 12), S(D .;!'y. D ;;;y; 12, U y). m = mO. 

K22• S(D,,; u,). S(D,;;y; 12, U y)' m = mO. 

K23• S(D,,;ux )' S(D.;!'Y.D;;;y;uy.12). m=m*. 

K24• S(D". D,,; Uy)' S(D ';;Y. D ,;;y; uy• 12), m = mO. 

K. S(DU1; NUl). NI,;~ = (- W- m.5(n. - mI. n. m =j.j - 1 ..... - j. 

13. G,,(K): 

14. G~,(K,.t= It)): 
K,. S(DUl±.NU1). 

K2• S(Dill+. DU1-; NUl). 

"Notes: (1) For the notations see Table II ofPaperV. (2) mO. rn* are integers of half-integers defined by rno = o. ±!. ± 1 ..... ± 00. m* =!. 1. ~ ..... oo. (3) For 

Dill of (11) and (12) see Eq. (3.10) of Ref. 4. 
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£5(x) + £5(y) = n{J (x, y) + £5(xy), 
(7) 

2O(x) = ns (x). 

Then, the gauge transformation 

D '(x) = exp[ - i£5(x)/n]D (x) (8) 

leads to the required result 

D '(x)D (y)' = D '(xy), D '(x)D (a) = D (a)D '(x)·. (9) 

To determine the phase factor T in (4), we take the equi­
valent transformations of both sides of (4) with respect to 
D (a). Then we have 

r = 1. (10) 

Now we regard T as a second-order element which com­
mutes with all the elements of H"a, and arrive at the repre­
sentation group He;, which may be defined by 

X E H co ' xa = ax, a2 = Te, r = e, (11) 

where T is in the center of He;,. In an analogous manner one 
can construct all the representation groups H ~ given in 
Table I. 

There exists a total of 14 magnetic point groups H:' of 
infinite order. On account of their isomorphisms, however, it 
is only necessary to construct the representation groups of a 
characteristic set of the magnetic point groups which may be 
chosen to be 

C~, C:, C:,,., C~i' D:, D:o G;, G;,. 
(12) 

(for the notations see IV). Anyone of the remaining H:' is 
isomorphic to one of these as follows5

: 
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C'~lJ~C~V~ Dioo ~D:', G!~G; (13) 

through the one-to-one correspondence Ot++O and c~ +-+C~ . 
The representation groups H ~ of the above set (12) are given 
in Table I together with the representation of groups H:" of 
their halving subgroupsH co for convenience of presentation. 
Then, from their vector counirreps we have obtained the 
general expressions of all p-inequivalent projective counir­
reps of the corresponding magnetic point groups in terms of 
the unirreps of the proper point groups given in the previous 
work I. These are presented in Table II together with the 
projective unirreps of the halving unitary groups H co • Thus 
Table II provides all the projective counirreps (unirreps) of 
any antiunitary (unitary) group of infinite order directly or 
through isomorphisms. It is noted that these results given in 
Table II can be obtained by the limiting procedure from 
those of HZ of finite order. It is also noted that in general a 
class of the factor systems K and its dual K' are always p­
inequivalent without exception for H:' . This is not in gen­
eral true for the magnetic groups of finite order.5 

IS. K. Kim, J. Math. Phys. 22. 2101 (1981). 
2S. K. Kim, J. Math. Phys. 24, 411 (1983). 
3S. K. Kim, J. Math. Phys. 24, 414 (1983). 
4S. K. Kim, J. Math. Phys. 24, 419 (1983). 
's. K. Kim, J. Math. Phys. 25,189 (1984). 
6M. Hamermesh, Group Theory and Its Application to Physical Problems 
(Addison-Wesley, Reading, MA, 1964), p. 469. 
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The signature S of a finite-dimensional representation of SUI p,q) is the difference between the 
number of positive and negative signs in the bilinear invariant in its diagonal form. An expression 
for S is derived starting from the Weyl character formula for U( p,q) representations. 
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I. INTRODUCTION 

Noncompact simple Lie groups/algebras are today well 
established among mathematical tools of theoretical phys­
ics. Originally they found their way into physics through the 
special relativity theory and since then their interest to phys­
icists had its ups and downs, but it is beyond doubt that, in 
general, their applications have been growing in variety and 
frequency. Although most of the representations which are 
being used are either the lowest-dimensional defining repre­
sentations or, on the contrary, the infinite-dimensional uni­
tary ones, it appears to be only a matter of time until nontri­
vial information about other finite-dimensional (nonunitary) 
representations will be needed. One of the very first ques­
tions to be answered about many of them is what is the signa­
ture, i.e., the number of positive and negative signs in the 
bilinear invariant in its diagonal form. Equivalently, one 
may ask what is the maximal number oflinearly independent 
"spacelike, timelike, or lightlike" vectors in that representa­
tion space. It turns out that the answer is nowhere to be 
found except for the lowest cases which are obvious and Ref. 
1, which deals with representations ofSU(p,q),p + q<4. 

The purpose of this paper is to provide the answer for 
SUI p,q) with any value of p + q, and to set up a general 
method which can be applied to representations of other 
groups. 

The method of Ref. 1 makes use of known generating 
functions and therefore cannot easily be extended to higher p 
and q. Here we evaluate Weyl's U( p,q) character formula for 
the element of the U ( p,q) group whose character is the signa­
ture. The present approach could be used to derive character 
formulas for other elements of SUI p + q) of finite order. 

The signature S;. of an irreducible representation A of 
SUI p,q) of dimension N;. is the difference between the num­
ber P;. of positive signs and the number q;. of negative signs in 
the bilinear invariant ( x,y) taken in diagonal form, i.e., 

(x,y) =x+M;. y, M;. =Ip EB( -Iq), 

where In is the n X n identity matrix. Thus SA = Tr M;.. For 
the defining representation A = (1,0, ... ,0), P;. = p, and 
q;. = q so that S = Tr M = P - q. The matrix M is an ele­
ment ofU(p,q) and also ofU(p + q). The signatureS;. is the 
character of the element M;. in the representation A of 
U( p,q); we thereby fix the phase of S;.. Therefore our task 

_I Supported in part by the Natural Science and Engineering Research 
Council of Canada and by the Ministere de I'Education du Quebec. 

here is to evaluate the character of the element M;. for the 
representation A. For that purpose we use Weyl's character 
formula for an element of the group U( p,q) which is a diag­
onal (p + q) X (p + q) matrix with the variables fixed such 
that p of its elements are + 1 and q are - 1. Any finite 
representation A of U( p,q) contains a unique representation 
A of SUI p,q) and the character of M;. is the signature S;.. 

The signature S;. of a representation A of dimension N;. 
of the group U( p,q) has some obvious properties. Let P;. and 
q;. denote the number of positive and negative signs in the 
bilinear invariant of A. Then we have 

p;.=!(N;.+S;.), q;.=~(N;.-S;.). (1) 

For the direct sum and product A] EBA z, AI ®A z we have 

P;.,,,,;., = P;., + P;'" P;',,,;., = P;',P;'2 + q;"q;." 

q;'+"'A, =q;., +q;." q;',"A, =p;"q;., +q;.,P;." (2) 

S;.,,,,;., =S;., +S;." S;., .. ;., =S;.,SA,. 

An irreducible representation A of SUI P + q) is ordin­
arily labeled by the p + q - 1 nonnegative integers 

An = 2(A,an )I(an,an), n = 1,2, ... ,p + q - 1, (3) 

where A denotes the highest weight of the representation and 
a i are the simple roots of U( p,q). For our purpose it is con­
venient to use an equivalent set of p + q integers, 

p+q-I 

Ij = I Ak + P + q - j, j = 1,2, ... ,p + q - 1; 
k =j 

Ip + q =0. (4) 

In Sec. II the general formula for S;. is presented. It 
turns out to be a product of two expressions. The first con­
tains only trivial factors while the second is a sum of pro­
ducts of two determinants depending separately on the even­
and odd-valued labels Ii of the representation and otherwise 
only on the difference p - q. The cases p - q < 5 are worked 
out in detail. We assume thatp;>q. If q > p, interchangep and 
q in the formula for S;. and multiply by ( _ l)l:nn;'n. 

The signature formula is derived in Sec. III. 

II. THE SIGNATURE FORMULA 

Consider an irreducible representation of U( p,q) la­
beled by the integers In. In Eq.(4) they are in decreasing order 
11 >/2 > ... > lp+q = O. Lets be the number of odd In andt the 
number of even In. Then s + t = P + q. It is convenient to 
number the In so the odd ones are If> ... > I ~ and the even 
ones are l~ > ... > l~. 
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The chief result of this paper is that the signature S). is zero whenever s >P (and t <q) or t>p (and s < q) and otherwise is 
given by 

E).( - 1)S(P-I)+(1I2)q(q-I)(lll<n<m<s (/~ -/:',,))(lll<n<m<t (/~ -/"",))Fp_q,s_q(I°,le) 

S). = 2qIP-q)(ll~: \n!)(ll~-;:,,\m!) . 
(5) 

An intuitive reason for the vanishing of S). with the above 
inequalities is that when one of them is satisfied all choices of 
the s (or t ) determinant vanish when a Laplace expansion is 
made in the first s and last t columns; E). in (5) is ± 1 accord­
ing to whether the permutation from 11, ... ,lp + q to 
I ~ , ... ,1 ~,I r , ... ,1 ~ is even or odd. Fp _ q,s _ q (I) is given by the 
formula 

F (1° Ie) = ~ (_ 1)~,J3k-11I2)(s-q)(s+q-l) 
p-q,s-q' ~ 

(/J;) 

X /PPi - S + j(l°)1 /PYi - t + jW)I· 
(6) 

Here (f3i) stands for s - q integers fll > ... > fls _ q chosen 
from the set P - 1,p - 2, ... ,q and (Yi) stands for the remain­
ing t - q integers from the set, also numbered in decreasing 
order. The sum ~(/J;) is over the (p - q)!/(s - q)!(t - q)! 
choices of the integers (f3i)' The factor /PP;-s+j(fO)l is the 
(s - q) X (s - q) determinant whose ij element is exhibited; 
Ip y;- t+j(le)1 is a similar (t - q)X(t - q) determinant. The 
nth degree symmetric functionpn(/\O ... ,/.) is defined by 

s 00 

II (/-zli)-I = 2: Pn(/)zI, n;;>O, 
;= 1 n=O 

Pn(l) = 0, n <0. (7) 

For the following trivial special cases the function (6) is 
unity: 

(8) 

The form ofthe function (6) depends only onp - q and 
s - q. Therefore we evaluate it explicitly for a few low values 
ofp - q, namely,p - q < 5. In order that F #0 one must 
have 0 < s - q <P - q. Furthermore a symmetry relation 
(25) below allows us to cut the range of s - q values by half. 
Whenp - q = Oor 1, thens - q = Oorp - q andFis given 
by (8). Consequently the nontrivial cases we list below have 
2 <p - q < 5 and O<s - q < !(p - q). In order to simplify 
the notation we use p~ and p.s for pp(1 0) and pp(1 e), respec­
tively; in the summations in (9)-(12) distinct dummies ij, ... 
never take the same values when the variables li,lj"" are 
raised to different powers, and satisfy inequalities i <j < ... 
when the variables lolj , ... are raised to the same power. Thus 
~/2/3 12/3' 22 jj ~ i j means ~i#j i j whtle ~ I J j means ~i<jl J j' 

(9) 

= ?l~/j - (~/~)(~/j) + ~(/f)2 + ?/~/j, (10) 
J <J I J I I <J 

F4,I (I) = (pr)3 + p~ - 2prp~ - p~ ((Pr)2 - p~) + p~pr - p~ 

. 2: I~ljl~ - (2: l~) (? l~lj) 
I <J<k I 1<) 

+ (2: (l~f + I I~lj) (2:1~) - ~(1~)3 
I 1<] I I 

- 2: (l~)2/j - 2: 1~ljlL (11) 
ij i<j< k 

F (I) (e )2 e e ° ( e e e ) + 0(( e)2 e ) + (( 0)2 ° Jpe (0 ° ° jpe (0 )2 ° ° 4,2 = P2 -PIP3 -PI PIP2 -P3 P2 PI -P2 PI -P2 2 - PIP2 -P3 1+ P2 -PIP3 

= . ~ (/~)2/j/~ + ? (/f)2(/j)2 + 2 .. 2: 1~/jlkl~ - (2: I~ 2:(/~)2Ij + 2 2: 1~/j/~) 
J#I#k I<J I<J<k<r i i#j i<j<k j<k 

+ (~(/~)2 + 2:./~/j) ?/~/j + (/~~/n. 
I 1<1 1<] 

III. DERIVATION OF THE SIGNATURE FORMULA 

The signature of any finite irreducible representation A 
ofU(p,q) is given in terms of the character X). (1]) by 

S). =X).(l, ... ,I, -1, ... , -1), (13) 

where the first P 1]'S have been set equal to 1, the last q to 
- 1. For the character XA (1]) Weyl gives the formulas 

XA(1]) = 5).(1])/50(1]) = /PI;-p-q+j(1])I, (14) 

where 

SA (1]) = 11]/jl, (15) 
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(12) 

(16) 

In Eqs. (14) - (16) IAijl denotes the (p + q)X(p + q) deter­
minant whose ij element is Aij' We see, by (13) and (14) that 
/PI;_p_q+j (1, ... ,1, - 1, ... , - 1)1 is an explicit expression for 
the signature. However, the expression (2.1) is far simpler to 
evaluate. This section is devoted to its derivation. 

We start with SA (1])/50(1]) and set 
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'TJi = { /,, 1 <i<p, 

_ /,, p + l<i<.p + q. 
(17) 

Then, according to (13) and (14), 

SA = lim SA ISo' 
{;,---JJ 

(18) 

Keeping only lowest degree terms when ~i-o we find, using 
(16) and (17), 

So~( - 1)(112)1'( - 1)2
pq 

( II (~j - ~i)) 
1<.1 <J<'P 

x ( II (~j - ~;)). 
P + 1 <'i<j<.p + q 

(19) 

With the substitution (17) we get 

x ( II (Ii -Ij )) ( II (I; -Ij )) 

l<i<i<s s+ 1<.i<j<'5+t 

x ~( - 1);I/Ji - (1/2)(s - q)(s + q - l)[p .(/°)/ [p .(Ie)/ 
£.J Pi - S + J y, - I + J • 
(Pi) 

(23) 

Inserting (23) into (22) yields the desired result, Eq. (4). 
We conclude this section by noting the symmetry rela­

tion satisfied by Fa,b (I 0,/ e), namely 

Fa,b W,/ e) = ( - I )(a - l)b Fa,a _ b (I er). (24) 

Equation (24) follows straightforwardly from the definition /Ii /11 
_/Ii elll (20) (5), 

the vertical line separates the first s columns from the last t 
columns while the horizontal line divides the first prows 
from the last q. Now repeat the following operationp - 1 
times, giving i in succession the values 1,2, ... ,p - 1: subtract 
the ith row from each row k for which i + 1 <k<p and bring 
outside a factor (~k - ~i )Ii from the k th row. Then repeat 
the following operation q - 1 times, giving i the values 
p + l,p + 2, ... ,p + q - 1: subtract the ith row from each row 
k for which i + 1 <k<.p + q and bring outside a factor 
(~k - ~Y(i - p) from the k th row. The result is 

where we have kept only the leading terms for small ~i' Di­
vi ding SA' Eq. (21), by So, Eq. (19), we find 

(22) 

Now make a Laplace expansion of the determinant in 
(22) by its first s columns. In the first s columns the first q 
rows are the negatives of the last q. Therefore in the Laplace 
expansion one must take one from each of the q pairs in the s 
determinant and the other in the t determinant. It follows 
that sand t must lie between p and q: p;,s;,q and p;,t;,q; 
otherwise SA vanishes. There are 2q ways of choosing one of 
each of the q pairs and it may be shown straightforwardly 
that each choice contributes equally. We therefore make a 
conventional choice, the first q rows in the s-determinant, 
the last q rows in the t-determinant, and multiply by 2q

• We 
find 
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IV. EXAMPLES AND REMARKS 

First we evaluate the signature for the groups SU(I,I), 
SU(2,1), SU(2,2), and SU(3,1). Table I summarizes the re­
sults. As in Sec. II, the odd valued I 's are labeled I ~ ,I ~ , ... 1 ~ in 
decreasing order and the even I 's are 1 ~ ,I ~ , ... ,1 ~ in decreasing 
order. In the conventional labeling the I's are 11,/2 , ... ,lp + q in 
decreasing order. E A is ± 1 according to whether the permu­
tation from 1\112, ... ,lp + q to I ~ ,I ~ , ... ,1 ~,I ~,l ~ , ... ,1 ~ is even or 
odd. 

SU(l,I). In thiscasep = q = s = t = 1 for SA ¥O. Then, 

TABLE!. The signatures SA of irreducible representations A = (Ad,(A,.A2), 
and (A" A2,A,) of, respectively SU(I,I), SU(2,1), and SU(3, I), SU(2,2). Sym­
bol e (0) in the column Ai denotes an even (odd) Ai' 

Parity of 
Group A, A2 A3 SA 

SU(I,I)e 
o 

SU(2,I)e 
o 
o 
e 

SU(2,2)e 
e 
o 

SU(3,I)e 

e 

o 

e 

o 

o 

e 

o 

e 
0 

e 
0 

e e 
0 e 
e 0 

otherwise 

e e 

e 0 

e e 

0 e 

0 e 

e 0 

0 0 

0 0 

I 
o 

!(A, +A2 + 2) 
o 
!(A, + I) 
!(A 2 + I) 

i(A, + A2 + 2)(A2 + A3 + 2) 
- i(A2 + I)(A, +A2 +A3 + 3) 
- i(A, + 1)(A3 + I) 

o 

- MA, + I)(A, +A2 + 2)(A, +A2 +A3 + 3) 

MA, + 1)(A2 + A3 + 2)(A,+A2 + A3 + 3) 

§(A2 + I)(A, - A3)(A, + A2 + A3 + 3) 

~(A., + 1)(A2 + I)(A,+A2 + 2) 

- ~(A, + I)(A, + I)(A, + 2A2 + A, + 4) 

~(A2 + 1)(A3 + I)(A2 + A3 + 2) 

o 
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according to (5) and (8), S" = Foo = 1. 
SU(2,1). In this casep = 2,q = 1, so we must have 

s = 2,( = 1 ors = l,t = 2forS" #0. According to (5) one has 

S,,=~€,,(-l)S(/~-/:), n<m, (25) 

where I ~ - I: is the difference of the odd I's (* = 0) for 
s = 2, or of the even I's (* = e) for (= 2. 

SU(2,2). Here p = q = 2, so we must have s = ( = 2 for 
nonzero S". According to (5), 

S" = - €,,(l~ -l~)(l~ -l~). (26) 

SU(3, 1). Here p = 3,q = 1, so there are two distinct 
cases corresponding to S" #0. (i) s = ( = 2, and (ii) 
s = 3,t = 1 or s = 1,t = 3. From (5) we have 

(i) S" =€,,(l~ -1~)(/~ -1~)F2.1(/)' 

(ii) S" = €,,(lf - I~)(l~ - 1~)(/f -l~), 

(27) 

where * = 0 or e according to whether s = 3 or ( = 3, respec­
tively. Substitution of the representation labelsA1, ... ,A.4 of(3) 
and (4) into (25H27) gives the expressions for S" summar­
ized in Table I. 

The problem solved in this paper could be viewed as a 
special case of the evaluation characters of elements of finite 
order ofSU(n). Indeed, if q is even the U(p + q) element M, 
whose characters we evaluate, is also an element of 
SUI p + q). If q is odd and p even MEtSU( p + q) because 
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det M = - 1; we consider an SUI p + q) element 
M' = -M, SU(p +q). Then 

S" = tr M" = (tr M ~)( - 1 )l:;li + (l/2}n(n + lj (28) 

in any irreducible representation A. Without loss of genera­
lity we could have here redefined the bilinear invariant 
(x,y)-+ - (x,y) so that thenS" = tr M~. Ifp and q are both 
odd, M is in one-to-one correspondence with SUI p + q) ele­
ment M" = M exp(21Til( p + q)). Then 

S" =trM" 

= (tr M ;)exp( - 21Tl'[ ~li + ~ n(n + 1) Din, 

n =p +q. (29) 

An identification of SU(n) elements M and M" in a general 
standard notation for elements of finite order is found in Sec. 
9.2 of Ref. 2. 

It is possible to evaluate characters of other elements of 
finite order in SU(n) by a generalization of the methods of 
this paper. 

'I. Patera and R. T. Sharp, Kinam 4. 93-98 (1982). 
2R. V. Moody and I. Patera. to appear in SIAM J. Algebraic Discrete Meth­
ods 5 (2) (1984). 
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Making use of the isomorphism of 0+(2,2) with the direct product 0+(2,I)XO+(2,I), the matrix 
elements of 0+(2,2) in its unitary irreducible representations are explicitly calculated in terms of 
Euler angles introduced in a previous paper. The expressions so obtained consist of infinite sums 
of product of Clebsch-Gordan coefficients and Bargmann's v functions, both for the group 
0+(2,1). 

PACS numbers: 02.20. + b 

1. INTRODUCTION 

The problem of computation of unitary irreducible rep­
resentation (VIR) matrix elements for the unimodular or­
thogonal and pseudo-orthogonal (generalized Lorentz) 
groups has a pretty long history, although quite a large 
amount of work on it was done in fairly recent past. It was 
originated in a recognizable form by Wigner in 1931 when he 
introduced I his, by now very well-known and extensively 
used, D and d functions, which are just the elements for the 
three-dimensional pure rotation group 0+(3). Next, Barg­
mann2 obtained them for the three-dimensional Lorentz 
group 0 + (2,1) as well as for the ordinary Lorentz group 
0+(3,1); these latter have also been calculated by several 
other authors. 3

-
7 Thed functions of 0+(4) have been ob­

tained by Friedman and Wang8 and Biedenharn,9 those of 
0+(5) by Holman lO and those of 0+(4,1) by Holman, 11 

Strom,12 and Takahashi. 13 For the general cases O+(n) and 
0+ (n, 1), the problem has been studied in considerable de­
tails by quite a large number of authors. 14--18 However, as far 
as the author knows, none of the cases 0+(n,2), n;;;>2, has 
ever been considered in this connection. Hence, in order to 
make a beginning, we start with 0+(2,2) and obtain its VIR 
matrix elements in the present paper. This group turns out to 
be exceptionally simple due, essentially, to the fact that it is 
isomorphic to the direct product 0+(2,1) X 0+(2,1); this en­
ables one to use the trick of Friedman and Wang8 [intro­
duced in connection with the isomorphism 
0+(4)::::::0+(3)XO+(3)] and make the calculations almost 
trivial. One of the main reasons for the lack of interest in the 
matrix elements ofO+(n,2), n;;;>2, in spite of the fact that a 
number of series of VIR's ofO+(p,q),p,q;;;>2, have been 
known 19 for some time, has probably been the absence of a 
suitable set of parameters for these groups, similar to the set 
of Euler angles for O+(n) and O+(n,l). In a previous paper,20 
the author was able to define a set of Euler angles for the 
general case 0 + ( p,q); these, and a second similar but slightly 
different set of angles, are now used to obtain explicit expres­
sions for the matrix elements of 0+(2,2). 

2. THE GROUP 0+ (2,2) AND ITS UIR'S 

The group 0+(2,2) consists of all the4X 4 real matrices 
a = {al'v} which satisfy 

aTga =g, 

deta = 1, 

g being the 4 X 4 diagonal matrix 

g = diag(l,I, - 1, - 1). 

The first condition ensures that these matrices keep the 
lengths of vectors 

x = (X I,X2,X3,X4 ) 

in the four-dimensional real Minkowski space M (2,2), given 
by 

X2 = x~ + x~ - x; - xL 
invariant, i.e., are orthogonal linear transformations in this 
space. It is a six-parameter group and the six generators 

a 12, a34, b13, b14, b23 , b24, 

of the infinitesimal transformations in various xl' - Xv 

planes, i.e., the generators of the Lie algebra of 0+(2,2) are 
given by 

(ad,lK = -01201K +OIK01,l, 

(a34hK = 0120ZK - °IKOZ,l, 

(bl'vhK = 01',lOVK + 0I'KOV,l, J-l = 1,2, v = 3,4, 

oij being the usual Kronecker delta. Setting 

hI = ib23, hz = ib l3, h3 = ia w 

kl = ib l4, k z = ibz4, k3 = ia34, 

it is easily checked that 

[h 1,h2 ] = - ih3, [h z,h3] = ih 1, [h3,hd = ihz· 

Note that (a 12,b13,b23 ), i.e., (h l,hz,h3), are just the generators 
ofthe Lie algebra of the subgroup 0+(2,1) of 0+(2,2) con­
sisting of those of its elements which leave X 4 invariant. 

Introducing now 

jj =! (h j + k j ), (= ~(hj - k j ), i = 1,2,3, 

we find that 

UIJZ] = - ij3' U1J3] = ijl' 
[/1'/1] = - il3, [/2'/3] = ill' 

[j;olj] = 0, iJ = 1,2,3. 

U3JI] = ij2' 

[/3'/ I] = il2, 

Thus {hi} and {ki } combine together to give, and are them­
selves determined by, two independent sets {i} and {/;} of 
generators of the Lie algebra of 0 + (2, 1); this leads to the 
well-known fact that 0+(2,2) is isomorphic with the direct 
product 0+(2,1)XO+(2,I). If - qj(qj + 1) and mj are the 
eigenvalues of 

j2 = - (j~ + ji - j~ ) 
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andj3' we denote by .rgqj any of the VIR's of 0+(2,1) (gener­
ated by Vi}) labeled by qj according to the labeling scheme 
of Holman and Biedenharn.21 The standard basis for the 

representation space of .rgqj consists of 

{iqj,mj ) }, 

the collection of simultaneous eigenvectors of J2 and J3 : 

J2iqj,mj) = - qj(qj + l)iqj,mj ), 

J3iqj,mj ) = mjiqj,mj ), 

(capital letters denote the representatives, in the representa­
tion under consideration, of the operators denoted by the 

corresponding small letters). ql' m l , qh' m h, and .rgq, are 
similarly defined. The range of values of mj , m l and 
m h = mj + m l (as h3 = j3 + 13) depend on the particular re­
presentations .rgqj and .rgql chosen; we shall carry out our 

calculations only for the case when both .rgqj and §q, belong 
to the integral variety of the principal series of continuous 
representations21 (i.e., they are of the type c~, q > 1, in the 
notation of Bargmann2) as results for other choices can be 
obtained in a similar manner. The range of values of the three 
eigenvalues mj , m l , and m h will therefore be 

0, ± 1, ± 2,.··. 

As 0+(2,2) is generated by the union {;Ju{IJ, its 
VIR's will be labeled by the pair (qj,ql)' We shall denote 
them by .rgqr

q
,; these are, in fact, the direct product22 of .rgqj 

and .rgql: 

Obviously, one basis for the representation space of .rgqr
q
, 

will be the set of vectors 

iqj,mj;q/,m l )=iqj,mj ) iql,ml ), 

mj,m/ = 0, ± 1, ± 2,.··. 

However, as 

J 2,L2,H2
,ll3 

also form a set of four mutually commuting independent 
Hermitian operators, another basis for it will consist of their 
simultaneous eigenvectors, i.e., the set of vectors 

iqj,q,;qh,mh ). 

As hi = j; + Ii> the range of q h will consist of those val­
ues which label those VIR's of 0+(2, 1), which appear in the 
reduction of the product of .rgqj and .rgq,. Looking at the 
analysis of this reduction given by Holman and Bieden­
ham,21 we see that the possible values of qh are such that it 
labels either a continuous representation of principal series 
and integral variety or a discrete representation, again of 
integral variety. In the former case, the range of values of m h 

is 
0, ± 1, ± 2,.··, 

while it is 

- qh. - qh + 1, - qh + 2, ... 

if qh labels a positive discrete representation and 

qh,qh - l,qh - 2, ... 

if it labels a negative discrete representation. 
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As hi are the usual generators of the subgroup 0+(2,1) 
of 0+(2,2) which keepsx4 invariant, we shall have, for 
aEO+(2,1), 

where T(a) is the operator representing a in .rgqr
q
" and the 

v~n (a) are Bargmann's2 v functions forO+(2,1). This leads to 

{
~(qh - q~ )v~hm;' (a) if (A) is satisfied 

= ° if (B) is satisfied 

~ vqh (a) if (C) is satisfied, q,.qi. mhmh 

(1) 

where (A), (B), and (C) are the following conditions: 
(A) q h ,q;' both label continuous representations of prin­

cipal series; 
(B) one of qh ,q;' labels a continuous representation of 

principal series and the other a discrete representation; 
(C) both qh and q;' label discrete representations. 

This equation will be used in the next section. 

3. THE MATRIX ELEMENT 

Let 

a-{ alLv }EO+(2,2). 

We shall calculate 

the matrix elements of a in the representation §qr
q
,. It turns 

out that the two cases 

a 44 > 1, a 44 < 1 

have to be considered separately. 

Case I: a44 > 1 

Here the suitable Euler angles are the ones given by 
Syed.20 These are 

with a given in terms of them by 

a = rn(042)/I3(tPd/14( - tP«)rn!0d/l3( - tP33)rn! - 022 ), 

where rlLv(O) = a rotation by an angle 0 in theJ.l-vplane and 
IlLv(tP) = a Lorentz transformation by an angle tP in theJ.l-v 
plane. We write 

a = b114( - tP«)a 

so that 

a = rI2(Od/l3( - tP33)rn! - OdEO+(2,1), 

b = rI2(Od/13(tP43)EO+(2,1). 

Then 
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(by Ref. 23) 

= L, L" L (qj,ql;qh,mh IT(b )Iqj,ql;q;:,m;:) 
qh qh mh,mi:' 

x (qj,ql;q;:,m;:IL I4( - 1/>44)lqj,ql;q;:',m;:') 

X (qj,ql ;q;:' ,m;:' IT (aJlqj ,ql ;q;' ,m;' ), 

where f q stands for summation over discrete range and inte­
gration over the continuous range of values of q. Using now 
(1), we get 

VQl'ql , ,(a) 
qh,mh;qh,mh 

= L (2) 

where 

and, of course, e - iK,,,, = L 14(1/> ). To evaluate the last matrix 
element, we use the expansion of Iqj,ql;qh ,mh) in a series of 

Iqj,mj;ql,ml )=Iqj,mj ) Iql,ml )· 

Taking this expansion in terms of Clebsch-Gordan coeffi­
cients of 0+(2,1)24 as 

Iqj,ql;qh,mh) = L C(qj,ql,qh;mj,mh - mj,mh) 
mj 

xlqj,mj)lql,mh -mj ), 

and using KI = JI - L I, we get 

V Q
l'QI ("') 

qh.m;:,qh,m;:' 'f' 

mJ'.mJ" 

X (qj,mj' Ie - iJ,,,, Iqj,mj") 

X (q . m" - m~'leiL,,,, Iq m'" - m"') J' h J I' h J. 

Now, by actually carrying out the matrix multiplications, it 
is easy to check that 

rdl7I2)113( - I/> )rd - 1712) = 123( - 1/»; 

this leads to 

Hence 

(qj,mj' leiJ,,,, Iqj,mj") 

= (qj,mj'lei1TJ,/2eiJ''''ei1TJ'lqj,mj'') 

= ei1T(mj" - mJ')l2 (qj,mj' leiJ,,,, Iqj,mj") 

where 

V~n(Y) = (q,ml - eiJ,.2Y lq,n) 

is Bargmann's V function.2 Similarly, 
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(q m" - m~'leiL,,,, Iq m'" - m~") I' h J I, h J 

so that 

mj'.m;;' 

X V~;; _ mj'm;;' _ mj"(1/> 12). (3) 

(2) and (3) completely determine the matrix element of a in 
gqpql. 

Case II: a44 < 1 

We need, for this case, a slightly different set of Euler 
angles which are obtained by a variation in the definition of 
"polar angles in en .. given by Syed.20 We define the "new" 
polar angles in C 4 by 

Z4 = t cos 

Z3 = t sin 

Z2 = t sin 

ZI = t sin 

X4' 
X4 

X4 

X4 
t = tl + it2, tl>O, 

cos X3, 

sin X3 
sin X3 

Xm = Om + il/>m' 1 <;;;m<;;;4. 

These give 

t= ± (zf +~ +~ +~)1/2, 
cos X4 = z4lt, 

cos 

sin 

COSX3 = ±z3/ (zf +~ +~)J/2, 

COSX2= ±z2/ (zf +~)1/2, 

sinX2 = ±zl/(zf +~)1/2, 

Let now aEo+(2,2) with a44 <;;; 1, and set 

a=/a/- I
, 

where/is the 4X4 diagonal matrix 

/ = diag( 1, l,i,i). 

Thus 

C 
a l2 ia13 

A a 21 a 22 - ia23 
a= 

ia31 ia32 a 33 
ia41 ia42 a43 

Let 

- X44' - X43' - X42' 

-ia,,) 
-la24 

a 34 
a 44 

X2, 

X2, 

be the new polar angles of the fourth column 

[ - ia l4, - ia24,a34,a44]T 

of a. Then it is easy to check (using a 44 <;;; 1) that 

X44 = 044, X43 = i1/>43' X42 = 042, 

and that 

a3 = rf4(044)r~(i1/>43)ri2(Oda 

0<;;;04<;;;17, 

0<;;;03<;;;17, 

0<;;;02<;;;217, 
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has the last row and column as those ofthe 4 X 4 unit matrix. 
Hence, if a(3) is the matrix obtained from a

3 by deleting its 
last row and column, we will have 

a(3)EO+(2, 1). 

We now take 

as the old Euler angles of a(3) defined by Syed,20 who shows 

that 

The collection 

of six angles is now taken as the set of new Euler angles of a. 
Now, from Syed,20 

so that 

i.e., 

X r 13( - ir,633)r d - 822) 

=Xl=/-la/ 

where 

b = rd842)123(r,643)EO+(2,1), 

a = rd832)113( - r,633)rd - 8dEO+(2,1). 

Thus 

= (qJ,q/;qh,mh I T(b )R34(844)T(a)lqJ,%qi.,mi.) 

= " " v
q
m

h m,,(b )vqmi.", m' (a) ~~ n'h h'h 
m;: m;:' 

where 
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= L L CX(qJ,q/,qh;mj',ml: - mj',ml:) 
mj' mj" 

X C(q. q q' 'mm mm - m~" mm) 
J' [, h' J' h J' h 

X (qJ,mj' leiJ,o Iqj,mj") 

X (q[,ml: - mj'lejL,o Iq[,ml:' - mj") 

Thus we finally get the matrix element of a in ,q;qpq, as 

vqpq
, , ,(a) 

q".mh;qh·mh 

with 

j(m" 2m")O 
X C(q. q q"m~' m" - m~' mUle h - j 

J' [, h' J' h J' h . 
Note the close similarity of this last expression with the 
expression for the "boost" matrix of 0+(4) given by 
Friedman and Wang. 8 
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Invariant submanifolds of the linear representation space C4m of the physical symmetry group 
SU(2,2)X SU(m) and its subgroup f?PXSU(m) are studied in some detail. It is shown that there 
exists only one such manifold admitting unique projection onto Minkowski space. The structure 
of this manifold is investigated by using proper local coordinate systems. 
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INTRODUCTION 

I describe in this paper some of the geometrical conse­
quences of the physical symmetry SU(2,2)XSU(m) and 
f!lJ X SU(m) and the assumption that the physical space is the 
minimal invariant submanifold, containing Minkowski 
space, of the complex linear representation space C4m of this 
symmetry. 

The assumption is, of course, quite arbitrary. It can be 
justified, to some extent, by the basic role played by spinors 
in the description of elementary particles. The idea to use 
spinor spaces as the geometrical basis is quite old I and has 
already many applications. 1-4 It has, so far, been limited to 
the direct product SU(2,2) X SU(2) for the full physical sym­
metry (cf., e.g., Ref. 4). Therefore, this paper may also be 
considered as an extension of the idea to SU(2,2)XSU(m) 
with arbitrary m (cf. however also Ref. 5 where such an ex­
tension was considered for the first time in a different set­
ting). 

Another justification may be found in the desire to pro­
vide a common geometrical background for both the inter­
nal and external symmetries. A common background is 
quite natural if we consider the direct product SU(2,2) 
X SU(m) as a subgroup of some larger symmetry, say 
GL(nm,q. 

In the two sections to follow, I describe in some detail 
the invariant manifold mentioned above. First, some general 
properties of matrix manifolds, local coordinate system in 
these manifolds and their transformation character are de­
rived in the general case of the direct product 
GL(n,qXGL(m,q (Sec. 1). These properties are then spe­
cialized to the physically interesting case ofSU(2,2) xSU(m) 
and its subgroup f!lJ xSU(m) and applied to the description 
of the invariant manifold in question (Sec. 2). It is shown that 
there exists only one such invariant submanifold of C4m 

which admits a unique projection onto Minkowski space 
consistent with the physical symmetry group under consi­
deration. 

1. SOME PROPERTIES OF MATRIX MANIFOLDS 

Consider the linear representation space cnm of 
GL(nm,q. With respect to the subgroup 
GL(n,q X GL(m,q this representation space decomposes 
into invariant submanifolds 

& k: = !s E Cnm:rank S = k I, k = O,l, ... ,min(n,m), 
(l.1) 

in such a way that 

and 

& kn& 1= 0 for 1 #k, 

min(n,m) 

U &k = cnm. 
k=O 

(1.2) 

(1.3) 

We introduce an atlas on & k consisting of the (~ )(Z') 
neighborhoods 

( ) (

sa,;a, , ... , 
al,···,ak S : = det : 
al,···,ak Sa~;a, 

(1.4) 

where !al, ... ,ak} and !al, ... ,ak I run over all possible selec­
tions of k numbers out of nor m numbers, resp. In particular, 
in the neighborhood S !l:::::~) #0 we can decompose the ma­
trix 

S = !Sa;a la= I •... ,n (1.5) 
a=l •...• m 

in the following way, 

S = C' ~). (1.6) 

where 

K: = !Sa';a' I a' = I, ... ,k' B: = !Sa';a- I a' = I, ... ,k , 
cr' = I, ... ,k cr- = k + I •...• m 

(1.7) 

A: = !Sa";a' la" =k+ I, ... ,n' Y: = !Sa";a' la" =k+ I, .. ,n • 
a' = I, ... ,k a" = k + I •...• m 

Four different local coordinate systems can be introduced in 
the neighborhood det K #0 by means of the formulas 

Y=AK-'B =aB=Ab =aKb, (1.8) 

where 

a = AK -I, b = K -lb. (1.9) 

It is seen from (1.6) and (1.8) that the complex dimension of 
& k is 

dim & k = k (n + m - k ). (1.10) 

In a similar way local coordinate systems are introduced in 
the other neighborhoods (1.4). 

We can consider tJ k as the set of independent coordi­
nates of n complex m-vectors or m complex n-vectors of 
which only k are linearly independent. 

We shall need the following statements concerning the 
relation between some of these coordinate systems (1.8) and 
their transformation properties. 

Statement 1: On the common part of the respective 
neighborhoods, the following relations hold: 
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_ t:- (1, ... ,k) -, t:- (1, 
ao"a' - ~ ~,,, , 1, ... ,k 1, ... ,a - l,a ,a + 1, 

... ,k) 

... ,k 

(
a" ... ,ak ) - , (a,,. .. , 

= S 1, ... ,k S 1, ... ,a' - l,a" ,a' + 1, 
... ,ak ), 

... ,k 

ba'a" = S (1, ... ,k) -, S (1, ... ,a' - l,a",a' + 1, 
1, ... ,k 1, .. . 

... ,k) 

... ,k 
= S ( 1, ... ,k ) - 's (1, ... ,a' - l,a" ,a' + 1, 

a" ... ,ak a" ... 

... ,k) 

... ,ak ' 

The proof follows from general properties of matrices and 
can be found, e.g., in Ref. 6. One can easily verify that formu­
las (1.11) and (1.12) admit extension to aaa' and ba'a with 
a = 1, ... ,n; a = 1, ... ,m; and a',a' = 1, ... ,k, and that 

aa'b' =Oa'b" for a',b'= 1, ... ,k, 
(1.13) 

ba,p' = oa'P" for a ',/3 , = 1, ... ,k. 

Consider now the transformation properties of the co­
ordinates. With respect to GL(n,q X GL(m,q the matrix S 
transforms according to 

(1.14) 

where g E GL(n,q X 1 and h E 1 X GL(m,q, The corre­
sponding transformation properties of the matrices a and b 
are (cf. Ref. 6) 

a-a' = a(s ') = a(gsh ) = a(gs ), 

b-+b ' = b (s ') = b (gsh ) = b (5h ). 

We have, therefore, the statement 
Statement 2: a is I X hand b is g X I invariant 
The explicit form of (1.15) is 

(1.15) 

L (C" ,,,,Ck) (1, ... ,k ) 
c g 1, .. "b' - l,a",b' + 1, ... ,k a c"""Ck 

a~"b' = -------'---'----'-----'----"----
L g (d", .. ,dk ) a (1, ... ,k) 
d 1, ... ,k d, ... dk 

(1.16) 

b ~,p' = 

(1.17) 

The various factors in (1.16) and (1.17) are subdeterminants 
of the matrices a,b,g,h taken according to the general rule 

(1.18) 

The sums in (1.9) and (1.17) are over all the (~) or (k) possibili­
ties to choose k different numbers out of n or m numbers, 
resp. These formulas show that Statement 2 can be complet­
ed by the following: 

Statement 3: The elements of the matrix a transform 
among themselves, and similarly the elements of b, under the 
transformations ofGL(n,qX GL(m,q. 

2137 J. Math. Phys., Vol. 25, No.7, July 1984 

for a' = 1, ... ,k, a" = k + 1, ... ,n, (1.11) 

for a' = 1, ... ,k, a" = k + 1, ... ,m. (1.12) 

Weare interested eventually in the physically impor­
tant case of SU(2,2) X SU(m) or its subgroups &> X SU(m). 
Therefore, we are going now to specialize the above results to 
GL(4,qX GL(m,q and to derive the consequences of 
further restriction of the symmetry to SU(2,2) X SU(m) or 
&>XSU(m). 

2. THE MODEL 

Let us consider first the, still too general, case 
GL(4,q X GL(m,q with O<k<min(4,m). With each pair Sa 
: = {Sa;p la = ', ... ,4 and sP: = {Sa;p Ja = ', ... ,4 of the m complex 
four-vectors represented by the 4 X m matrix 
S = {S a;a J a = ', ... ,4 one can associate the 2 X 2 matrix a~a.'!! I 

a= 1 ••..• m 

defined by the formulas [cf, (1.11)] 

1a.,PI = t:- (a, ~ -'t:- (a, 
aa , ~ 1 2 ~ " , a , 

(2.1) 

a~'fl = S (~',:) -'s (7: !,,), a" = 3,4. 

Again with each such 2 X 2 complex matrix one can associ­
ate a complex four-vector by means of the Pauli relation 

z;:,PI = - (A./2)(ul'(b'a~a.'tl, (2.2) 

where A. is a constant with dimension of length (a is dimen­
sionless). 

It can be shown (cf., e,g., Refs. 2,4,7,8) that conformal 
linear transformations SU(2,2) X 1 of the matrix S induce, 
via a a" b ' , conformal nonlinear transformations of each of the 
complex vectors.t:,PI, In the infinitesimal version they have 
the form 

z,{ -+z~ = z,{ - cZ,{ - c,{ + e'(gl',{Z2 - 2zl'z,{) 

+ cl'Y(gIlAZy - gv'{zl')' (2.3) 

representing dilatations, translations, special conformal 
transformations, and Lorentz rotations. It is seen from (2.3) 
that the coordinates xI' = !(zl' + z!) of the real part of zl' 
transform among themselves like a real Minkowski vector 
with respect to dilatations, translations, and rotations. The 
coordinates y I' = !(zl' - z!) of the imaginary part of zl' 
transform similarly, the only difference being their invar­
iance with respect to translations. The coordinates of the real 
and imaginary part of zl' are transformed into each other by 
the special conformal transformation only. A consequence 
of these facts is that in the case of Poincare symmetry (ex­
tended possibly by dilatations) one can consider the coordi­
nates x = (xl'l + X (21) andy = xl'l- x l21 as the proper lin-

I' I' I' I' I' I' 

ear combinations of two vectors x~1 and x~1 of the same 
Minkowski space M4 • This interpretation corresponds to the 
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idea ofYukawa's bilocal theory9 in which the coordinates x 
= ~(x~ I + x~l) of the center of mass of the elementary parti­

cle and the relative coordinates Y,. = x~1 - x~1 were intro­
duced a priori. It breaks down if we extend the symmetry to 
the full conformal group due to the mixing of x,. and Y

1l 

caused by special conformal transformation. 
So far we have considered only conformal transforma­

tions of the external group SU(2,2) X 1. What are the trans­
formation properties of z;:' f31 with respect to transformations 
of the internal group 1 X SU(m)1 The second order determi­
nants 5 (~:~) appearing in the numerator and denominator of 
a~a.·! I in (2.1) transform with respect to the Greek indices as 
an (~)-dimensional representation of 1 X SU(m). 

This situation is highly unsatisfactory for all k> 2 be­
cause of two reasons: First of all, for m > 2 we have (~) differ­
ent complex Minkowski spaces M ~a. /31 with coordinates 
t:;·f31 and, therefore there is no unique projection from & k 

ontoM4 • Secondly, thez;:·f31 and, therefore, also the real 
parts x;:' f31 are not invariant with respect to internal symme­
tries which contradicts experimental evidence. Thus all in­
variant submanifolds & k C cnm with k> 2 must be discard­
ed. Also the manifolds & 0' & I are out of question because & 0 

is the point 5 = 0 and & I does not admit an imbedding of M4 
according to (2.2) because all second-order determinants 
vanish. 

Thus we are left with & 2 and we shall show now that in 
this case the projection & 2~M4 is unique and invariant with 
respect to the internal symmetry group 1 X GL(m,q. 

Indeed, from Statement 1 it follows that on the common 
part of the respective neighborhoods 

(2.4) 

and, consequently, 

Z(a.f31 = .-11.21 = Z 
,. "j, ,.' (2.5) 

The projection is unique. Moreover from Statement 2 it fol­
lows that the (unique) aa" a' and, therefore, also z,. are invar­
iant with respect to the internal symmetry group 
1 X GL(m,q. Finally from Statement 3, we infer that the 
matrix elements of the matrix a and, therefore, also the z,. 
transform among themselves with respect to the external 
symmetry GL(n,q Xl. 

It is seen that &' 2 is the only invariant submanifold of 
cnm which admits a unique projection on M4 consistent with 
the group. 

If we now restrict the symmetry to the physically inter­
esting case ofSU(2,2) X SU(m) the invariant manifold & 2 will 
decompose into submanifolds according to the existence of 
two independent SU(2,2) X SU(m )-invariants 

r;ixa and r;af3 r;i3a , 

where 

- ~* filb~ r;af3 - !> a;a !> b;f3 

(2.6) 

(2.7) 

is the SU(2,2) invariant Hermitian SU(m)-tensor andfilb the 
Hermitian matrix with eigenvalues 1,1, - 1, - 1, determin­
ing the transformations ofSU(2,2). 

It is convenient to use a representation in which 
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f = ( 0 1
0
'(10). 

- i(1o 
(2.8) 

In this representation 

r;af3 = U -I]I'rl';af3' 

where 

(2.9) 

_ ~* ( a'b'~ r,.;af3 -!> a';a (1,.) !>b';f3' (2.10) 

Equation (2.9) is a consequence ofthe second equation (1.8) 
specialized to the case n = 4, k = 2. 

By virtue of(2.9) the two invariants (2.6) can be written 
in the form 

_"" -I ,. . -4' -2,.;;. v 
r;aa -.l.I1. Y r,., r;af3 r ;f3a - /l. )' Y r,.v' (2.11) 

where 

(2.12) 

r,.v: = r,.;af3 rv;i3a = - ~g,.VrArt + rl'rv ' 

Introducing the second equation (2.12) into the second rela­
tion (2.11) one obtains 

r;a/3r;f3a = 4"{ -2{(r,.]I'f - ~rArtyp .v"}. (2.13) 

We can use, therefore, instead of (2.6) the two invariants 

(2.14) 

The submanifolds of & 2 can now be described by the 
two equations 

rl']I'= -CI , y,.]I'rv r
v =c2· (2.15) 

To describe these manifolds in more detail, let us note that r v 

is a "time-like" vector pointing towards the "future" 

rv rv = - 2 LI5(~:fW 
a./3 

-4{1151112115211 2 -1<51,52)111 = _K
2

, (2.16) 

ro = ~ 15a';a [2 = 1151112 + 115211 2 > 0, a,a 
where 

m m 

<51,52): = L 5fa52;a' 115a,1I 2
= I 15a';aI2.(2.17) 

a=l a=\ 

It is seen that the first equation (2.15) describes a hyperplane 
in the space of the variables { y I' 1 perpendicular to the vector 
rl" The second equation (2.15) describes a rotational ellip­
soid with yo-axis as symmetry axis. In the case when Cz > 0 
(c2 <O)y,. is timelike (spacelike). In the first case these sur­
faces intersect for a proper choice of C l and Cz [cf. (2.21)]. In 
the second case they intersect for all CI and C2• Their union is 
an (dim &'2- I)-dimensional invariant submanifold. Their 
intersection has one dimension less and is of particular inter­
est in view of the assumption of minimality mentioned in the 
In troduction. 

From the first equation (2.16) and second equation 
(2.15) we have 

y,.]I' = - C2/,r,y~ = y2 + C2/K2. (2.18) 

From the first equation (2.15), together with (2.18) we obtain 

Yo = (yr + c l )/rO' (2.19) 

and 

(2.20) 

Jan Rzewuski 2138 



                                                                                                                                    

(2.20) is a second-order equation for the three-vector y with 
coefficients depending on Sa';a' a' = 1,2, a = 1, ... ,m by the 
intermediary ofthe vector r 1-'; [cf. (2.12)]. It is symmetric 
with respect to rotations around r. In a coordinate system in 
which r) = r 2 = 0, it has the form 

yi + y~ + (YJ - c)ry'tr)2 = 1 
(ci - c2)/tr ((ci - C2)/tr).~/tr . 

(2.21) 

For ci > C2, (2.20) represents a rotational ellipsoid, for ci < C2 
(2.21) has no real solutions and we have to do with two three­
dimensional disjoint surfaces [cf. (2.15),(2.18)]: one plane and 
one hyperboloid. Note that for C2 > O'YI-' is a timelike vector 
[cf. (2.18)]. In a coordinate system in which also r3 vanishes 
ro = K and (2.21) becomes a sphere 

y2 = (ci - c2)/tr. (2.22) 

Ifwe further restrict the symmetry to g; XSU(m) an­
other invariant appears, namely tr = - rl-' rf' [cf. first rela­
tion (2.16)]. The equations tr = const describe a one-param­
eter set of (4m - 1 I-dimensional real submanifolds of C2m 

given by the equations [cf. first relation (2.16)] 

(2.23) 

We have mentioned already that the three sets of varia­
bles {xl-' I, {YI-' I, and {Sa';a I,j.t = 1, ... ,4; a' = 1,2; 
a = 1, ... ,m, do not mix under transformations from 
g; X SU(m) and, therefore, we can consider xI-' = !(x~1 + x~l) 
andy", = x~l- x~1 as proper linear combinations of the co­
ordinates of two points in the same Minkowski space. It is 
seen first of all that in the case C2 < ci the relative coordinates 
are restricted to the surface of the ellipsoid (2.20). There ap­
pears, moreover, another Minkowski timelikefour-vector rl-' 
of constant length (rprf' = - tr) and pointing towards the 
future. This vector determines the direction of the symmetry 
axis and the ratio of the axes of the ellipsoid and is itself 
determined by the position of the point {Sa';a I ofc2m on the 
surface (2.23). The coordinates xI' of the center of mass of the 
particle are not restricted. The invariant submanifolds of tJ 2 

have in this case 4(4 + m - 2) - 3 = 4m + 5 real dimen­
sions and consist each of the Minkowski space of the four 
real variables xI" j.t = 0,1,2,3, the two-dimensional ellipsoid 
(2.20) determined by the values of the coordinates of the 
four-vector rp which are functions of Sa';a, a' = 1,2; 
a = 1, ... ,m, and ofthe 4m - 1 real variables on the surface 
(2.23). 

There exist also SU(2,2) X GL(m,C}-invariant (4m + 4)-
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dimensional submanifolds of tJ 2 determined by the condi­
tions 

r;ix(3 = O. (2.24) 

Due to the fact that Eqs. (2.29) can be solved with respect to 
Y", for any pair of indices a, /3, ofthe set 1, ... ,m, condition 
(2.24) impliesyp = O. From the space-time structure only 
the timelike direction rl-' remains. According to (2.7),(2.6) 
both invariant forms vanish in this case and we have to do 
with the isotropic submanifold. 

Another kind of invariant condition would be 

(2.25) 

However, one easily persuades oneself that this condition is 
consistent on tJ 2 only in the case m = 2 and, therefore, has a 
rather limited application. 

One may note that all considerations concerning the 
relations between the three Minkowski vectors xI-" Y I-' ,r I-' are 
independent on m. 

The generators and Casimirs of the symmetry group in 
the Hilbert space of functions over the minimal manifold 
were derived in Ref. 8 in the case of SU(2,2) X SU(2) or 
g; XSU(2) in terms of the local coordinates {xp,Yp,Sa';a I 
and {xl-',r;ap,Sa';a I [in the case ofSU(2,2) X SU(2), YI-' is a 
linear invertible form in r;izfJ with coefficients depending on 
the variables Sa';a ] . In the general case of SU(2,2) X SU(m) 
the results obtained for the first set of coordinates can be 
taken over from the particular case SU(2,2) X SU(2) by ex­
tending the summation over the index a from 2 to m. 
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Proof of an algorithm for the evaluation of the branching multiplicity 
SO(2n)~SO(2n - 2) ® U(1) 
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(Received 28 April 1981; accepted for pUblication 9 December 1983) 

The proof of an algorithm, previously proposed by us, for the evaluation of the branching 
multiplicity SO(2n)---+SO(2n - 2) ® Uti) is given. This proof is based on explicit construction of 
lowering shift operators for the class Dn of Cartan. 

PACS numbers: 02.20. + b, 02.60.Gf 

INTRODUCTION 

In a series of papers 1-3 we proposed an algorithm for 
computing the branching multiplicity in the reduction 
SO(2n)---+SO(2n - 2) ® Uti). Using this algorithm, we made 
also a very efficient computer program3 for the evaluation of 
the inner multiplicity ofSO(2n) and SO(2n - 1). The validity 
of the proposed algorithm has been verified by a large num­
ber of numerical tests by computer; however, this algorithm 
was so far without proof. 

In this paper we give a proof of our algorithm. This 
proof enables us to better understand the surprising fact that 
by some constraints on the Gel'fand triangle4 we can evalu­
ate the degeneracy of the eigenvalues of the elements of the 
Cartan's subalgebra, in spite of the fact that the Gel'fand 
triangle is an orthogonal basis for the irreducible representa­
tion (IR) ofSO(2n), in which, however, the elements of the 
Cartan's subalgebra are not diagonal. 

NOMENCLATURE 

We use the tensorial notation introduced by Louck and 
Biedenharn5 for the unitary groups and recently by Bincer6 

for the orthogonal groups. We denote the generators of 
SO(2n) by C~ with the indices ranging from - n to + n, 
zero excluded. Their commutation relations are 

[C~,C~] = o~C~ - o~C~ + o~C~ - o~C~, (1) 

where 

a= -a. (2) 

These C's obey 

C a - _ C b . 
b - (j, (3) 

moreover, in the unitary representations we demand that 
Cr = C~. The generators C~, l<a<n, which are the ele­
ments of the Cartan subalgebra ofSO(2n), may be taken si­
multaneously diagonal. Let 1m) denote a simultaneous ei­
genvector of any C ~ : 

C~ 1m) = ma 1m), n<a<n, 

where 

(4) 

is called the weight ofthe vector 1m) and the ma's are the 
components of the weight. From (3) it follows that 
ma = - ma' and therefore the last n entities in relation (4) 
are redundant and can be omitted. The usual ordering 

between the weights is m ~m' if ma - m~ ~O for the highest a 
such that ma - m~ is nonzero. 

It follows from Eq. (1) that 

C~ I C~ 1m) I = (me + o~ - o~ + o~ - o~)C: 1m), 

so that we may write 

C~ 1m) ex: Im'),m; = me + o~ - o~ + o~ - o~. 
Consequently, 

m'~m if a~b, 

and we may classify generators as raising, weight, and lower­
ing generators. The IR's ofSO(2n) will be classified by their 
heighest weight M = (Mn ,Mn _ I , ... ,Md. For the dominant 
weights it must hold 

(5) 

Tensor T~ and vector Vd operators are defined as follows: 

(6) 

Similarly to the generators, the tensors can also be defined as 
raising, weight, and lowering operators; moreover, the vec­
tors Vd are lowering if d> 1 or rising if d < - 1. 

SEMIMAXIMAL STATES AND SHIFT OPERATORS 

Let us define semimaximal vectors Ism) the vectors sa­
tisfying the conditions 

{
C:lsm)=o ifa>b, 2<lal,lbl<n, 

C a Ism) = ma Ism), 1<lal<n. 
(7) 

Evidently, the vectors Ism) satisfying Eqs. (7) are vectors 
with heighest weight for SO(2n - 2) and with definite weight 
for SO(2n). Now we define asshiJtoperators S I'± I the polyno­
mials of generators of SO(2n) such that 

{ [C~,SI'±I]lsm)=o for a<b, 2<lal,lbl,I/lI<n, (8) 

[C~,S I'± I] Ism) = (Oa± 1 - 0; + &,; - oa± I)S:: 1Ism), (9) 

l<a<n, 2<1/lI<n. 

From Eqs. (8) and (9) we have that S I'± Ilsm) is a semimaxi­
mal vector whose weight has the l/llth component lowered 
or raised by 1 if /l is positive or negative and the component 
m 1 becomes (m 1 ± 1). Our aim is to construct explicitly low­
ering operators S I'± 1 such that 
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[ S ~ ,S~, ] Ism) = 0, 2 <p" J-l' <n, i,i' = ± 1. (10) 

Following the technique of Bincer, 6 let V (J-l )d± I be for fixed 
J-l an SO(2n - 2) vector operator, which transforms ml into 
(m I ± 1). If we set S ,..± I = V (J-l ),..± I, Eq. (9) holds true if Eq. 
(6) holds; moreover, Eq. (8) becomes 

[8!V(J-l)ll-8;V(J-l)t l ]lsm) =0, a>h. (11) 

In order that Eq. (11) is satisfied, it is sufficient that 

V(J-l)fllsm) =0 for J-l>d. (12) 

A solutionofEq. (12) can be found recursively as follows: let 
V(J-l)f I satisfy Eq. (12) and define 

V(J-l + l)f 1=[ V(J-l)(C - C,..lJJl I 
n 

= I 'V(J-l)a± I(C - C,..lJ~, 
a=n 

where C,.. is a number to be evaluated below and the prime on 
l:' indicates that the range of a is from ii to n, 0 and ± 1 
excluded. We have 

d 

V(J-l + l)f I = I' V(J-l)a± I(C - C,..I)~ 
a=n 

n 

+ I' V(J-l)a± IC~ 
a=d+1 

d 

== I' V(J-l)a± I(C - C,..I)~, 
a=n 

where == means that the equation holds when both sides are 
applied to semimaximal states. 

Next by using relation (6) we obtain 

V(J-l + l)l 1== V(J-l)f I(C~ - C,..) 

d-I 
+ I' I c~ V(J-l)a± 1+ [V(J-l)a± I,C~] J 

a=n 

d-I 

+ I' c~ V(J-l)a± I. (13) 
a=n 

For J-l > d the rhs of (13) vanishes. For J-l = d the rhs of (12) 
vanishes too if C,.. is chosen to be 

,..-1 
C,.. =m,.. + I J(l_~). (14) 

a=n 

Hence V (J-l + l)l Ilsm) = 0 for J-l + 1 > d. By iteration 
we find the solution 

V(J-l)f 1= {V(ii) Xt:' (C - c}lJL± I, 

where II' indicates thatj is in the SO(2n - 2) range, and 

V(ii)! Ilsm) = 0 for ii>d. (15) 

But Eq. (15) is empty because the inequality ii > d is never 
satisfied. It follows that the only requirement on V(ii)f I is 
that it must be an SO(2n - 2) vector operator. The simplest 
choice is 

V (ii)d± I = C d± I. 

We conclude that 
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V(J-l)l 1= {c)X'(C _ CjlJL± I. 

Hence an operator S:- 1= V( J-l),..± I satisfying relations (8) 
and (9) is obtained; but it is worthwhile noticing that S ,..± I 

depends on the components ofthe weight to which is ap­
plied, and this must be kept in mind in the next sections. 

COMMUTATIVITY 

Let 1m) be a semimaximal vector with weight m ac­
cording to Eqs. (12), (13), and (14). Then we have 

V(J-l)l 11m) = {[Cd - C,.._I] V(J-l- l)l I 

+ a:~~'1 C~V(J-l-n,±I}lm). (16) 

In Eq. (16) C~ is a lowering operator. Since in an unitary 
representation C ~ + = C:, a lowering generator working on 
the left is a raising generator; hence 

(m'IV(J-l)f 11m) = (m'l [Cd - C,.. _ I J V(J-l - l)f 11m). 

Consequently, by iteration, 
,..-1 

(m'l V(J-l)f 11m) = IT' (Cd - Cj)(m'l V(ii)f 11m) 

or 
j= Ii 

,..-1 
(m'IS I-'± 11m) = IT '(C,.. - Cj ) <m'IC,..± 11m). 

j=ii 

(17) 

We note that numbers C,.. and Cj depend on the weight m. 
We can directly verify that lI'j=-iil (C,.. - C}) is equal to zero 
only if m2 = 0 and J-l = 2; therefore, we can define the fol­
lowing operator: 

S,..± I=S,..± / X( (C,.. - Cj ) 

only if this operator is applied on a semimaximal vector with 
mz#O. We can prove thatS,..± I satisfies (8) and (9), and the 
following holds: 

(m'IS I-'± 11m) = (m'IC,..± 11m). (18) 

Let us consider 

(m'IS~S~ 1m) with i,i' = ± I, 
by introducing a completeness in the subspace of the semi­
maximal vectors I mj ), which can be limited to the vectors 
1m) with weight equal to the weight ofS~ 1m); we obtain 

(m'IS~S~ 1m) = I (m'IS~lmj)(mj IS~ 1m) 
mj 

= I (m'IS~lm)(mIS~lm) 
in 

= I (m'IC~lm)(mIC~lm) 
iii 

= I (m'IC~lmj)(mjIC~lm) 
mj 

Hence we have 
= (m'IC~C~ 1m). 

(m'l [S~,S~] 1m) = (m'l [C~,C~] 1m) 
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which is equal to zero if rand fl are positive, because I? = 0 
and always (m'IC: 1m) = O. Since 1m') is arbitrary relation 
(to) is true. 

From these very important facts it follows that we can 
apply to a semimaximal vector a succession of S i' in any 
order without loss of generality. However, it mu:t be re­
marked that constants Ca that appear in the operators S 's 
depend on the weight of the vector 1m), on whichS 'sact, i.e., 
in a relation like the following; 

S ± IS ± 11m) =S ± IS ± 11m) r /-l J.l r , 

the constants appearing in S I-'± I on the Ihs depend on the 
~eight of 1m) and these on the rhs depend on the weight of 
S r± 11m). 

THE ALGORITHM 

We can obtain the whole set of semimaximal vectors 
with fixed weight N = (Nn ,Nn _ I , ... ,NI ) with 
Nn >Nn _ I > ... >N2>0 as follows: 

IN); = (S 2- I)q, - N,(S 3- I)q, - N, ... (S n- I)q. - N. 

X (S t I)M,-q, ... (S n+ I)M·-q·IM), (19) 

where 1M) = IMn , ... ,M1) is the heighest weight of an IR of 
SO(2n) and NI results 

n n 

NI = MI + I (~ +~) - 2 I qj' (20) 
j=2 j=2 

with qj positive integer or positive half-odd integer as the 
M;'sare. 
_ As was shown before, any ordering of the operators 
S k± I is equivalent. We choose the ordering (19). 

Let us point out that we choose M such that MI >0 and 
N such that N2>0. However, this is not a limitation since, as 
we proved in a previous paper, I the situation with M I < 0 
and/or N2 < 0 can be reconduced to the above situation. 

We remark that from the constraint N2>0 it follows 
that the operator S I-'± I is always applied on semimaximal 
vectors 1m) with m2 > 0, and, therefore, S I-'± I is always well 
defined. From relation (19) obviously it holds 

q;<..M;} 
N 

' i= 2, ... ,n. 
q;> ; 

(20a) 

Since S k± I transforms semimaximal vectors into semimaxi­
mal vectors and since dominance condition (5) must hold, we 
have 

(20b) 

We know from our previous work (see Ref. 2
) that the follow­

ing conditions: 
n n 

~M;> ~ N;. j= l, ... ,n, 
t=) 1=) 

n n 

I M; -M1> I N; -Nt> 
;=2 ;=2 

(21) 

n 

I (M; - N;) = even integer 
i= 1 

are necessary and sufficient in order that a dominant vector 
belong to the weight diagram with highest weight M. 

We remark that the dominant weight, obtained by the 

2142 J. Math. Phys., Vol. 25, No.7, July 1984 

Weyl group from the weight N = (Nn ,Nn _ I , ... ,Nt!, to which 
we apply construction (19), is by hypothesis a dominant 
weight satisfying (21). Relation (19) is meaningful only if the 
weights of (S 1-'+ I) M" - q"IM) 'V and of 

- I-' 
(S 1-'- I) q" - N"IM) 'V I-' belong to the IR defined by M. This 

request for (S 2+ I) M2 - q21M) is satisfied if and only if 
q2>M1 and in the other cases it is satisfied by the relations 
(20a) and (20b). 

Furthermore, we can verify that any semimaximal vec­
~or 1m) obtained by any partial application of the operators 
S I-'± I in relation (19) has weight belonging to the IR defined 
by M. These checks, even if tedious, are very simple and 
therefore omitted. 

The new condition, in addition to (20a) and (20b), that 
we obtain is hence MI <..q2' 

Consequently, a between condition holds, which can be 
represented in the following triangular form: 

Mn Mn_ 1 Mn_ 2 M2 MI 

qn qn-I q2 

Nn Nn_ 1 N2 
(22) 

where we have exactly the first three rows of a Gel'fand 
triangle related to an IR ofSO(2n). 

Relation (20) with the constraint (22) for q;'s is exactly 
the algorithm that we proposed in a previous paper2

•
7 for 

evaluating the branching multiplicity SO(2n) 
-SO(2n - 2) ® U(l). 

Finally we have to show that vectors obtained by (19) 
are linearly independent. In particular, we will show that if 
the vectors obtained by (19) are linearly dependent, there 
exists a contradiction between the branching multiplicity 
SO(2n)_SO(2n - 2) obtained by other algorithms and that 
obtained by enumerating the vectors IN); of relation (19) 
with all the different values of NI and fixed Nn , ... ,N2, which 
belong to the IR of SO(2n) defined by 1M). Particularly, 
given an IR ofSO(2n) defined by (Mn ,Mn _ I , ... ,Mt!, the con­
straints on Nt> in order that the weight (Nn ,Nn _ I , ... ,Nt! with 
fixedNn ,Nn _ I , ... ,N2 be a weight of the given IR, are given as 
follows: from condition (21) we have 

iN; +MI-i M;<..N1<.. i M; - iN;; 
1=2 1=2 1= 1 ;=2 

by comparison with (20) we obtain 

iN; +MI-i M;<..MI + i (M; +N;)-2 iq;. 
1=2 1=2 i=2 ;=2 

(23) 

i M; - i N;>M I + i (M; +N;)-2 iq;· 
i= I ;=2 ;=2 ;=2 

(24) 

From (23) and (24) it follows that 
n n 

I qi<" I M;. 
;=2 ;=2 

n n 

I q;> IN;. 
;=2 i=2 

These last conditions are always satisfied if the q;'s obey the 
triangle condition (22); consequently, any choice of q;'s is 
possible. Then it is shown that the number of vectors given 
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by (20) with all the possible values of N J is exactly equal to the 
number of different sets of q/s, i = n,n - 1, ... ,2, satisfying 
the triangle (22), and this number, as is well known, is equal 
to the branching multiplicity SO(2n)--SO(2n - 2). Conse­
quently, any different choice of qi 's must give rise to vectors 
of the form (19) which are linearly independent. Q.E.D. 

In conclusion we stress the result that the triangle (22), 
which is formally equal to the Gel'fand triangle, has, how­
ever, a very different group theoretical meaning. 
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A fixed symmetry (or fixed plethysm) generating function enumerates all representations Rb of a 
compact Lie group G contained in that part of the direct product of p copies of any irreducible 
representation Ra of G that has a particular exchange symmetry under the symmetric group Sp. 
Fixed symmetry generating functions are conveniently given as linear combinations of the simpler 
fixed class generating functions. We give a systematic procedure for their construction and some 
examples for SU(2), SU(3), and SO(5). For SU(3) the examples include plethysms of up to three 
boxes; for SO(5) we treat two-box plethysms in general and give the scalar content of three-box 
plethysms; the SU(2) examples include up to six boxes. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

A problem which occurs frequently in dealing with 
multiparticle systems is the following: Given a product of p 
copies of an irreducible representation Ra of a group G, what 
is the multiplicity of the irrep Rb of G contained in the com­
ponent of the product having a given exchange symmetry 
under the permutation group Sp' Recently, a new type of 
generating function has been introduced I which provides the 
solution to this problem for all irreps of a compact Lie group 
G for a fixed exchange symmetry. Examples have been given 
in Ref. 1 of such fixed plethysm or fixed symmetry generat­
ing functions for the group SU(2) as well as for SU(3) with 
p=2. 

In this paper we present a systematic procedure for the 
construction of fixed symmetry generating functions for Lie 
groups. These are most conveniently given as linear combi­
nations of new "fixed class" generating functions. In Sec. II 
we describe the construction of fixed class and fixed symme­
try generating functions. In Sec. III we give some examples 
for the groups SU(2), SU(3), and SO(5). Section IV contains a 
discussion and some concluding remarks. 

II. CONSTRUCTION OF THE GENERATING FUNCTIONS 

A fixed symmetry generator enumerates all irreducible 
representations Rb of a compact Lie group G contained in 
the part of the direct product of p copies of any irreducible 
representation Ra of G which has a given exchange symme­
try under the symmetric group Sp. Specifically, its expansion 
coefficients are the coefficients n~b) which arise in the decom­
position 

Ra ®Ra ® .. ·®Ra = Gln~b)(A )XRb, (1 ) 
b,A 

where there are p factors in the product on the left-hand side 
and where the (A ) are the irreducible representations of Sp, 
The required fixed symmetry generating function has the 
expansion 

¢J(A)(A,B) = In~Ab)AaBb, (2) 
a,b 

We are suppressing SUbscripts onA, B, a, and·b. If G has rank 
I, the symbol A a, for example, stands for A ~'A ~' ... A ;1. 

The most straightforward construction of ¢J (A) exploits 
the properties of group characters.2 For the right-hand side 
of Eq. (1) we find the character in the class p of Sp to be 

I n~b)X~)Xb(7]), (3) 
b,A 
where X ~A) is the character of the irreducible representation 
(A) ofSp in the classp and Xb(7]) is the character oftheirredu­
cible representation b of G in the class labeled by (7]1, ... ,7]1)' 
The character of the left-hand side ofEq. (1) in the class 
p = (l a 2 P3 Y ... ) is 

Sap (7]) = X~(7])i:(7]2)X~(7]3).... (4) 

Using the orthogonality property of the characters X~) we 
find 

I n~Ab)Xb(7]) = ISap(7])X~)hp(h )-1 = 1,1 la' (5) 
b p 

where hp is the order of the classp and h = p! is the order of 
Sp. Here I A 1 a is known as a Schur function or S-function.2 

In the basis in which the highest weight of the irreduci­
ble representation Ra of G is (a I, ... ,a l ), the character is given 
by the Weyl formula3 

(6) 

where Sa (7]) is the characteristic for the irreducible represen­
tation Ra: 

1 

Sa (7]) = I ( - Irs II (S7]Sk+ I. (7) 
s k=l 

The sum in Eq. (7) is over the elements IS 1 of the Weyl group 
of G. Each element S can be written4

•
5 as the product of Ws 

generatorsS; (i = 1, ... ,1). TheactionofSon7]k' S7]k,isdeter­
mined from the action of the generators 

1 

Sk 7]k = 7]k II 7]i-
A

." Sj7]k = 7]k U=/-k), (8) 
;=1 

where A;k is the Cartan matrix of G. In this basis it is 
straightforward6 to solve equation (5) for n~b) to obtain 

n~~)= IX~)(~ )50(7]) 
p 

X IT 7]i: ISQP(7])!, (9) 
k= I EX(1))=b 
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where the last instruction tells us to keep only those terms 
whose 1]; exponents are h;. 

In order to obtain the generating function ¢ (A ) (A,B ) it is 
most convenient to construct first the fixed class generator 

¢p(A,1]) = 50(1]) IT 1]k- 1 Sp(A,1]) I ' (10) 
k= I EX('1);;'O 

where the expansion coefficients of Sp (A,1]) are sap (1]). Then 
we find 

(11) 
p 

whereC(A) =X(A)h /h. These coefficients are given in Table p p p 

I for p<.6. If the partitionp contains N cycles, with the ith 
cycle having length n;, then the compound character gener­
ator Sp is given by 

Sp(A,1]) = Ep (A,1])/Ep (0,1]), (12) 

with 

(13) 

where the sum is over N sets [S; I of elements of the Weyl 
reflection group [the S; here are not to be confused with the 
generators appearing in Eq. (8)]. The denominator ofEq. (12) 
can be written more simply as 

N 

Ep(O,1]) = II 50(1]n,). (14) 
;=1 

The procedure outlined above has proven to be the sim­
plest one for the construction of fixed class generators. There 
is, however, another procedure which makes use of the gen­
erating function for the Clebsch-Gordan series to combine 
two fixed class generators to produce a third. If PI andp2 are 

TABLE I. Coefficients C; I connecting fixed class and fixed symmetry generators. 

A p: W) (2) A p: (1') (12) (3) 

(2) ~ (3) 

W) -~ (2 1) 0 -:l 
(1 3

) -! 

..t p: (14) (122) (13) (22) (4) 

(4) 14 1 1 
~ 4 

(31) 0 _I -I 8 4 

(22) n 0 -:l 1 0 4 

(212) ~ _1 0 -a 4 

(14) 14 _1 _1 
4 4 

AP: W) (1 32) (123) (122) (14) (23) (5) 

(5) Jo 1 1 a 12 8 

(41) 1 0 0 -i -~ :m 
(32) 14 n -i 1 _1 1 0 8 4 ~ 

(3 12) 1 0 0 -I 0 0 1 
:!O 4 3 

(221) 14 -n -i -i 0 
(21 3

) 10 -i 0 0 -~ 
(I') Jo -n _1 -i 4 

..t p: W) (142) W3) (1222) (1 24) (123) (15) (23
) (24) (3') (6) 

(6) ,!o 1 fs fs 1 1 1 1 '18 ~ 3 '18 n 
(5 1) rh 1 1 1 0 0 --is -! -fs -i 10 9 10 

(42) sb 1 0 1 -! 0 -! 1 1 0 0 10 10 10 8 
(412) n 14 1 -~ 0 -i 0 --A 0 1 1 n n ~ 

(32) rh -ls -fs fs -~ 0 -fs -i 0 
(321) ~ 0 -~ 0 0 0 1 0 0 -~ 0 3 
(3 13

) n --A 1 -! 0 0 1 0 1 -fs n :!4 n 
(23

) rh --is -fs 1 a -i 0 fs -! 0 10 
(22 12) sb -fs 0 1 0 -! -fs 0 0 10 
(214) rh -fs ~ fs -! 0 0 1 -i -fa i '18 
(1 6

) 1 --is fs 1 -a -i --is fs -i 7:!0 10 
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two partitions containing, respectively, ai and bi cycles of 
length i, then their product P = PlPz will contain ai + bi 

cycles oflength i. We can compute the resulting generating 
function for the class P from 

oflength n. The basic units have fixed class generating func­
tions 

1/ln(A,',!) = 50("') IT "'k- IX (A,."n) I ' (16) 
k~ 1 EX(1/»O 

1/lp(A,B) = 1/lp, (Ap,q)1/lp,(p-l,r) where X (A,.,,) is the group character generator. 

X G (q-l,r-I;B ) I EX(p,q,r) ~ 0' (15) 

where, as usual, each letter stands for I variables. The 
Clebsch-Gordan generator G plays the role of a metric, 
while the EX( p) = a operation ensures that the representa­
tions in the product (1) are all the same, By using Eq. (15) we 
can build up fixed class generating functions from basic units 
which correspond to partitions (n) containing a single cycle 

It is easy to see that tPn (A,B) is also the branching rule 
generator for the subjoining to the group representations of 
representations of the group with weights stretched by a fac­
tor of n. 7 For n sufficiently large we can construct general 
formulas for 1/ln(A,B). For G = SU(2) we find, for n>2, 

tPn(A,B) = (I-ABn-2)1[(1-A 2)(I_ABIt)]. (17) 

For G = SU(3) we find, for n>3, 
I 

1/l1t (A,B;a,b ) 

= [(1 - Aan)(l - Bb n)(1 - AB)]-I 

X [[A 2b n -A 2ab n- 2 +A 2b n- 3 -A 3an- 2b n+ 1 +A 3an- 3b n_A 3(ab )n-2]1[(1_A 3)(1 -A 2b n)] 

+ [B 2an _B 2an-- 2b +B 2an- 3 _B3an+lbn-2 +B 3anb n- 3 -B3(ab)n-2]/[(1_B3)(I_B3an)] 

+ (1 + AB + A 2B 2)[ 1 - Bab n - 2 + Bb n - 3 - Aan - 2b + Aan - 3 - AB (ab)" - 2]/[(1 - A 3)(1 - B 3)] J, (18) 

where we have used the variables (A,B ,a ,b ) instead of (A I,A 2,B 1 ,B 2) in order to simplify the notation. For G = sot 5) we find, for 
n>4, 
tPn(A,B;a,b) 

= [( 1 - A 2)( 1 - B )( 1 - Aan)( 1 _ Bb n)] - 1 

X ! (1 + A 2B ) [1 - Aan - 2b + Aan - 4b _ Aan - 4 _ Bazb n - 2 

+ Ba2b n-3 _ Bb n-3 +AB(ab )"-2]1[(1 -A 2)(1 _ B2)] 

+ A 2 [ _ b n - 3( 1 _ b 3) + a2b n - 3( 1 _ b) + A (ab )n - 2( 1 _ b 3) _ Aan - 4b n( 1 - b)]I [(1 _ A 2)( 1 _ A 2b n)] 

+ (AB + B 2a")[ban -4(1 - a2) - a"- 4(1 - a4) + B (ab r -2(1 - a4) - Banb n - 3(1 - a2)]1[(1- B 2)(1 - B 2a2n ]}, 
(19) 

where (10) and (01) are, respectively, the four- and five-dimensional irreducible representations ofSO(5). 

III. EXAMPLES OF FIXED CLASS GENERATORS 

In this section we collect examples of fixed class generating functions which, with Eq. (11), can be used to obtain fixed 
symmetry generators. The results presented in Table II for SU(2) can be used to construct the fixed symmetry generat~'lg 
functions for p<6. For G = SU(3) we have the following results which can be used to construct the p = 2 fixed symmetry 
generators given in Ref. 1: 

tP(1,)(A,B;a,b)=(l +ABab)[(1-Aa2)X(1-Bb 2)(I-AB)(1-Ab)(I-Ba)]-I, (20) 

tP(2)(A,B;a,b) = (1 - ABab )[(1 - Aa2)X(1 - Bb 2)(1 - AB )(1 + Ab)(1 + Ba)] -I. (21) 

The generating functions rP (2) and rP (I') for symmetric and antisymmetric combinations of SU(3) irreducible representations 
are, respectively, !(1/l(12) + tP(2)) and !(tP(12) - tP(2))' 

For SU(3) the fixed class generating functions for the product of three copies of an irreducible representation are 

tP(1 3)(A,B;a,b) 

2146 

= [(I-Aa3)(I-Bb 3)(1-AB)(I-A )(l-B)]-1 

X [(1 + ABa2b 2 + 2ABb 3 + 2ABa2b 2 + 3AB 2b 3 + 2AB 2a2b 2 + A 2B 2a3b 3)/(1 -Aab)(1 - Bab)(1 _ ABb 3) 

+ (ABa3 + A 2B 2a5b 2 + 2ABa3 + 2ABa2b 2 + 3A 2Ba3 + 2A 2Ba2b 2 + A 2B 2a3b V(1 - Aab)(1 - Bab)(1 - ABa3) 

+ (3A 2B 2a2b 2 + 3A 3B 3a3p + A 4B 4a4b 4 + A 2B 3ab 4 + A 3B3a5b 2)1(1 - Bab)(1 - A 2Ba3)(1 _ AB 2b 3) 

+ (3A 3B 2a 3b 3 + 3A 4B 3a4b 4 + A 5B 4a5b 5 + A 3B 2a4b + A 3B 3a2b 5)1(1 - Aab)(1 - A 2Ba3)(1 -AB 2b 3) 

+ (B 2a3 + Bab + B 2a2b 2)(1 + 2A + 2ABa3 + A 2Ba3)1(1 - Bab)(l - ABa3 )(1 - B 2a3) 

+ (A 2b 3 + Aab + A 2a2b 2)( 1 + 2B + 2ABb 3 + AB 2b 3)1( 1 - Aab )( 1 - ABb 3)( 1 _ A 2b 3) 

+ (3A 2B 4b 6 + A 2B 3ab 4 + A 2B 3a2b 5 + A 2B4a2b 5)1(1 - Bab)(l _ ABb 3)(1 _ AB 2b 3) 

+ (3A 4B 2a6 + A 3B 2a4b + A 3B 2a5b 2 + A 4B 2a5b 2)/(1 - Aab)(1 - ABa3)(1 - A 2Ba3) 

+ (A 3B 2a4b + A 3B 3a5b 2 + A 4B 3a7b )1(1 - Bab)(1 - ABa3)(1 - A 2Ba3
) 

+ (A 2B 3ab 4 + A 3B 3a2b 5 + A 3B 4ab 7)1(1 - Aab)(1 _ ABb 3)(1 - AB 2b 3)], 
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TABLE II. Fixed class generating functions for SU(2). 

p: 

11) 
W) 
(2) 
W) 
112) 
(3) 
11') 
p22) 
(13) 
(2') 
(4) 
W) 

114) 

(23) 
(5) 
W) 

W4) 

(123) 

(IS) 

(23
) 

(24) 

W) 
(6) 

1/(1 - AB) 
1/(1- AB2)(1 -A) 
1/( I - AB ')( I + A ) 
(I +AB +A 2B2)/1I -AB 3)(I-AB)(I-A 2) 
(I - AB + A 2B2)1(1 - AB 3)(1 - AB )(1 + A 2) 
(I-AB)I(I-AB 3)(I-A 2) 
(I + 2AB2 +A 2B4)1(1 _AB4)(1 _AB2)(I_A f 
11 +A 2B 4)/1 I - AB4)(I-AB2)(1 _ A 2) 
(I - A )( I - AB 2 + A 2 B 4)1P - AB 4)11 - AB 2)( I _ A 3) 
P _AB 2)/(I_AB 4)P -Af 
P -ABVP _AB4111_A2) 
[(I + 3A 2 +A 4) +A 14 + 2A 2 -A 4)B +A 2(10 - SA 2)B2 +A (3 + 4A 2 _ 7A 4)B 3 

+A 2(7 -4A 2 _ 3A 4)B 4 +A 315 -lOA 2)B' +A 2(1_ 2A 2 -4A 4)B6_A 3(1 + 3A 2 +A 4 )B 7J 
XUI-AB')(I-AB 3111-ABIII-A 2)3]-1 

[P - A 2 + A 4) + A 3(2 _ A 2)B + A 2(2 - A 2)B 2 + A P _ A 4)B 3 + A 211 _ A 4)B 4 
+ A 3(1 _ 2A 2)B 5 + A 2p _ 2A 2)B 6 _ A 3p _ A 2 + A 4)B 7J 
X[ll-AB 5)(I-AB 3)(I-AB)(I-A 2)(I-A 4)]-1 

[I I + A 4) - A (2 + A 2 + A 4)B + A 2p + A 2)B 2 + A 3( I _ A 2)B 3 + A 2p _ A 2)B 4 
- A 3( I + A 2)B 5 + A 211 + A 2 + 2A 4)B 6 _ A 3( I + A 4)B 7] 
xfIJ -AB 5)(I-AB 3)(I_AB)(I_A 6)]-1 

[II -A 2 +A 4) +A 3(2 -A 2)B +A 212 -A 2)B2 -A (I -A 4)B3 -A 211 -A 4)B4 
+A 3(1 _ 2A 2)B 5 +A 211_ 2A 2)B6 -A 3(1 -A 2 +A 4)B7] 
X [Il - AB 5)( I - AB 3111 - AB III + A 2)( I _ A 4)] - 1 

[II +A 2 +A 4) -A (I +A 2)B +A 2B2 -A (I +A 2 +A 4)B3 +A4B4 -A 3(1 +A 2)B' 
+A 2(1 +A2+A4)B6ml_AB5)(I_AB3111 +A 2)(I +A 4)]-1 

(I - A 2)[11 +A 2) - A 3B -A 2B2 - AB 3 +A 211 +A 2)B4]!(1 _ AB 5HI _ ABHI _ A 6) 
P -AB 3)1P -AB 5)(I_A 2) 

[II +A +A 2) +A (8 -A -A 2)B2+A (4+ lOA -llA 2)B4 +A 2111- lOA _4A 2)B 6 

+A 2p +A + SA 2)B" -A 3(1 + A + A 2)B 1"]/(1 _AB 6111 _AB 4111 _AB2)1I _A)4 
[P - A + A 2) + A (2 + A - A 2)B 2 + A (2 + 2A _ 3A 2)B 4 + A 2(3 _ 2A _ 2A 2)B 6 

+A 2p -A - 2A 2)B" -A 3(1 -A + A 2)B 1"]/11 -AB 6)(1 -AB·)(I -AB2)1I -A )3(1 + A) 
[11 - A ) - A (I - A )B 2 + A (I + 2A )B 4 + A 212 + A )B 6 + A 211 - A )B" - A 311 _ A )B I"] 

X[P -AB 6111 -AB 4)P -AB2)(I-A 3)]-1 
[( I + A + A 2) - A 2p + A )B 2 + A 2(2 + A )B 4 _ A 2p + 2A )B 6 + A 2(1 + A )B" 

- A 3(1 +A + A l)B 1"]/11 -AB 6111 -AB 4)P - AB 2)P _ A 2)2 
[I I - A + A 2) - A (2 - A + A 2)B 2 + A 2(2 - A )B 4 + A 4( I - 2A )B 6 

+A 211 -A + 2A 2)B" -A 3(1 -A +A 2)B 1"]/(1 - AB 6HI _ AB4)1I _ AB2HI _ A 4) 
[(I +A) -A (I +A)B 2 _AB4 +A 3B 6 +A 2p +A)B" -A 3(1 +A)B I"] 

X[lI-AB6)(I-AB4111_AB2111_A3)]-1 
[(I -A 3) -A (I -A )B 2 -A (I -A 3)B 4 -A 3(1 -A )B 6 +A 2p -A 3)B"] 

X[P -AB 6)(I-AB4)(I-A 5)J-I 
[II - A + A 2) + A 12 + A - A 2)B 2 - A (I - A - 2A 2)B4 + A 2(1 - A + A 2)B 6J 

x[(1 -AB 6)P -AB2111-A 2)(1 +A fJ- 1 

[II +A +A 2) -A 211 +A )B2 -A (1 +A)B4 +A 2(1 +A +A 2)B 6] 
x[ll - AB 6)(1 - AB2)(1 + A 2)(1 + A f]-I 
(I - AB 4)1( I - AB 6111 - A f 
p - AB 4)/( I - AB 6111 _ A 2) 

tP(l2) (A,B;a,b) 

= [(1 - Aa3 )(1 - Bb 3)(1 + AB )(1 + A)(I + B)]-1 

X [(1 + A 2B 2a2b 2 + A 4B 4a4b 4)1(1 _ ABb 3)(1 _ A 2Ba3)(1 _ AB 2b 3) 

+ ABa3(I + A 2B 2a2b 2 +A 4B 4a4b 4)1(1 -ABa3)(I _ A 2Ba3)(1 _ AB 2b 3) 

+AB 2ab 4(I +AB)/(I-Bab)(I-ABb 3)(I-AB 2b 3) 

+A2Ba4b(1 +AB)I(I-Aab)(I-ABa3)(I-A 2Ba3) 

+AB 3ab 4(I +A2Ba3)1(I-Bab)(I-ABa3)(I-AB2b3) 

+A 3Ba4b(I +AB 2b 3)1(1 -Aab )(1 -ABb 3)(1 -A 2Ba3) 

+ (1 + A 2Ba3)( - B 2a3 + B 3a4b + B 2a2b 2)1(1 - Bab)(1 - ABa3)(1 + B 2a3) 

+ (1 +AB 2b 3)( -A 2b 3 +A 3ab 4 +A 2a2b 2)1(1 -Aab)(1 -ABb 3 )(1 +A 2b 3)), (23) 

tP(3) (A.B;a,b ) 

= [(I-Aa3j(I-Bb3j(1-ABj]-1[(1-Bab)l(1-B)(1-B2a3)+A2b3(1_Aab)l(1-A)(1-A 2b 3) 

+A(l-ab)l(l-A)(l-B)). (24) 
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For G = SO(5) the fixed class generating functions for p = 2 are 

"'(12) (A,B;a,b) = (1 + ABa2b )[(1 - Aa2)(1 - Bb 2)(1 - A )(1 - B)(1 - Ab)(1 _ Ba2)] -I, (25) 

and 

tf/(2) (A,B;a,b ) = (1 - ABa2b )[(1 - Aa2 )(1 - Bb 2)(1 + A )(1 - B)(1 + Ab)(1 + Ba2)] -I. (26) 

For p = 3 we find 

"'(13) (A,B;O,O) = (1 + 2A 2B + 2A 2B 2 + A 4B 3)[(1 - A 2)(1 - B 2)(1 - A 2B)(1 _ A 2B 2)] -I, (27) 

(28) "'(12)(A,B;0,0)=(I-A 4B 3)[(1 +A 2)(I-B 2)(1 +A 2B)(1 +A 2B 2)]-I, 

"'(3) (A,B;a,b ) = [( 1 + Ba2)( 1 + ABa3
)( 1 - Ba2b )/( 1 - B 2a6

) 

+ (1 + B )(A 2b 3 - Aab )/( 1 - A 2b 3)] [( 1 - A 2)( 1 - B 2)( 1 - Aa3 )( 1 - Bb 3) ]-1. (29) 

For the classes (1 3) and (12) we have given the generating functions enumerating only the scalars contained in the direct 
product. The full result for the class (3) is given because it is the generating function for branching rules for the subjoining 
SO(5) > SO(5) corresponding to dilation of weight space by a factor of3; it reduces to [(1 - A 2)(1 - B 2)]-1 in the scalar limit. 

IV. CONCLUDING REMARKS 

The construction of fixed symmetry generating func­
tions follows the usual procedure. First we construct a gener­
ating function for the compound character and then we pro­
ject out the corresponding irreducible representations. The 
use ofEq. (12) for the compound character generator simpli­
fies the construction in that the EX(1J»O operation is per­
formed at an early stage when there is a large number of 
relatively simple terms. Each term in the result of the projec­
tion will contain spurious poles which must cancel out when 
the terms are combined. This provides a guide to the mani­
pulations needed to combine the terms to produce the final 
result. 

The introduction of fixed class generating functions not 
only simplifies the construction but also allows us to present 
the results in a more compact form. The fixed class genera­
tors for a given p have, in general, different denominator 
factors so that their combinations, written over common de­
nominators, have far larger numerators. For practical pur­
poses of determining individual plethysms, it is simpler to 
isolate the desired terms in the expansion of the fixed class 
generators and then to combine these with the coefficients 
C IA) 

p • 

An interesting observation arises from examining the 
three box mixed symmetry A = (21). The SU(2) and SU(3) 
generating functions with this symmetry contain no terms in 
their expansions which are independent of B i • This means 
that the part of the direct product of three copies of any irrep 
ofSU(2) or SU(3) with this symmetry has no scalar compo-
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I 
nent. In fact, it can be shown that SU(2) and SU(3) are the 
only simple compact groups for which this is true. For exam­
ple in the case ofSO(5) the scalars contained in this plethysm 
are enumerated by the generating function 

¢(21) (A,B;O,O) 
=A2B/(I-A2)(I-B)(I-A2B)(I-A2B2). (30) 

This was constructed with the help of the generating func­
tions of Sec. III. 
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Comments on superposition rules for nonlinear coupled first-order 
differential equations 

P. Winternitz 
Centre de recherche de mathematiques appliquees, Uniuersite de Montreal, Montreal, Quebec H3C 3J7, 
Canada 

(Received 1 November 1983; accepted for publication 16 December 1983) 

Some comments are made on the classification of finite-dimensional subalgebras of the Lie 
algebra of vector fields in n variables and of the related nonlinear ordinary differential equations 
with superposition principles. In particular for n = 2 a very natural requirement of 
indecomposability implies that only two types of equations need be considered. 

PACS numbers: 02.20.Sv, 02.30.Hq, l1.lO.Lm, 11.30.Na 

A recent publication 1 has been devoted to the determin­
ation of all pairs of ordinary real differential equations of the 
type 

I I 

x(t) = IZi(t)Si(X,y), y(t) = IZi(t)7/i(X,y) (1) 
;= 1 ;= 1 

such that (i) the system (1) allows a superposition principle, 
i.e., the general solution of (1) can be written as a function of a 
finite number of particular solutions and of two significant 
constants; and (ii) the functions Si (x,y) and TJi (x,y) are poly­
nomials of at most second order in x and y. 

In view of a classical theorem due to Lie2 the construc­
tion of all equations of type (1) with superposition principles 
is equivalent to the construction of all finite-dimensional Lie 
algebras that can be realized in terms of vector fields in two 
variables: 

A a a 
Yi = Si(X,y)- + TJi(X,y)-. (2) 

ax ay 
The results of Ref. 1 thus amount to a classification of such 
algebras with the restriction that the coefficients in (2) 
should be polynomials of at most second order. 

The purpose of this short note is twofold. 
a) We correct the result reported in Ref. 1 by recalling 

the work of Lie (1880).3,4 
b) In view of the increased interest in this area we wish 

to make some comments which summarize the proper for­
mulation of the mathematical questions involved in classify­
ing nonlinear ordinary differential equations with superposi­
tion principles. 

Comment 1: When solving a classification problem sev­
eral basic rules should be followed. 

a) False generality should be avoided, i.e., the objects 
should be classified into equivalence classes under some 
well-defined equivalence relation. Each class should be rep­
resented precisely once in a representative list. 

b) Triviality should be avoided, i.e., it should be decided 
beforehand which objects are of interest and then only these 
should be classified. 

Thus, if we are interested in Eqs. (1), it is natural to 
classify the Lie algebras (2) under local changes of variables. 
Two sets of Eqs. (1) are then equivalent if they can be trans­
formed into each other by a change of dependent variables 
u = </> (x,y), u = t,b(x,y), wherex,y, u, and v are real, and</> and 
t,b are sufficiently smooth functions, such that the inverse 
transformation is locally well defined. Such a classification 
of finite-dimensional Lie algebras that act on two-dimen-

sional manifolds was performed by Lie himself in a different 
context, without any restriction on the form of the coeffi­
cients (see Refs. 3 and 4 and Hermann's comments in Ref. 4 
for an exposition of Lie's results in modem terms). 

Restricting ourselves to real variables x and y and to 
quadratic polynomials as in Ref. 1, we can extract the follow­
ing very simple results directly from Lie's list (without going 
into the extensive algebraic calculations of Ref. 1). 

Proposition: Any finite-dimensional Lie algebra that 
can be realized in terms of vector fields in two variables with 
polynomial coefficients of at most second order is equivalent 
(under local changes of variables) to one of the following Lie 
algebras, or one of their subalgebras: 

(i) sl(3,R): 

I ax ,ay , x ax'y ax,xay, y ay,x(x ax + yay), y(x ax + yay) J; 
(3) 

(ii) 0(3,1): 

lax ,ay ,x ax + y ay,x ay - y ax, (x2 - y2)ax 

+ 2xyay,2xyax - (x2 - y2)ayJ; (4) 
(iii)0(2,2) -0(2, 1) Ell 0(2,1): 

lax,ay,xaX +yay,xay +yax, 

(x2 + y2)ax + 2xy ay, 2xyax + (x2 + y2)ay J, (5a) 

or equivalently 

lau' u au, u2 au J EIllav , v av ' v2 av J, 
u = x + y, v = x - y; 
(iv) gl(2,R)<3-t3 

[lax ,x ax +yay,x2aX +2xyayJ EIllyayJ] 

G-Iay,x ay,x2 ay J. 

(5b) 

(6) 

The equations (1) for the Lie algebras sl(3,R) and 0(3,1) are 
special cases of projective and conformal Riccati equa­
tions.5

•
6 Superposition formulas for these equations, as well 

as for the more general matrix Riccati equations 7 have been 
obtained for the general case of sl(n,R) and o(p,q) algebras. 5-7 

The special cases of n = 3 and p + q = 4 do not need a sepa­
rate treatment. The equations corresponding to algebras (5) 
and (6) are "trivial" in the following sense. For algebra (5b) 
we obtain two uncoupled scalar Riccati equations with inde­
pendent superposition formulas for u and v. For algebra (6) 
we obtain a scalar Riccati equation in x and an equation iny 
that turns into a linear scalar equation, once x(t ) is substitut­
ed into it. We thus have a Riccati superposition formula for 
x(t) and a subsequent linear one for y(t ). 
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Subalgebras of the algebras (3), ... , (6) lead to the same 
types of equations with some of the coefficients Zi (t) set 
equal to zero. Thus, out of infinitely many different equiv­
alence classes of Lie algebras that can be realized in terms of 
the vector fields (2), only 2 need be considered, namely sl(3,R) 
and 0(3,1). 

Returning to the list of algebras and equations given in 
Ref. 1 (and leaving aside the fact that the problem was al­
ready solved by Lie), we see that the above rule (a) has not 
been followed. The list is too long, since it contains many 
algebras that are mutually equivalent. On the other hand, 
one of the only two "nontrivial" cases, namely the 0(3,1) 
algebra (4) is missing. This algebra is also missing from Lie's 
list but that is because he considers its complexification 
0(4,q which is decomposable: 0(4,q - 0(3,q Ell 0(3,q [com­
pare to (5b)]. 

We are now also in the position to comment on rule (b). 
When classifying systems of ordinary differential equations 
we should restrict ourselves, on one hand, to equations that 
are not equivalent to linear ones, and on the other hand, to 
"indecomposable" systems of equations. By this we mean 
that it should not be possible to split off a subsystem of equa­
tions in fewer variables that has a superposition formula of 
its own. Ifindecomposability is ignored, seemingly very gen­
eral systems of equations can be written. For example, one of 
Lie's algebras is3 

where 1,x,FI(x), ... ,Fr(x) are linearly independent and the 
Fi (x) are otherwise arbitrary differentiable functions. The 
corresponding "decomposable" system of equations is 

x=O, 

y = ZI(t) + Z2(t)X + Z3(t )FI(x) 

(7) 

+ ... +Zr+2(t)Fr(X) +Zr+3(tlY. (8) 

For all practical purposes this is a system oflinear equations 
and is of no interest. Clearly, such "false generality" should 
be avoided. 

Comment 2: Ultimately the aim should be to classify all 
systems of ODE's 

/ 

XIL(t) = IZ;(t)5~(XI, ... ,X"), l<,u<n (9) 
i= 1 

with superposition principles. A "brute force" classification 
of all finite-dimensional Lie algebras that can be realized in 
terms of vector fields in n variables, even with a restriction to 
second-order polynomial coefficients, is an extremely diffi­
cult task. A more geometric approach, taking the above clas­
sification rules into account, goes a long way towards pro­
viding the required results.8

,9 Instead of constructing a Lie 
algebra L of vector fields in n variables directly, consider the 
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action of a Lie group G on a manifold M. If we restrict our­
selves to transitive and effective group actions, thenM can be 
identified with a homogeneous space G / H, where H is a sub­
group of G not containing a normal subgroup of G, Let L be 
the Lie algebra of G, Lo that of H. Then Lo is realized by 
vector fields that vanish at the origin. The "non triviality" 
requirement that the system of equations (9) should be inde­
composable then implies that no coordinates exist in a neigh­
borhood U of the origin in which all vector fields constitut­
ing L can be written as 

X
A 

(I ") ~ /,,1 k) J x , ... ,x = ~ Xil.Y".y -
1= I Jyk 

+ i bj(yI ... y\Zk + I ... zn)~, 
j=k+1 Jz 

(xl = (y,zj, l<k<n - 1 (10) 

(the coefficients of the first k derivatives depend on the first k 
coordinates only). If such coordinates do exist, then an in­
variant foliation of U exists. To exclude this we must require 
that the action of G on M be not only locally transitive and 
effective, but also locally primitive. These requirements take 
us directly to a classification of transitive primitive filtered 
Lie algebras, a task that has essentially been solved by differ­
ential geometers. 10-12 For a discussion of this classification 
and its implications for the construction of systems of ordi­
nary differential equations with superposition principles see 
Refs. 8 and 9. 
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The summation of Bessel products 
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We produce in what follows the closed forms for the summation of certain products of Bessel 
functions pertinent to a number of distinct fields of research, such as the theory of plasma waves, 
charged particle beam interaction with plasma, and density wave theory in galactic dynamics. 

PACS numbers: 02.30 - f, 02.30.Lt, 52.40.Mj, 98.50.Lh 

I. INTRODUCTION 

GrossI in his pioneering article "On Plasma Oscilla­
tions" was the first to state explicitly expressions of the fol­
lowing type: 

00 J(a l J(a l 
K = L m+p m , 

p m = - 00 m + 1 + w/wc 
(1 ) 

00 J(a) J(a) 
Lp = L m +p m . (2) 

m= - 00 m - 1 + w/wc 
He also was the first to attempt their summation into closed 
forms and he partially succeeded, in the sense that he 
stopped short only of the final integration. 

More than twenty years later, similar expressions arose 
in the study of density wave theory and closed forms were 
derived and used in a series of publications2

-4 for expressions 
which were conveniently summarized as 

J(a l J(a) 
m+p m 

00 

L m=-oo m-p+q 
(3) 

A recent attempt5 at the summation of similar expressions 
appeared, in the context oflaser-beam-plasma interactions, 
as a particular application of a more general expression. 

We would like to stress from the outset that we are not 
concerned at all with the general expressions of Ref. 5. The 
purpose of the present communication is to provide the cor­
rect expressions and domains for the particular case at hand. 

In order to make our point clear, we employ Eqs. (2.3) 
and (2.7) of Ref. 5. It is then 

SI= I (_ltJm-nJn 
n=-oo n+p 

2 L7r12 = . J m (2z cos 0 ) cos [(m + 2p)0 ] dO , 
sm (Wrr) 0 

for a = m, {J = 0, r = 1. For the definition of a, {J, r, cf. 
Ref. 5. 

This integral is of the standard type found in Ref. 6 (p. 
738, expression 6.681.1); it exists only under the condition 
m> - 1. This expression (2.8) of Ref. 5 already shows the 
limited applicability of the expressions derived therein. An 
erratum (Ref. 7) published recently provides the correct 
expression for m <0 but in no way lifts the condition 
m>-1. 

Thus we produce in what follows a simple derivation of 
the closed forms (1) and (2); then we show how these results 
can be continued to p = - 1; and then how meaningful ex­
pressions can be obtained for p < - 1. Finally we show how 
more results can be derived from expressions (4) and (5). 
Hence, the results presented here extend the results of Refs. 

2-5 and, to the best of our knowledge, are presented for the 
first time. 

II. THE DERIVATION 

To this effect we employ Graf's addition theorem. 8 For 
any complex quantities, a, b, c, {J, r, for which the relation 

cei{3 = a - be - iy 

holds true, it is also true that 
00 

L Jm+p(a) Jm(b)eimY=Jp(c)ei{3P. 
m = - 00 

Under the restrictions 

a = b, {J = 1T/2 - r/2, 

consistency with expression (4) requires that 

c = 2a sin(y/2). 

(4) 

(5) 

(6) 

(7) 

For reasons dictated by the divergence of integrals to be indi­
cated further below, we first accomplish the summation of 
expressions (3) under the restriction 

(i) Re I p 1 > - 1 . 

Then we derive the expressions for the continuation to 

(ii) Re I p 1 = - 1 . 

Then we show how these results can be extended to 

(iii) Re I p 1 < - 1 . 

(8) 

(9) 

(10) 

(i) For Re p > - 1 a multiplication of (5) by a factor 
e - i( I" + q), q any number, yields after an integration over r 
from 0 to 21T, the sought-for form 

I Jm+p(a) Jm(a) 

m-p-q m = - 00 

- 11T/sin [(p + q)1T] 1 Jp+I"H(a) J -(I"HI(a). 
(11) 

The integrals involved can be found in Ref. 6 (p. 739, expres­
sions 6.681.8 and 6.681.9). A perusal of those expressions 
shows clearly the necessity of the condition Re I p J > - 1. 
It is noted that under the restriction q = integer the expres­
sion (11) is written in the form 

I Jm+p(a) Jm(a) 

m=-oo m-p-q 

. 1T eiq
11' Jp+I"+q(a)J -(I"+q)(a) (12) 

sm( p1T) 

-a closed form first given in Ref. 3. Expression (12) repre­
sents the closed forms of Gross's functions Kp' Lp in a suc­
cinct form. 
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(ii) With the observation that integrals of the form 

iff sin(2Mx) J2,,(2a sin x) dx 

(cf. Ref. 6, p. 739, expression 6.681.8) are convergent for 
Re{ vJ > - 1, i.e., Re { p J > - 2, we are able to find the 
closed form for p = - 1 in the form 

1: Jm_ da)Jm(a) 

m=-oo m-f.l-q 

1T . [( + ) ] J_IP+q)(a)JIP+q)_I(a). (13) 
sm f.l q 1T 

This is the crucial expression upon which hinges the continu­
ation on the axis of the integers to values of p less than - 1. 
Thus we have the following. 

(iii) For p < - 1 it suffices to make the trivial observa­
tion that 

(14) 

Thus Bessel functions oflower order, v-I, say, are ex­
pressed in terms of Bessel functions of higher orders v and 
v + 1, thus enabling the computation in terms of (13) and 
(11). 

As a first application we retrieve from (11) the long­
known expression of plasma physics 

00 J2 (a) L _m_ = - . 1T Jp(a)J _pta) (15) 
m = - 00 m - f.l sm( f.l1T) 

by putting p = 0, q = O. A combination of (12)-(14) yields 

00 J ~ (a) f.l1T L m--= -. J_p(a)Jp(a). (16) 
m = - 00 m - f.l sm( f.l1T) 

Further, a combination of (14) with (13) shows that 

1: mJm+da)Jm(a) 

m -f.l m= -00 

1T( f.l + 2) 
. J _p(a)Jp+ da). 

sm( f.l1T) 
= (17) 

Differentiation of (16) with respect to the argument and a 
combination with (14) and 

J~(a) = J,,_I (a) - (v/a) J,,(a) (18) 

shows that 

1: mJm(a)Jm-da) 

m - f.l m= -00 

17' 
. {2 J _ p (a) Jp + I (a) 

sm( f.l1T) 
= 

-f.lJp(a)JI_p(a)) . (19) 
Finally, the combination of (17) and (19) yields 

f m 2 J~(a) 
m=-oo m-f.l 

a 17' 
= - - . {(f.l+ 4)J_p(a)Jp+da) 

2 sm( f.l1T) 

-f.lJp(a)JI_p(a)). (20) 
One can derive in this fashion the closed forms of products of 
Bessel functions up to any desired order. However, we turn 
our attention to the derivation of closed forms along a differ­
ent direction. 
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Let us go back to expressions (4) and (5) and modify the 
restrictions (6). Namely, we require now that 

a = - b. (21) 
Then it is 

cei{3 = _ 2a cos(y/2)e - il1'/2) . 

Thus c = 2a cos(y/2), 

ei{3 = _ e - i1'/2 , 

implying /3 = 1T - Y /2. 
Hence employing the relation 

J,,(eim7Tz) = eim
"1r J,,(z) , 

we find that 

(22) 

(23) 

(24) 

m =~ 00 Jm +p(b) J _m(b) e
im1' 

= Jp(2b cos ~) e- ip1'/2. (25) 

Because of (24) we stress that this expression is true strictly 
for p noninteger. Following the same steps as previously 
(and expression 6.681.1 of Ref. 6) we find that 

f Jm+p(b)J _m(b) 

m=-oo m-f.l-q 

1T J (b ) J (b ) (26) 
sin[21T(f.l + q)] p+p+q -(p+q) , 

p> - 2 noninteger. 
Let us now transform Grars addition theorem (5) ac­

cording to the prescription of Ref. 8, p. 361 so that we obtain 
00 

L Nm+p(a)Jm(b) eim1' = Np(c) ei{3p. (27) 
m = - 00 

(We write Np instead of Yp of Ref. 8, in agreement with Ref. 
6.) 

Then for a = b, repeating the steps after Eq. (6) and 
using expression 6.681.2, p. 738 of Ref. 6, we find that 

f Nm+p(a) Jm(a) 

m=-oo m+f.l 

= [1T/sin( f.l1T)] {COt(p1T) Jp _ p (a) Jp (a) 

- [lIsin(f.l1T)] J _1l(a)JIl_p(a)) , 

for - 1 < p < 1 only. 
It is a simple exercise now to prove that 

m= - 00 

p> -1, 

(28) 

(29) 

upon using Eq. 7, p. 361 of Ref. 8, and 6.681.3 of Ref. 6. 
Similarly one finds that9 

Km+p(a) Im(a) 

m= - 00 m +f.l 

• 17'. {IIl_p(a)I _pta) -Ip_ll(a) III (a)} , 
sm( f.l1T) sm( p1T) 

- 1 < Re { p) < 1. (30) 

One could certainly use Eqs. (4) and (5) and "variations" 
on them to produce more closed forms of Bessel function 
products along the lines detailed above. However, our initial 
purpose was to produce the correct expressions of products 
which would enable the exposition of the wave plasma the-

E. A. Evangelidis 2152 



                                                                                                                                    

ory in terms of closed forms. Apart from aesthetic reasons, 
which to our mind are more than sufficient motivation, the 
necessity to obtain concrete numbers dictates the retention 
of a few terms only of the infinite series involved in the dis­
persion relations; thus singularities do disappear as hap­
pened in the theory of galactic density waves~r, it turns 
out, they do not contribute to the growth/decay rate of the 
wave involved. 
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For a dynamical system in which the constraints are given by the vanishing of a singular 
momentum map J, reduction in the usual group-theoretic sense may not be possible. Nonetheless, 
one may still "reduce" J -1(0), at least on the level of Poisson algebras. An example of such a 
singular constrained system is the "n + 1 photon," that is, a massless, spinless particle in (n + 1)­
dimensional Minkowski space-time. We apply the generalized reduction procedure to the n + 1 
photon, explicitly constructing the Poisson algebra of gauge invariant observables. This technique 
also enables us to completely analyze the effects of the singularities in J -1(0) on the system. We 
then quantize, obtaining results which are in agreement with a quantization of the extended phase 
space and the subsequent imposition of the constraint. 

PACS numbers: 02.40. + m, 03.20. + i 

I. INTRODUCTION 

Let (X,w) be a symplectic manifold and let G be a con­
nected Lie group with Lie algebra g. Assume that there is a 
Hamiltonian action of G on (X,w) with a G-equivariant mo­
mentum map J: X -+g*. If aeg* is a regular value of J and if 
the action of G on J -1(0) is sufficiently nice, then the Mars­
den-Weinstein reduced spaceJ -I(O)/G will be a symplectic 
manifold. I 

These constructs are particularly relevant to physics. In 
this context, (X,w) represents the extended phase space of a 
dynamical system, G is the gauge group, and, typically, the 
constraints are given by J = 0.2 The reduced phase space 
J -I(O)/G is then interpreted as the space of gauge invariant 
states of the system. 

In many interesting situations, however, this group­
theoretical reduction procedure does not work. For in­
stance, it may happen that 0 is not a regular value of J as in 
gravity and Yang-Mills theory. Moreover, even if J -1(0) is 
smooth, J - 1(0)/ G need not exist as a symplectic manifold. In 
either case J is said to be "singular." 

For systems with singular momentum maps, then, re­
duction in the usual sense often cannot be carried out. None­
theless, Sniatycki and Weinstein3 have recently pointed out 
that it is still possible to "reduce" J -1(0), at least on the level 
of Poisson algebras. This generalized reduction procedure 
allows one to determine the effects of the singularities of Jon 
the structure of the system as well as uncover certain dynam­
ical features which would otherwise remain inaccessible. In 
particular, it identifies the gauge-invariant observables and 
equips them with the structure of a Poisson algebra. This is 
very useful when quantizing such a system. 

Under sufficiently regular conditions, one may quan­
tize a constrained system in two equivalent ways. The first is 
to quantize the extended phase space (X,w) and then impose 
the constraints J = 0 on the quantum wave functions; this 
ensures that the physically admissible states are gauge invar­
iant.4

•
5 Alternatively, one may quantize the reduced phase 

spaceJ -1(0)/G,5.6 in which case gauge invariance is directly 
incorporated. When J is singular the latter technique is, of 
course, no longer applicable. But then the reduction proce­
dure of Sniatycki and Weinstein enables one to do the next 

best thing, viz., to quantize the Poisson algebra of gauge­
invariant observables. 

Probably the simplest physically interesting example of 
a singular constrained system is that of a massless, spinless 
relativistic particle in (n + I)-dimensional Minkowski 
space-time, which we refer to as the "n + I photon." The 
extended phase space is JR2n + 2 with coordinates (P,PI ,x,!) 
and symplectic form 

n 
W = dpt Adt + I dp; Adx;. 

i=l 

The gauge group is JR with momentum map 

J(p,pI'X,!) =p~ -llpW. 
Since the particle is massless, J must vanish. The constraint 
set is thus 

J-I(O) = enXJRn+ I, 

where en is the null cone in JRn + I . In this paper we reduce 
J - 1(0) on the Poisson algebra level and then quantize, ob­
taining results which are in exact agreement with the quanti­
zation of the extended phase space (JR2n + 2 ,w) and the subse­
quent imposition of the constraint J = O. 

This example serves three purposes: First, it illustrates 
the usefulness and essential correctness, at least in this in­
stance, of the generalized reduction procedure. Second, it is 
simple enough that we can both identify and completely ana­
lyze the effects of the singularities in J - 1(0) on this system. In 
this regard, our presentation seems to be the first which 
treats the singularities seriously (compare with standard dis­
cussions ofthe 3 + I photon, e.g., that given in Ref. 7). Final­
ly, Arms, Marsden, and Moncrief 8 have shown that singular 
momentum mappings typically have quadratic singularities 
so that J -1(0) is always a "cone." Since the n + I photon is 
an elementary, and in some sense canonical, example of this 
phenomenon, its elucidation is essential for further progress 
in understanding the structure of singular constrained sys­
tems. 

In the next section we briefly recall the basic features of 
the Sniatycki-Weinstein reduction procedure. The details 
for the I + I photon are then worked out in Sec. III. The 
n = I case is done separately, since it is rather "special" and 
technically much easier than the n > 1 case, which is elabor-
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ated upon in Sec. IV. The physical interpretation of these 
results is discussed in the last section. 

II. POISSON ALGEBRAS, REDUCTION AND 
QUANTIZATION 

Let Y be a commutative algebra over R. If [.,.] is a 
bracket operation on Y such that (i) the pair (Y,[·,.]) is a Lie 
algebra and (ii) the Leibniz rule 

[f,fd2] = U!t]f2 + [f,f2]ft 

holds, then (Y,[.,.]) is called a Poisson algebra. The basic 
example of a Poisson algebra is C"" (X), where (X,cu) is sym­
plectic and the Poisson bracket is given by 

I f,gJ = - cu(Sf' Sg)' 
Here Sf' the Hamiltonian vector field off, is defined via 

isrcu = - df 
Now let (X,cu), G, and Jbe as in the Introduction. For 

each aEg define the function Ja onXby Ja (x) = (J (x),a) , and 
denote by / the ideal (relative to the associative algebra 
structure) in C"" (X) generated by theJa • SinceJis G-equivar­
iant, the action of G on C"" (X) induces an action of G on 
C"" (X)/ / in such a way that the projection homomorphism 
j: C"" (X )~C"" (X)/ / is G-equivariant. Let Y be the space 
of G-invariant elements of C"" (X)/ /' that is, the collection 
of all equivalence classesff for whichj({ f,/ J ) = O. Again by 
equivariance, the Poisson bracket h·J on C"" (X) descends to 
a bracket [-,.] on Y given by 

[ff, jg] = j(! f,g j). (2.1) 

The pair (Y,[.,.]) is the reduced Poisson algebra of the con­
strained system under consideration. 

If 0 is a regular value of J, then C"" (X)/ / 
= C"" {J -1(0)). Furthermore,ifJ -I(O}/Gisaquotientmani­

fold of J -I (0), then the reduced Poisson algebra Y is canoni­
cally isomorphic to the Poisson algebra of the reduced sym­
plectic space J -I(O)/G. Under sufficiently regular 
conditions, then, this generalized reduction procedure is 
consistent with the Marsden-Weinstein technique, and we 
may therefore interpret (Y,[·,.]) as the Poisson algebra of 
gauge-invariant observables. It is important to note, how­
ever, that in the singular case Y need not be the Poisson 
algebra of any symplectic manifold nor must it be nondegen­
erate (in the sense that the only elements of Y which Poisson 
commute with everything are "constant,,9). 

We close this section with some remarks concerning the 
quantization of a Poisson algebra (Y,[·,.]). The problem is to 
construct the quantum state space from a knowledge of this 
Poisson algebra. This is fairly straightforward, using the 
techniques of geometric quantization theory,7 when Y is 
associated with a symplectic manifold. In the singular case it 
is necessary to proceed by analogy; briefly, this works as 
follows. 3 

Let r = Y ® C be the complexification of Y; elements 
aer are the algebraic counterparts of sections of the pre­
quantization line bundle (which we take to be trivial). Given 
a derivation S of Y, we may compute the "covariant deriva­
tive" V su of a section u once a connection V on r has been 
specified. A polarization &1 is a maximal commuting subal­
gebra of (Y,[.,.]). A section aer is said to be "polarized" 
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provided V sF = 0 for all fe &1 , where Sf is the derivation 
g~fg!] corresponding to the Hamiltonian vector field off 
The quantum state space relative to this data is then defined 
to be the set of all linear functionals on the space of polarized 
sections in r. 

For our purposes we may choose a connection V such 
that 

V sF = [u,J] 

for allfE&1. Then the space of polarized sections in r is 
precisely &1 ® C, and the quantum wave functions are ele­
ments of the dual (&1 ® C)'. 

Turning now to the example, we compute the reduced 
Poisson algebra for the n + 1 photon and quantize it. 

III. THE 1 + 1 PHOTON 

The analysis of the n + 1 photon is considerably easier 
when n = 1, for then the constraint J = 0 factors. This cir­
cumstance simplifies the algebraic computations required 
for the construction of the reduced Poisson algebra as well as 
its presentation. This simplicity is also reflected in the struc­
ture of the constraint set J - 1(0) = C' X JR" + I , which is es­
sentially trivial when n = 1. 

We begin by changing to null coordinates 

u = t - x, v = t + x, 
and their corresponding momenta 

f..l=P,-Px' v=p, +Px' 
The symplectic form on R4 is then 

cu = !(df..l/\ du + dv /\ dv) 

and the momentum map becomes 
J (}t, v,u,v) = f..lv. 

The ideal/of C"" (JR4
) is thus generated by the product f..lV. 

Definej: C"" (JR4)~C"" (JR3) XC"" (JR3) by 

ff = (f(}t,O,u,v),J(O,v,u,v)). (3.1) 

Proposition 3.1: The quotient C"" (JR4
)/ / may be identi­

fied with the image of C"" (JR4) in COO (JR3) X COO (JR3) under j. 
Proof IfjE/, then clearly ff = 0. On the other hand, 

suppose thatff = 0. Thenf(}t,O,u,v) = ° which, by Hada­
mard's lemma, implies thatfisdivisible by v. Thusf = vh for 
some smooth h. Thenf(O,v,u,v) = ° yields h (O,v,u,v) = 0, 
which similarly implies that h is divisible by f..l and so fe/. 
Thus ker j = / and the claim follows. Q.E.D. 

Now ffE Yiffj(! f, J j) = 0. From (3.1) this will be the 
case iff 

at af 
~,O,u,v) = ° = +-(o,v,u,v), av au 

so that the invariant elements of Coo (JR4)/ / are of the form 

(flp,o,u ,O),J(O, v,O,v)) 

withf(O,O,u,v) constant. We may thus regard Y as consisting 
of pairs of functions 

(t/I(}t,u), ,p (v,v)) e COO (R2) X Coo (JR2) 

subject to the compatibility conditions 

tf(O,u) = ,p (O,v) (= const). (3.2) 
In these terms, a direct calculation shows that the in­

duced Poisson bracket (2.1) on Y is given by 
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[(t/JI,tPI)' (t/J2,tP2)] = (2 [t/JI,t/J2] U./l , 2[tPI,tP2lv.v), (3.3) 

where 

[ .1 •• 1.] = at/JI at/J2 _ at/JI at/J2 
'1'1''1'2 U./l au a}-L a}-L au 

denotes the ordinary Poisson bracket with respect to the pair 
u,}-L etc. It is straightforward to check that [-,.] is nondegen­
erate. 

In view of (3.3), the reduced Poisson algebra Y is close­
ly related to the Poisson algebra COO (R2) X COO (R2) of the 
symplectic manifold consisting of two disjoint copies ofR2. 
Due to the compatibility conditions (3.2), however, Y is 
strictly a subalgebra of this Poisson algebra, and so is not the 
Poisson algebra of any symplectic manifold. These condi­
tions therefore express the influence of the singularities in 
J - 1(0) upon the system. In fact, a correlation between these 
two Poisson algebras might have been expected from a 
consideration ofthe case when the photon has a mass m. 
Then the constraint set J -1(m2) is nonsingular, but discon­
nected, and the reduced phase space is symplectomorphic to 
R2uR2. It follows that the reduced Poisson algebra for a mas­
sive particle is exactly COO (R2) X COO (R2). The effect ofletting 
m-+O is thus to reduce the number of gauge-invariant obser­
vables. We shall have more to say about the physical inter­
pretation of this phenomenon, and its relationship to the 
singular space J -I(O)/R, in Sec. V. 

To construct the quantum state space, we must choose a 
polarization 9 of Y. Noting that the horizontal polariza­
tion P on R4 spanned by the vector fields S /l and S v projects 
onto J -1(0), a natural choice for 9 is 

9 = [(t/J(;.t), tP (v)) I t/J(O) = tP (0)). (3.4) 
According to general considerations, then, the quantum 
wave functions are elements of (9 ® C)'. 

To represent these states, we need the following result: 
Consider R2 with coordinates}-L and v, and let )r be the ideal 
in COO (R2,C) generated by the product }-LV. 

Lemma: Coo (R2,C)/ )r = 9 ® C. 
Proof Mimicking the proof of Proposition 3.1, we have 

that Coo (R2)1 )r may be identified with the image of COO (R2) 
in Coo (R) X Coo (R) under the map /-(f(,u,0),J(0, v)). Com­
parison with (3.4) and complexification then yields the de-
sired result. Q.E.D. 

With this in hand, we now establish: 
Proposition 3.2: (9 ® C)' is isomorphic to the space of 

all complex-valued distributions ct> on R2 satisfying 

}-Lvct> = O. (3.5) 
Proof Let ct> be such a distribution, in which case ct> 

annihilates all functions wlJ.ich are divisible Aby }-LV. Then ct> 
induces a !inearfunctional ct>on Coo (R2,C)/)' so that, by the 
Lemma, «Pe(9 ® ej'. Conversely, every linearfunctional on 
9 ® C = Coo (H2,C)/ )r can be lifted to a distribution on H2 
satisfying (3.5). Q.E.D. 

These distributions ct> take the form 

ct> (,u, v) = A. (,u) ® 8 (v) + 8 (,u) ® X (v), 

where A. and X are distributions on R. Then for/ E Coo (R2,C), 

(ct>,J) = (A. (,u),J(,u,0) + (X(v),J(O,v), 

from which we obtain the explicit representation 
cp (,u,v) = (A. (,u),X(v)) 

2156 J. Math. Phys .. Vol. 25. No.7, July 1984 

of cP as a linear functional on 9 ® C. 
Proposition 3.2 is the main result of this section. Not 

surprisingly, it shows that the gauge invariant wave func­
tions must satisfy the 1 + 1 wave equation, which isjust the 
Fourier transform of(3.5). It also guarantees that this quan­
tization is equivalent to that of the extended phase space 
(R4,w). In fact, quantizing in the momentum representation 
defined by the polarization P, we find that the quantum Hil­
bert space is L 2(R2) and that the quantum operator f!) J corre­
sponding to J is given by 

f!) J [ct>] = }-Lvct>. 

Thus, from this point of view as well, the physically admissi­
ble photon states must coincide with the distributional solu­
tions of (3.5). 

Finally, note the crucial role of the compatibility condi­
tions (3.2), in the guise of (3.4), in Proposition 3.2. Without 
them (3.5) would not follow and the correlation with the 
wave equation would be lost. 

IV. THE n + 1 PHOTON 
For the 1 + 1 photon the constraint set consists simply 

of two intersecting hyperplanes in R4. This enabled us to 
compute directly on J -1(0); in effect, we worked on each of 
the two hyperplanes and then "glued" along their intersec­
tion by means of the compatibility conditions. For n > 1, 
J -1(0) is more complicated and we can no longer proceed in 
this straightforward manner. In particular, it is now neces­
sary to "resolve" the singularity. 

Our first task is to construct the quotient 
Coo (R2n + 2 )I )'. The following result is the higher-dimen­
sional analog of Proposition 3.1. Let/ECoo (R2n + 2). 

Proposition 4.1: /E)' iff/ IJ - 1(0) = O. 
Proof The obverse is apparent. For the converse, it is 

clear from the structure of the constraint set 
J -1(0) = en X Hn + I that the configuration variables (x,t) 
are largely irrelevant and may accordingly be factored out. 
We are thus effectively reduced to proving that if 
g: Rn + I _R is such that gl en = 0, then g is globally divisi­
ble by p; - IlpW. 

There is no problem off en . On either of the regular 
components of cn , this follows from the inverse function 
theorem and Hadamard's lemma. It remains only to demon­
strate that g is divisible by p; - II P 112 at the vertex of cn , and 
for this it suffices (Ref. 10, p. 72) to show that the formal 
Taylor series of g at the origin is divisible by p; - Ilp112. We 
now establish this for n = 2; this case is prototypical, and the 
generalization to arbitrary n is immediate. 

Thus let 

rr _ " _1_ k i ni k 
og - .L ., ~k ,giJPxl'yP, 

1+ J + k ~ r l!j. . 

(4.1) 

be the homogeneous part of the rth Taylor polynomial of gat 
the origin ofR3

, where 
k ai + j + kg 

giJ = . . k(O,O,O). 
ap~a/J'yap, 

In (4.1) view all variables other than p, as parameters. Then 
to say that r;g is divisible by p; - (p; + p;) is equivalent to 
requiring that bothp, = ± (p; + p;)1/2 be roots of r;g. 
Substituting these values for p, into (4.1), decomposing the 
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sum into even and odd powers of(P; + p;)1/2, expanding 
these powers in a binomial series and reorganizing gives 

C~=r amnP;P;) 

± (P; + p;)1/2 C + n~ r- I bmnP;P;). (4.2) 

where 
[m121 [n/2 + I I 

amn = L L (7) 
1=0 k=1 

1 ,.2k (4.3) 
X (m _ 21 )!(n _ 2k + 21 )!(2k)! iSm - 2/.n - 2k + 2/' 

[m/21 [n12 + 1 I 

bmn = L L U) 
1=0 k=1 

1 ,.2k + I 

X (m _ 2l)!(n _ 2k + 2l)!(2k + I)! iSm - 21.n - 2k + 2/' 

(4.4) 
and [k] denotes the greatest integer less than or equal to k. 
From(4.2)itfollowsthatp, = ± (P; + p;)1/2will be roots of 
T~g iff the coefficients amn and bmn vanish. 

Now let v be a vector at the origin which points along a 
generator of the cone, and consider the rth derivative of gin 
the direction v: 

D~g(O,O,O) = [(vx ~ + Vy ~ + v, ~)r g](O,O,O). 
apx apy ap, 

Another lengthy calculation, consisting of expanding this 
expression out, separating into even and odd powers of vt , 

and then using the fact that v; = v; + v;, yields 

D ~ g(O,O,O) = riC +2;= ramn v;v; ) 

± (r - 1)!(v; + V;)II2C + ~ r- Ibmn v;v;). 

where amn and bmn are given by (4.3) and (4.4), respectively. 
But by assumption gl en = 0 so that D ~g(O,O,O) = 0 for all 
such v. This implies that amn = 0 and bmn = 0, and we are 
finished. Q.E.D. 

This proposition shows that 

Coo (R2n + 2 )I/, = Coo (J -1(0)), 
the smooth functions on J - 1(0) in the sense of Whitney. I I 
Unfortunately, Coo (J -1(0)) is rather difficult to handle. To 
obtain a more tractable representation of Coo (R2n + 2 )I/', 
we "resolve" the singularity by means of the map 
¢: R 2n + 2 _R2n + 2 given by 

¢ (1f,Pn x,t) = (p,1f,Pnx ,t). 

Note that now the physical momenta are given by PI and 
p = p, 1f. If we define K: R2n + 2 _R via 

K (1f,Pnx,t) = 1 - "1fW, 
then K-I(O)=(S"-I XR)XRn + 1 and 
¢ (K - 1(0)) = J -1(0). Let rP be the restriction of ¢ to K -1(0). 
Note that rP is a local diffeomorphism away from the "equa­
tor" p, = 0 and collapses the equator (S" - 1 X {O J ) X Rn 

+ 1 
onto the singular set S = {(O,O) J X Rn + 1 in J -1(0). 

We think of K -1(0) as being a "covering manifold" of 
the singular space J -1(0); using rP, we pull the entire formal­
ism on J -1(0) back to K - 1(0). The advantages of this proce­
dure are (i) K - 1(0) is a manifold and (ii) we can dispense with 
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Coo (J -1(0)) directly and work instead with its more man­
ageable isomorph rP ·C"" IJ -1(0)) C Coo (K -1(0)). The key 
fact which makes this possible is thatrP ·Coo (J -1(0)) admits a 
relatively simple characterization in Coo (K -1(0)) in terms of 
formal Taylor series. 12 

Proposition 4.2: Let FECOO IK -1(0)). Then 
FEr/J ·Coo (J -1(0)) ifffor each sES there exists a formal power 
series /s at s such that 

TqF= /soTqrP (4.5) 

for all qErP -I(S). 
Proof SupposethatF = j0rP forsomejEC"" (J -1(0)). Let 

jbe any extension ofj to R2n + 2; then /s = T .Jwill do in 
(4.5). The reverse implication follows from the inverse func­
tion theorem and Theorem 3.2 of Ref. 12. Q.E.D. 

Note that (4.5) is a very strong condition: for a smooth 
function F on K - '(0) to lie in rP ·Coo (J -1(0)), it does not suf­
fice for Fsimply to factor through rP. Rather, (4.5) requires 
that F and all its formal Taylor series TqF factor through rP· 

In summary, we henceforth work on K -1(0) and identi-
fy 

Coo (R2n + 2 )//, = rP .Coo (J - 1(0)). 

From this standpoint, the conditions (4.5) reflect the pres­
ence of the singularities in J - 1(0). \3 With these consider­
ations out of the way, we are now ready to construct the 
reduced Poisson algebra. 

LetFErP .COO (J -1(0)) so that there exists a smooth func­
tionj on R2n + 2 with F = j0rP' Then Fwill be invariant pro­
vided Ij,J J °rP = 0 which, on K -1(0), translates into 

aF n aF -- L 1T;-=0. 
at i=1 ax; 

Setting W = x + 1ft, this implies that F = F(1fJJnw) only. 
Since F must also factor through rP, it follows (with a slight 
abuse of notation) that 

Y = {FEr/J ·Coo (J-I(O))IF = F(p,1f,PnP, w)J. (4.6) 
Now ifF and G are two elements of Y with F = j0rP and 

G = gorP, then the induced Poisson bracket (2.1) on Y is 
[F,G] = {j,gJ °rP' After making the coordinate change 
(1f,p, ,x,t )-(1f,p, ,w,t )onK -1(O),astraightforwardcomputa­
tion yields 

Although this expression would appear to be singular when 
p, = 0, in fact it is not because of (4.6). 

We show that (4.7) is nondegenerate. Indeed, suppose 
that [F,G] = 0 for all Gin Y. Take G =P,Wk' Then 
[F,p, wd = 0 reduces to 

( 
aF n aF) aF 

1Tk p,-- L1T; - +--=0. 
ap, ;= I a1T; a1Tk 

Multiply this by 1T k and sum; since 111f 112 = I, it follows that 
aF lap, = O. But then, by (4.6), F(p,1f,PnP, w) = F(O,O,O) is 
constant and nondegeneracy is proven. 

The quantization of the n + I photon is patterned after 
that of the I + I photon given in Sec. III. The analog of the 
horizontal polarization P on R2n + 2 spanned by the vector 
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fields Sp, and Sp" i = I, ... ,n, is the maximal commuting sub­
algebra 

9 = [FEYIF=F(p,1T,p,)) (4.8) 

of Y. We now construct the quantum state space (9 ® q'. 
Let J and k be the restrictions of J and K to the first 

factor of Rn + I in R2n + 2 , and denote by / the ideal in 
C<» (Rn + I ) generated by J. From the proof of Proposition 
4.1 we see that 

C""(Rn+I)I/ = c<»(cn). 

Letting ~ be the restriction of;P to k -1(0), we may then 
identify COO (Rn + I )1/ with the subalgebra ¢ *C<» (C) of 
C<» (S" -I XR). From (4.8), (4.5), and the analog of Propos i­
tion 4.2 applied to ~ *C<» (C) C Coo (S" - I X R), it follows 
that¢ *Coo (C ) is isomorphic to 9. Uponcomplexifying, we 
finally obtain 

Coo (Rn + I ,q/ / = 9 ® C. 

Imitating the proof of Proposition 3.2, this last result yields: 
Proposition 4.3: (9 ® C)' is isomorphic to the space of 

all complex-valued distributions 4> on Rn + I satisfying 

(p; - iipW)4> = O. 
Thus, as before, the physically admissible photon states 

must satisfy the Fourier transformed n + 1 wave equation. 
As expected, this is consistent with the quantization of the 
extended phase space (R2n + 2,ev) in the polarization P. In­
deed, we compute 

0J[4>] = (p; -lipW)4> 

on L 2(Rn + I ) and gauge in variance demands 0 J [4>] = O. 

v. DISCUSSION 

We spend a moment correlating our results with the 
structure of the singular reduced space J -I(O)/R. This will 
incidentally help clarify the physical significance of the com­
patibility conditions (3.2) and their higher-dimensional ana­
logs (4.6) which arise both from the presence of singularities 
and the requirements of gauge invariance. 

The action of the gauge group R on R2n + 2 is given by 

(A.;p,p, ,x,t ) __ (p,p"x - Up,t + Up,). 

On J - 1(0) = cn X Rn + I this action fixes every point of the 
singular set S and is otherwise free. We may therefore sche­
matically representJ -I(O)/R as shown in Fig. I. The trouble 
with J -I(O)/R, aside from the expected conical singularity, 
stems from the anomalous factor of Rn + I associated with 
the vertex. This is actually a remnant of a slight defect in the 
extended phase space description of the n + 1 photon con­
cerning the physical interpretation of states in the singular 
setSCJ -1(0). Such a state (O,O,x,t) represents a photon with 
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space J - I (O)!R. 
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vanishing momentum located at (X,t ), that is, a vacuum state. 
But presumably there is only a single vacuum state, not one 
located at every space-time point. It is this (n + I)-dimen­
sional array of unphysical vacua which contributes to the 
pathology in J -1(O)lR and prevents the latter from being 
construed as the space of all gauge-invariant states. 

On the other hand, a physical observable should be un­
able to distinguish between these spurious vacua. The topol­
ogy of the reduced space indicates that this will be the case: 
sinceJ -1(O)lRfails to be Hausdorff along this Rn + 1 , contin­
uous functions cannot separate these states. This observa­
tion is substantiated by our analysis above, and here is where 
both gauge invariance and the compatibility conditions en­
ter. For n = I, (3.2) guarantees that a physical observable is 
constant on S. Similarly, for n > 1, the form (4.6) of a gauge 
invariant function ensures that it is constant along the equa­
tor ¢J - I(S) and hence also cannot differentiate between these 
states. Consequently, the generalized reduction process 
"corrects" the flaws in both the original description of the 
system and the reduced phase space, at least to the extent 
that it guarantees that the gauge invariant observables "de­
tect" but a single vacuum state, as required. 

Our analysis of the n + 1 photon thus demonstrates the 
utility of the Poisson algebra approach: even though a sys­
tem may be singular, one can still construct the essential 
components of the reduced canonical formalism. Moreover, 
subsequent quantization yields results in exact correspond­
ence with those obtained by standard methods. We hope that 
this example will encourage further study of the structure of 
singular constrained systems. Techniques for resolving sin­
gularities and, in particular, the work of Bierstone and Mil­
man12 on composite differentiable functions (of which Pro­
position 4.2 is a special case) should prove to be quite 
valuable in this regard. 
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dual distribution 
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It is shown that the problem of parameter estimation for distributions of the exponential type, has 
a unique consistent Bayesian solution: The requirement that Bayes' rule and maximum entropy 
lead to the same inverse distribution determines the loss function. Similarly, the demand that the 
best estimate for a random variable, given an observed value of that variable, coincides with the 
observed value, determines the prior distribution for the corresponding conjugate parameter. 
Properties of the dual distribution thus determined are investigated. In particular, the 
symmetrical role of parameter and constraint as a pair of conjugate variables is shown to imply an 
inherent uncertainty principle. Possible applications to temperature fluctuations and to an 
imbedding of classical mechanics in a statistical background are indicated. 

PACS numbers: 02.50. + s, 03.20. + i, 05.40. + j 

I. INTRODUCTION 

Thermodynamics and hence statistical physics 1 intro­
duces a set of extensive variables to characterize the state of 
the system. Corresponding to these is a set of conjugate in­
tensive variables. In the maximum entropy approach 1,2 the 
conjugate variables are introduced as Lagrange multipliers 
in the procedure of seeking the constrained extremum of the 
entropy. The two sets of variables do not appear therefore to 
be on equal footing. A glaring example of this "asymmetry" 
is that given the mean value of an extensive variable, the 
theory clearly predicts that fluctuations in that variable are 
possible. [For example, given the mean energy, we generate a 
distribution of energy (cf. Sec. II below) and hence can com­
pute the variance of the energy which is closely related to the 
specific heat.] Yet, given a mean value of an extensive vari­
able, the existing theory assigns a unique numerical value to 
the conjugate Lagrange multiplier and does not appear to 
recognize the possibility of fluctuation about that value. 

One can, of course, take the stand that the symmetry 
between the two possible sets of variables is guaranteed in 
classical thermodynamics by the well-understood changes of 
variables via the Legendre transform. 3 It is clearly desirable 
however to trace this symmetry to the fundamental theory. 
Furthermore, the maximum entropy formalism is being ex­
tensively applied4 to the description of collisions of compos­
ite projectiles (be they nuclei or molecules) and to other areas 
of statistical physics (e.g., irreversible processes,5 statistical 
optics6

) where there is no corresponding phenomenological 
thermodynamics. 

A technical resolution of the problem is to proceed not 
via the maximum entropy formalism but via a classical Baye­
sian approach.6--8 There, the problem of determining the La­
grange multiplier becomes one of parameter estimation as is 
discussed in Sec. II. The problem is then that the two routes 
do not necessarily coincide. The conditions under which 
they do are determined in Sec. III. 

a1permanent address: Racah Institute of Physics, The Hebrew University, 
Jerusalem 91904, Israel. 

The result of our considerations is the characterization 
of a unique dual distribution: the distribution of the value of 
the Lagrange multiplier given the mean value of the con­
straint. Some properties of this distribution are explored in 
Sec. IV. Particular attention is given therein to the "uncer­
tainty relation" between the pair of conjugate extensive and 
intensive variables. Generalizations to several variables are 
provided in Sec. V. We conclude with potential applications 
to physics in Sec. VI. 

II. BACKGROUND 

Suppose we are given a vessel containing N ideal gas 
molecules in thermal equilibrium. We know that the ener­
gies of the molecules are distributed according to the Boltz­
mann law 

f(E I /3) = n (E)e - (JE, z( /3 ) = J n (E)e - (JE dE, (1) 
z(/3) 

but we do not know the temperature T = 1//3. We are al­
lowed to pierce a hole in the vessel and let n <N molecules 
escape, meanwhile recording their energies. Given the evi­
dence E1, ... ,En , what value should we assign to the unknown 
parameter /3 and how reliable should this assignment be con­
sidered? 

The problem just described, namely, parameter estima­
tion, is basic to statistical theory. Given the outcomexl,· .. ,xn 

for a random variable X distributed according to 

n( ) -,cAlx) J 
f(xIA) = XZ~A) , Z(A) = n (x)e-,cAIX) dx, (2) 

what is the distribution PtA Ixl, ... ,xn ) and what is the best 
guess 1 = 1 (xw .. ,xn) for the unknown parameter A. In the 
(now, generally accepted) Bayesian approach,7 one proceeds 
as follows. 8 

(a) Choose a "prior" or "marginal" distribution!o(A ). 
The distribution inverse to the "sample distribution" 

n 

P(x1"",xn IA) = II f(Xi IA), (3) 
;=1 
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is given by Bayes' rule 

_ P(X1, .. ·,xn IA )1o(A) 
P(Alx1, .. ·,xn) = I ~ )"(A)dA S P(Xl, .. ·,xn /I. )0 

= 
m(A Ie-AnA 

Here 
_ 1 n 

A =- L A (x;) 
n ;= 1 

is the "sample average," 

(4a) 

(4b) 

Owing to the reflexive property of duality (which we shall 
prove),f(xIA ) is the dual distribution tol(AIA (x)). 

In Sec. IV some further properties of the dual distribu­
tion are explored. It is shown that the random variable A (x) 
and its conjugate parameter A satisfy an inherent uncertainty 
relation. Next we discuss the connections between samples 
of size n and samples of size 1. We show that sampling of the 
variable X induces a corresponding sampling in the dual 
~ace A in such a way that only the sufficient statistic 
A = (lin) l:. A; (but not the individual A; 's) is observable. 

m(A ) ex: lolA )/z"(A ) (4c) III. THE DUAL DISTRIBUTION 

is the "density of states" for the parameter A, and 

Z(A) = J m(A )e- AA dA (4d) 

is the "partition function." Note that the distribution of A 
given the sample x1, ... ,xn' is completely determined [once 
Io(A ) has been chosen] by the value of the "sufficient statis­
tic,,9 A (x1, ... ,xn)' That is, all the information relevant to the 
distribution of A obtained by sampling can be summarized 
by a single number-the sample averageA. We shall hence­
forth denote the distribution (4) by P(AIA). 

(b) In order to determine the "best estimate" 1 for the 
parameter A, choose a non-negative "loss function" L (A,1 ) 
and determine the best estimate 1 = 1 (A) by minimizing the 
"average loss" 

R (1) = J L (A,1 )P(AIA)dA 

over 1. For example, by choosing 

L (A,1 ) = (A -1 )2 , 

one obtains 

Similarly, the choice L (A,1 ) = IA -11 leads to 

1 (A) = median of P(AIA) 

(5) 

(6a) 

(6b) 

as the best estimate for A. To ensure uniqueness of the mini­
mum (orinfimum), R (1 )ismadeconvexbyrequiringL (A,1) 
to be convex in 1 for all A. 

The shortcoming of the above procedure stems from its 
indeterminate nature. Two non-negative functions, namely 
Io(A ) and L (A,1 ), are to be chosen almost freely. Can one 
somehow narrow the choice? It is our intention to demon­
strate that this is indeed the case. We shall show in Sec. III 
that requirements of consistency lead to a unique choice for 
the loss function L (A,1 ) and the priorlo(A ), at leastfor distri­
butions of the "exponential type"g of which Eqs. (1)-(4) are 
examples. Thus, to every distributionf(xIA) of the form (2) 
there corresponds a unique dual distribution 

11- ( ~) - M (x) 

I(A IA (x)) = /I. e 
z(A (x)) , 

with a density of states 

Ii (A ) ex: Io(A )1 Z(A ) . 

Z(A)= fli(A)e-MdA, 
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(7a) 

(7b) 

In this section we confine ourselves to samples of size 1. 
Hence only f(xlA ) andl(A IA (x)) [Eqs. (2) and (7)] enter. 

A. Determination of the loss function 

Having made a choice for the density of states Ii (A ) and 
the loss functionL (A,1 ), the best estimate 1 = 1 (A (x)) is de­
termined by solving 

R '(1) = J a~ (A,1 )1(AIA )dA = (a~) = O. (8) 
aA aA 

But given the average «(aL lal )(A,1 ) the principle of maxi­
mum entropy2,7 predicts 

F(AIA (x)) = Ii (A )exp[ - p(af lal )(A,1 )] (9a) 
Z (p,A. ) , 

where 

A J- ( aL A) Z (p,A. ) = 11 (A )exp - p al (A,A.) dA . (9b) 

Here p is a Lagrange multiplier whose value p = p(l (A )) is 
determined by solving 

0= (a~) = _ alogZ(p,1) . (10) 
aA ap 

We now have two predictions [for the same data A (x)!], name­
ly, 

and 

I(A IA ) = 11 (A )e - AA Iz(A) (from Bayes rule), (Ila) 

F (A IA ) = Ii (A )exp [ - p(af I al )(A,1 )] 
Z(p,A. ) 

(from maximum entropy). (lIb) 

Proposition: The two predictions (lla) and (lIb) coin­
cide if and only if the loss function is quadratic. That is, 
L (A,A. ) = CiA - A )2, where c > 0 is constant. Indeed, if 
L = C(A - A)2 then (aL lal ) = - 2C(A -1 ) = 0 implies 

1 = (A IA ) , (12) 

and 

Z = f Ii (A )e2
1"c(A - A) dA = e - 2I"CAZ( - 2flc) . (13) 

Applying Eq. (10) to the last expression, we obtain 

o=(a~)= _ alogZ =2cl+2c alogz(-2flc). (14) 
aA ap aA 

Hence, with the aid ofEqs. (12) and (7a), 
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1 = _ a log z( - 4tc) = (A IA ) = 
aA 

Now 

alogz(A) 

aA 
(15) 

(16) 

Hence - (a 10gz(A )laA) is monotonic and by Eqs. (15) and 
(11) we hav~ - 4tC = A and F(A IA ) = 1(,1 IA ). Thus 
L = cIA - A )2 is sufficient to establish harmony between the 
predictions of maximum entropy and Bayes' rule. 

In order to prove that the condition is also necessary, we 
shall somewhat restrict the choice ofloss functions. We as­
sume (in addition to non-negativity and convexity) that 
L (A). ) = L (A -1 ) is a function of the difference (A -1 ) 
only, satisfying L (0) = O. Now F(A IA ) = 1(,1 IA ) implies 

-/-t a: = - AA + log Z - log z(A ) . (17) 
aA 

Invoking Eq. (10), we have 

-/-t(~~)=0= -(A)A+logZ-logz(A), (18) 

and Eq. (17) reduces to 

a:=~(A_(A»). (19) 
aA /-t 

The last equation can be viewed either as an explicit expres­
sion for the Lagrange parameter /-t, or as a condition satisfied 
by the loss functionL (A -1 ). Takingthelatter point of view, 
we have 

aL = _ a: = _ ~(A _ (A ») , 
aA aA /-t 

(20) 

hence, by integration, 

L = - (A 1/-t)(A 212 - (A ),1 ) + h t1 ) . (21) 

Here /-t = /-t(1 (A )) and (A ) = - (a log z(A )I aA ) are func­
tions of A. Inverting A = A (1 ) (which is certainly valid for 
some range of 1 ), and taking the derivative of (21) with re­
spect to 1, we have 

aL d (A) (A 2 ) al = - dl -; "2 - (A ),1 

+ (~) A d (~) + h '(1 ) 
/-t dA 

= (A 1/-t)(A - (A»). (22) 

Comparing equal powers of A, we secure 

AI/-t = -D, 

where D is a constant, 

d (A) = 1 
dl ' 

h '(A) = D (A ) . 

Hence 

(A) =A + G, 

and 

h (A ) = D (A 212 + GA ) + H, 
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(23a) 

(23b) 

(23c) 

(24a) 

(24b) 

where G and H are constants. Inserting these expressions 
into (21), we obtain 

L = (DI2)(A _A)2 -DG(A -A) +H 

= (D 12)(,1 - (A ») - DG 212 + H . (25) 

The constants G and H are now determined by use of the 
assuI!lptions L (0) = 0, ~L laA 2 = D> 0 and L>O. Putting 
A = A we have H = O. Again, putting A = (A ) we obtain 
L = - (D 12)G 2>0, which can be satisfied only by G = O. 
Thus, 

(26) 

and 

L = (D 12)(,1 - A )2, D> 0 . (27) 

Incidentally, by Eq. (26) we have 

dA = d (A) = _ a
2 

log z(A ) = _ varIA ),;;;0 . 
dA dA aA 2 

Hence, A (A ) is a monotonic function of A and the inversion 
A = A (A ) is valid for all 1 Note that the class ofloss func­
tions for w~ich our proof ap)'lies, could be enlarged to in­
clude L (,1,4 ) = g(A ) I (A - A ), where g(A ) > 0 could be ab­
sorbed in the yet undetermined density of states Ii (A ). 
Having established 1= cIA - A )2 as the only loss function 
which brings harmony between the predictions of maximum 
entropy and Bayes' rule, we shall now turn to determine 
Ii (A ), or, equivalently, the prior distribution for A. 

B. Determination of the density of states 

Observing an outcome A (x), our best estimate for A is 
A (A ) = (A IA ), but given A, our best estimate for the param­
eter A (x) in Eq. (7a) is A (A ) = (A IA ). We now demand self­
consistency: the best estimate 0/ A given A is A. That is, 

where 

A = (A IA ) = _ a log z(A) . 
aA 

(28a) 

(28b) 

The last equality in Eq. (28a) can be interpreted in a slightly 
different way. The estimate A (given A ), determines an esti­
mate for the average (A ) via 

(A) = _ a 10g,.z(A) . (29) 
aA 

Demanding that the best estimate/or (A) given A is A, we 
have 

(30) 

We shall now show that the requirement of self-consistency 
[Eqs. (28)], is enough to determine the partition functionz(A ) 
and the density of states Ii (A ) uniquely (up to an irrelevant 
factor). Indeed, determining A (A ) as the (unique) solution of 
Eq. (28a), condition (28b) serves as a differential equation for 
the unknown functionz(A ). Leti(A ) be such that - log z(A ) 
is the Legendre transform3

•
10 of - log Z(A ), that is, 

- log i(A ) = XA - [ - log z(X )] , (31) 
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where X = X (A ) is the (unique) solution of 

A = _ a log z(X ) . (32) 
aX 

But by Eqs. (31), (32), and (28), 

_ alogz(A) =X +A dX + a log z(X ) dX =X =l, (33) 
aA dA aX dA 

hence 

and 

a logz(A) _ 
aA 

z(A)=CZ(A). 

alogz(A) 

aA 
(34) 

(35) 

Since the constant C is irrelevant, we shall standardize 
the solution z(A ) by adopting C = 1, that is 

-log z(A ) = (A. )A + log z( (A. ») , (36a) 

or 

z(A) = e- (A )A/Z(A.»), (36b) 

2 1 ( 3 )3/2 
z(E») = ..{ii C 2e(E) . (42a) 

The integral equation (37) is now solved by 

a ( 13) = .! J.. (~)312 {If , 
'IT C 2e 

(42b) 

and the distribution dual to (4Oa) is 

f(pl(E») = (2/..{ii)(E)3/2{lfe- (E){3, 0</3< 00 • 

(42c) 

Using Eqs. (7b), (42b), and (4Oc) we can also determine the 
prior fo( 13), namely, 

fo( 13) ex n (p)z( /3) ex 1/13 , (43) 

which is the result obtained by Jeffreys II for a scale param­
eter. 

(b) As a second example we take 

f(xl(A.») = (1/~)e-(I12)X2e- (A)x/Z(A.») 

= (1/~)e-(I12)(x+ (,1»)2, _ 00 <x< 00. (44a) 

where (A. ) is the solution of (32). Finally, the integral equa- Here 
tion 

(37) 

determines (under broad conditions) a unique solution for 
the density of states a (A. ), given the "moment generating 
function"g z(A ). In summary, given the distribution 

n (x)e - (A )A (x) 

fIx I (A. ») = z( (A. ») , (A ) = _ a log z( (A. ») 
a(A. ) , 

(38) 

a dual distribution 

f(A. I (A ») = a (A. )e - A (A ) (A. ) = _ a log z( (A ») 
z(A ») , a(A) 

(39) 

is uniquely determined via the Legendre transform of 
- log z( (A. »). Since the Legendre transform is a reflexive one 
[that is, - log z( (A. ») is the transform of - log z( (A ) )], 
fIx I (A. ») is the dual distribution to f(A. I (A »). 

C.Examples 

By way of illustration, consider the following two ex­
amples. 

(a) The Maxwell-Boltzmann distribution for the energy 
of ideal gas molecules is 

fIE I( /3») = (2/..{ii)( /3) 3/2/Ee- ({3)E, O<.E < 00 • 

(4Oa) 

Here 

n(E)=c/E, 

and 

z(P») = c~,fii(p)-3/2, 
where C is a constant. Equation (38) yields 

( 13 > = 3/2 (E) . 

Hence, substituting in Eq. (36), we obtain 
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(4Ob) 

(4Oc) 

(41) 

n (x) = (1/~)e - (1/2)x2, z( (A. ») = e(1I2)(A)2 . (44b) 

Hence 

(A. ) = - (x) , (45) 

a (A. ) = (1/~)e-(1I2)A2, z(x») = e(I12)(x)2, (46a) 

and 

f(A.I(x») = (1/~)e-(1I2)A2e-A(x)rz(x») 

= (1/~)e-(I/2)(A+ (x»)2, _ 00 <A. < 00. (46b) 

In this example the prior probability is uniform: 

f(A. ) ex a (A. )z(A. ) ex l. (47) 

IV. PROPERTIES OF THE DUAL DISTRIBUTION 

Having observed x I and hence A I = A (x I) and 
II = l (A I) = - a log z(A 1)/ aA I' we expect the next obser­
vation to fulfill 

A2 =AI ±.JA, 

where 

.JA = «(A - (A »)2)1/2 = [varIA jp/2, 

and 

But 

(48) 

(49) 

al = _ az log~(AI) = _ var(A.) = _ (.JA. f. (51) 
aA I aA I 

Hence 

l2::::::l1 =+ (.JA. )2.JA . 

That is .JA. :::::: (.JA. )2 .JA, or 

.JA. (A I).JA (A I):::::: 1 . 

(52) 

(53) 

Thus the expected uncertainty in A. having seen A I' times the 
expected uncertainty in A having seen A I' is of the order of 
unity. 
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We turn now to a more careful discussion where it 
proves possible (nay, essential) to distinguish between experi­
mental and inherent uncertainties. 12 

A. Inherent uncertainty relation 

Let (A ) be known and let..::1A (A) )and..::1A (A) ) denote 
the inherent uncertainties in A and A given (A ) (or (A »). 
Then 

«(A - (A )f) = (..::1A)2 = a
2

10gz(A ») = _ a(A ) 
a(A )2 a(A) , 

(54) 

and 

«(A - (A)f) = (..::1,1)2 = a
2

10gz(A ») = _ a(A) . 
a(A)2 a(A) 

(55) 

Hence 

(..::1A f(..::1A )2 = _ a(A ) (_ a(A ») = 1 . 
a(A) a(A) 

That is, 

..::1A (A »)..::1,1 (A») = 1 . (56) 

The inherent uncertainties are related as above regardless of 
the accuracy by which (A) is known. Of course, the individ­
ual uncertainties..::1A and..::1A are dependent on the accuracy 
of (A ). The better we know (A ), the better are our estimates 
for ..::1A and..::1A. This leads us to discuss the accuracy of the 
estimation that is, the relation between samples of size 1 and 
samples of size n > 1. 

B. Accuracy of the estimation, Induced sampling in the 
dual space 

Given a distribution 

f(xIA) = {J (x)e -..tA (:C)/z(A ) , 

the sample distribution is 

(57) 

II {J (x; )exp [ - ,11: A (x;)] 
P(xl, .. ·,xn 1,1) = IIf(x; 1,1) = . 

~(A ) 
(58) 

With the aid of P, the distribution of the sample average 

- 1 A =- IA(x;) , 
n 

can be expressed as 

PIA 1,1) = f P(XI, .. ·,xn 1,1) 

xo(! IA(X;)-A)dXI ... dXn 

= m(A)e - ..tnI 

Z(A) 

where 

m(A) = f {J (xl) .. ·{J (Xn) 

xo(! IA(x;)-A)dX1 ... dXn , 
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(59) 

(60a) 

(60b) 

and 

(6Oc) 

It is easy to show that the following relations hold8
: 

<A)p = (A )f' (61a) 

varp(A) = (lIn)varf (A), (61b) 

hence 

(61c) 

The last result can be regarded as a form ofthe law oflar~ 
numbers8

: the larger the sample the better is our estimate A 
for the average (A ) f' _ _ _ 

Consider now the distribution P (A IA ) dual to P (A 1,1 ): 

P(AIA) = m(A )e-..tni /Z(A) , (62a) 

where 

Z(A) = ~~~~ = f m(A )e-..tnA dA, 

and X is the solution of 

A = ,_ a log Z (X ) 
a(nX) 

But Z (X ) = zn(A ) implies 

A = _ a log ~(A ) = _ a log z(X ) . 

a(nX) aX 
Hence 

x = (AIA)1 = _ a 10g~(A) 
aA 

and 

Z(A)= [e-U/z(XW=Z"(A). 

Thus, given the sample average A, we have 

(62b) 

(62c) 

(63) 

(64) 

(A )p = _ a log ~ (A) = _ a log !(A) = (A )1 ' 

a(nA ) aA (65 ) a 

(65b) 

and therefore 

(65c) 

!he ~operty (65a) characterizes t~e du,!,1 distribution 
P (A IA ). Any Bayes' distribution P (,114 ) satisfying (65a) is 
necessarily the dual distribution to P (A 1,1 ). Indeed, 

(AIA)p = - alog~(A) = (..i IA)I= _ alog!(A) 
a(nA) aA 

impliesZ(A) = const· :zn(A). Property (65b) and its counter­
part (61b) allow us to connect the uncertainty product for a 
sample of size n to the corresponding product for a sample of 
size one, namely, 

[..::1,1 (A)]P[..::1A(A)]p =_1_ [..::1..i(A)]l-l- [..::1A(A)]f. 
Iii Iii 
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In view of Eq. (56), we secure 

[~A (A)]P [~A (A )]p = lin. (66) 

The two "uncertainty products" [Eqs. (56) and (66)] 
have quite different meanings. Equation (56) is the inherent 
uncertainty: However well we know the mean value (A > of 
A, there will be a finite variance ~A and a finite variance ~A 
and no further measurement can reduce their product below 
unity. Equation (66) deals with a more mundane aspect: the 
variance of our estimate of (A ). It is a purely experimental 
uncertainty and does therefore reduce [cf. (61)] as more mea­
surements are being made. Now, ~A is what the experimen­
talist reports as his estimate for the uncertainty in the mea­
sured mean value of A. Often, of course, one does not 
estimate A for each measured value of A but rather reports 
only A and ~A from which A and ~A are to be computed. In 
that case the experimental uncertainties satisfy (66) with 
n = 1. Note however that even when many measurements 
are made so that the experimental uncertainties are quite 
small [i.e., n in (66) is large], the inherent uncertainties con­
tinue to satisfy (56). As we said in the beginning of this para­
graph, ~A, defined by (54) is an inherent variance [ofthe 
distributionf(x 1.1 )] and is quite distinct from ~A, the uncer­
tainty of our estimate for (A >. 

Let us now calculate the density of states m(A ). From 
Eqs. (64) and (7a), we have 

Z(A) =zn(A) 

= J a(AI)e-AI~ dA I··· J a (An)e-A..IdAn 

= J dA e - nAI J a (Atl···a (An) 

X8(! LA; -A )dAI ... dAn . (67) 

Since Z (A ) determines m(A ) uniquely, we obtain, comparing 
Eq. (67) with Eq. (62b), 

m(l) = J a (AI)···a (An) 

x8 (~ LA; -A )dAI ... dA n , (68) 

which is the exact counterpart to (60b). The last result sug­
gests that Eqs. (65) should be rewritten, in analogy to Eqs. 
(61), as 

(A)P = (A >7' 
varp (A ) = (1/ n )varl(A ) , 

and 

(65a') 

(65b') 

(65c') 

We can summarize the structure revealed by Eqs. (57)-(68) 
as follows. The sampling of the random variable X has in­
duced a corresponding sampling in the dual space A, with all 
the properties one usually associates with a sample. The 
sample distribution in the dual space is given by 
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(69) 

Hence the sample average 

1 = (lin) LA; (70) 

is distributed according to 

P (A IA) = m(A )e - nXT R(A) , (62a') 

with m(A ) given by Eq. (68). The..9uantity A serves as a suffi­
cient statistic for the parameter A in Eq. (62a), that is, any 
Bayes' inverse distribution 

- P(AI, ... ,An IA)fo(A) 
PIA IAI, .. ·,An) = _ 

f P(AI>···,An IA )fo(A )dA 

= m(A )e_- nX;= P (A IA ) 

Z(A) 

is completely determined by the single number 1. In particu­
lar:.,the dist!,ibution dual to P(A g) is PIA IA ), where 
Z (A) = zt (A ). Note that [given A (x I, ••• ,xn)] the individual 
.1 1"",.1 n are not observable (and not needed). The only obser­
vable quantity is the sufficient statistic 1 = (lIn)l:Ai> which 
is needed. Given an observition A (x 1>."'X J, a corresponc!ing 
o!!!>ervation (or best guess) A is formed via A = - a log z(A )/ 
aA. 

We end this section with the following conjecture. In­
stead of solving directly for the distributionP (A 1.1 ) [Eqs. (64) 
and (68)], we could have used the prior 

10(.1 ) ex: .a (A )z(A ) 

obtained from the solution ofEq. (37) and determine Pas the 
Bayes' distribution (4). Thus, we should expect the following 
relations to hold: 

a (A) ex: J a (Atl .. ·a (A ) 
zn-I(A) n 

X8(! LA; -A )dAI ... dA n (71a) 

or, equivalently 

Z (A) = J a (A) e - nAX dA ex: zn(A) . 
zt-I(A) 

(71b) 

Although all the examples checked by us do fulfill these rela­
tions, we failed to prove them. 

V. GENERALIZATION 

Most of the results derived in the preceding sections for 
a single parameter can be generalized to the multiparameter 
case. Thus, given the distribution 

f(xIAI, ... ,Am) = n (x)exp[ -l::"= IArAr(x)] 
z(AI,· .. ,Am) 

(72) 

(e.g., maximum entropy distribution with m constraints), we 
can Legendre-transform any groupAI, ... ,As' 1 <s<m, to 
their conjugate variables A 1"",As and obtain the correspond­
ing dual distribution. For example, transforming all the var­
iables A j,. .. ,Am' we have 
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!(AI,···,).m IAI,···,Am) 

li (AI'·.·,).m )exp( - ~;."= IArAr) 
= (73a) 

where 

(73b) 

withAI, ... ,Am the solution of 

A = -alogz(AI,···,Am) 

r aAr ' 
r= 1, ... ,m, (73c) 

and li (AI' ... ,).m) the solution of 

Z(AI,···,Am) 

= jli(AI, ... ,).m)exp ( - I ArAr)dAI ... dAm . (73d) 

To assure uniqueness of the solutionAI, ... ,Am [Eq. (73c)], we 
assume that the m + 1 constraints Ao(x) = 1, A I(X), ... ,Am (x) 
are linearly independent. 13 The uncertainty relation (56) is 
now replaced by 

LiArLiAr> 1, r = 1, ... ,m , (74) 
where equality holds if and only if the covariance matrix 

C = _ a(AJ = az logz 
's a (A,) a(AJ a(As) 

= «(A, - (Ar) )(As - (A,»)) (75) 

is diagonal. In order to derive (74), we make use of the fact 
that C is a positive definite symmetric matrix13 with inverse 
C -I = C, where 

C = _ a(A,) = a210gz 
's a(A,) a (A,) a(A,) 

= «(A, - (A,) )(As - (A,»)) . (76) 

It is shown in the Appendix that any positive definite sym­
metric matrix C satisfies 

C,,(C- I ),,>l, (77) 

with equality if and only if C is diagonal. In particular, the 
covariance matrix fulfills 

C"C" = (LiA,)2(LiA,f> 1 . 

VI. DISCUSSION 

We have seen in the preceding sections how arguments 
of consistency single out a unique inverse distribution dual to 
a given direct distribution. We also saw that the only consis­
tent best guess for a random variable is its average. The ap­
parently unsymmetrical role of the constraint-Lagrange 
multiplier has been removed and equal status has been en­
dowed to both as conjugate variables. Is there any reflection 
of this symmetry in nature? It is tempting to answer in the 
affirmative, though lacking concrete evidence in support of 
such hypothesis, all that follows must be considered as direc­
tions for future research. 

A. Temperature fluctuations 

At the heart of statistical mechanics lies the Boltzmann 
distribution 
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I(E I (f3») = fl (E)e- ({3)E Iz( f3»), (78) 

where ( f3 ) is identified with liT, Tbeing the thermodynam­
ic temperature determined by the second law via the effi­
ciency of a reversible Carnot engine. Equation (78) predicts 
energy fluctuations 

a(E) ---
a( f3) 

_ a(E) ~= CT 2 (79) 
aT a( f3) , 

where 

(80) 

is the heat capacity. Similarly, the dual distribution 

!(f3I(E»)=li(f3)e-{3(E)rz(E») (81) 

predicts "beta fluctuations" 

(Lif3f= _ a(f3) = _ a(f3) ~=_1_. (82) 
a (E) aT a(E) T 2C 

If temperature fluctuations are real, then we should expect 

Li f3(T);::::Li (liT);:::: ILiT IT21 ' (83) 

where Li T(T) is the inherent uncertainty in T (Sec. III A). 
Combining with Eqs. (79) and (82) we have 

LiT;::::(lIC)LiE. (84) 

B. Imbedding classical mechanics in a statistical 
background 

Consider a particle leaving Xo = 0 at time to = 0 and 
arriving at x at the final time t. Let 

A (x,t;xo = O,to = 0) = f L (x,x)dt ==A (x,t) (85) 

denote the action for such a particle, and let 

l(p,t) =px -A (x,t) (86) 

denote the Legendre-transformed action. Here x = x( p,t ) is 
determined by solving 

aA (x,t) p--...:....-..:... - ax . 

Similarly, the transformed action satisfies 

al 
x=-(p,t). 

ap 

(87) 

(88) 

Suppose that the final x is not known but we are given the 
average (x) at the final time t. Furthermore, we are told that 
the final average (p) is related to (x) via the classical rela­
tions (87) and (88), that is, 

( ) = aA (x),t) and (x) = al (p),t) . (89) 
P a(x) a(p) 

What can we say about the probability density for finding the 
particle at time tin dx around x? Similarly, what is the prob­
ability density for an arrival with momentum p in dp? Now, 
maximum entropy tells us that both distributions are of the 
exponential type. Moreover, in view ofthe symmetry 
between x and p as conjugate variables, we expect the two 
distributions to be dual to each other. These expectations 
together with relation (89) lead to 
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and 

I( I( ») = 11 (x,t)exp(p)xlll) 
x,t P ( ») , z( P ,t 

l(p,t I (x») = Ii (p,~exp(x)pIIl) , 
z(x),t) 

where 

z( (p),t) = exp(A ( p),t )/1l) , 

and 

z(x),t) = exp(A (x),t)lll). 

(90) 

(91) 

(92) 

(93) 

Here Il is an arbitrary constant having the dimensions of 
action. Having chosen the partition functions, the densities 
11 (x,t ) and Ii (p,t ) are determined by solving 

exp(A(;),t)) = f I1(X,t)eXPC~x)dX (94) 

and 

exp( A (~),t)) = f 11 (p,t )exp ( (x~P) dp. (95) 

For example, if the Hamiltonian is quadratic, it can be 
shown that 

11 (x,t ) a: exp( - A (x,t )11l) , (96) 

and 

Ii (p,t) a: exp( - A (p,t )Ill). (97) 

There is a general relation between the entropy of a distribu­
tion and the corresponding dual partition function, which 
we have not yet written down, namely, 

S [I] = - f/(X1A )log l(xIA) dx 
11 (x) 

= f I[AA (x) + 10gz(A )]dx 

= A (A ) + 10gz(A) = -logz(A»). (98) 

Similarly, 

S [1] = -logz(A»). 

In the present context, we have 

S[/] = -(lIll)A(x),t), 

and 

s[l] = -(lIll)A(p),t). 

(99) 

(100) 

(101) 

Thus the entropy at time t is proportional to the action evalu­
ated at the average position (x). All this is, of course, remi­
niscent of the Feynman path integral approach to quantum 
mechanics. Here, however, we have outlined a possible ex­
tension of classical mechanics where the latter describes the 
motion of the averages (x) and (p). One can work out the 
details of such an extension. For example, for a free particle 
(starting at the origin Xo = 0 at time to = 0) one finds 

..1x = (lit Im)I/2, ..1 p = (mllit )1/2 , (102) 

and hence 

..1v = ..1xlt = (lIm)..1 p. (103) 

Th us, the mass of a free particle plays the role of momentum 
fluctuation, in analogy to the role of heat capacity as the 
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energy fluctuation. The analogy between Eqs. (84) and (103) 
is also striking. 
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APPENDIX: AN INEQUALITY FOR POSITIVE DEFINITE 
SYMMETRIC MATRICES 

In this appendix the following inequality is proved. Any 
positive definite symmetric matrix A satisfies 

Aii(A -1)ii>l, (AI) 

with equality if and only if A is diagonal. Obviously, we ex­
pect the result to be well known, but we were not able to trace 
it in the literature. The present proof is due to Shalitin. 14 

Let p be an orthogonal matrix diagonalizing A, that is, 

pAP = a, A =pap, A -I =pa-Ip, (A2) 

where a is diagonal. Then 

~ 2 2 1 (-I -I) = £".PjiPki - ajak + akaj . 
j,k 2 

(A3) 

But, for any positive x, 

x + lIx>2, (A4) 

with equality if and only if x = 1. Hence 

= IPijPji IPik hi = 1 . (AS) 
j k 

If A is diagonal (AA -1)ii =AiiA -Iii = 1. Conversely, if 
equality holds in (AS) then A is diagonal. In order to see this, 
we may assume that the matrix p groups together equal 
eigenvalues of A. That is, the diagonal matrix a consists of 
diagonal scalar submatrices a, /3, ... , with a i = aj , /3i = /3j, 
etc. Let p be decomposed into two parts 

p=II+II', (A6) 

where II consists of square sub matrices IIa, IIp, ... along the 
main diagonal corresponding to a, /3, ... , and II / is the rest. If 
II' #0 then (A3) may be rewritten as 

AiiA -Iii = 1 = ~p~ ( I pii 
) k,Ok = aj 
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= 2:); LP~i = 1 , (A7) 
j k 

where the strict inequality 

!(ajak- 1 + akaj - 1) > 1, for Ok #OJ (AS) 

has been used. Hence, fl I = 0 and each submatrix fly satis­
fies 

lryyfly =y. 

By Eq. (A2) we then have 

A=o. 

(A9) 

(AW) 
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Decoupling of a system of partial difference equations with constant 
coefficients and application 

Alain J. Phares 
Department of Physics, Villanova University, Villanova, Pennsylvania 19085 

(Received 7 December 1983; accepted for publication 15 March 1984) 

Consider D multi-variable functions, Aj(n),} = 1 to D, where n stands for the evaluation point in 
the associated multi-dimensional space of coordinates (n l,n2,. •• ). Let us assume that theA j'S satisfy 
a system of D linearly coupled finite difference equations: the value of each function A; at the 
evaluation point n is given as a linear combination of the values of this function and others at 
shifted evaluation points. By introducing D suitable generating functions, Gj ,} = 1 to D, one is 
able to replace the D coupled difference equations by a system of D linear equations where the Gj's 
play the role of the D unknowns. After solving this new system of equations, it is then possible to 
construct a difference equation for each of the A j 's relating the value of A; at the evaluation point n 
to the values of A; itself at shifted arguments. The solution of such a decoupled equation can then 
be handled using the multi-dimensional combinatorics function technique. 

PACS numbers: 02.50. + s, 05.50. + q 

I. INTRODUCTION 

A one-dimensional multi-term linear recurrence rela­
tion is a difference equation relating the value of a function 
A (n) at point n to the values of the same function at shifted 
arguments (n - n d, (n - n2), etc., i.e., 

A (n) =fl(n)A (n - n l ) + f2(n)A (n - n2 ) 

+ ... + I(n), nEfll. (1 ) 

fI(n),fz(n) etc. andl (n) are given coefficients that may depend 
on the evaluation point n. If I (n) = 0, the equation is said to 
be homogeneous, and if l(n)#O, then the equation is said to 
be inhomogeneous. Equation (1) does not allow one to com­
pletely calculate A (n), certain initial conditions have to be 
specified such as 

(2) 

fll stands for the region of the one-dimensional space, where 
Eq. (1) holds and / represents the set of "boundary" points 
I nOj J. The solution ofEq. (1) satisfying the boundary condi­
tions (2) has been obtained in a series of articles introducing 
for the first time the so-called "combinatorics functions."1 
Further developments then showed the generalization of 
this work to multi-dimensional multi-term linear difference 
equations, 2 

A (n) = fl(n)A (n - nd + f2(n)A (n - n2) 

+ ... + I(n), nEfll, 

A (Ooj) = ,1,;, Oo;E1', 

(3) 

(4) 

where n now represents a point in a multi-dimensional space. 
Applications of the one-dimensional and multi-dimensional 
combinatorics function technique (CFT) have shown the 
flexibility and advantages of the new methodology.3 More 
recently, the author showed that further extension of the 
CFT method is possible and leads to the solutions of a system 
of linearly coupled difference equations.4 However, the ma­
trix method proposed for the coupled system,4 although 
technically feasible, presents some difficulties due to the fact 
that matrices generally do not commute. It is for this reason 
that a new approach has been developed to handle the special 

case of linearly coupled difference equations with constant 
coefficients. 

II. LINEARLY COUPLED DIFFERENCE EQUATIONS 

A system of linearly coupled difference equations is a 
set of equations that relate a set of D multi-variable functions 
Aj(n),} = 1 to D. The value of a given function Aj(n) at the 
evaluation point n, is related to the values of A. itself as well 
as other A/s at various shifted arguments, na~ely, 

D 

A;(n) = L L cijkAj(n - nijd + I;, nEfll. (5) 
j= I k 

A set of boundary conditions is given by 

A;(Oo/) =,1,i/; no/E1'. (6) 

In general, Cijk and Ij are known coefficients that may de­
pend on the evaluation point n. In this article we will assume 
these coefficients to be constant. 

At this point, it is convenient to give an example of such 
a system of equations. This example is relevant to the prob­
lem discussed by Hock and McQuistan5 on "the occupation 
statistics for indistinguishable dumbbells on a 2 X 2 X N lat­
tice space." Figure 1 shows such a lattice having N portions 
of 2 X 2 compartments. One refers to the complete lattice as 
AI' One callsA 2 the lattice whose last 2X2 array is missing 
one compartment. There are two topologically distinct lat­
tices missing two compartments in their last 2 X 2 array; we 
refer to these lattices asA3 andA4 as shown in Fig. 2. Finally, 
As is the lattice whose last 2 X 2 array is missing three com­
partments. For} = 1 to 5, Aj(q,N) represents the total num­
ber of arrangements of q dumbbells on the Aj lattice having 
N arrays. Hock and McQuistan were able to derive the fol­
lowing coupled recurrence relations5 : 

AI(q,N) = A I (q,N - 1) + 4A I(q - I,N - 1) 

+ 2AM - 2,N - 1) +AI(q - 4,N - 2) 

+ 4A 2(q - I,N - 1) + 8A 2(q - 2,N - 1) 

+ 4A 3(q - 2,N - 1) + 4A 3(q - 3,N - 1) 

+ 2A4(q - 2,N - 1) + 4As(q - 3,N - 1), 
(7a) 
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T 
2. 

1 

FIG. 1. 2 X 2 X N lattice space. 

A2(q,N) =A 1(q,N - 1) + 2AM -l,N -1) 

+ 3A 2(q - 1,N - 1) + 2A 2(q - 2,N - 1) 

+ 2A3(q - 2,N - 1) +A4(q - 2,N - 1) 

+ As(q - 3,N - 1), (7b) 

A3(q,N) = A 1 (q,N - 1) +Al(q - 1,N - 1) 

+ 2A 2(q - I,N - 1) +A3(q - 2,N - I),(7c) 

A4(q,N) =AI(q,N - 1) + 2A 2(q - I,N - 1) 

+A4(q - 2,N - 1), (7d) 

As(q,N) =AI(q,N - 1) +A2(q - I,N - 1). (7e) 

The region f!I1 for which these difference equations are satis­
fied is defined by 

f!I1 = [q non-negative integer 
N positive integer. 

The boundary conditions are specified by 

Aj(q,N)=O for q>2N>O, 

AI(O,O) = 1; Aj(O,O) = 0 for j=/= 1, 

(8) 

(9a) 

(9b) 

Aj(O,N) = 1 for N~ 1, (9c) 

Aj(q,N) = 0 for q and/or N negative integer. (9d) 

Region / is then easily identified from the above. Hock and 
McQuistan did not make use of these boundary conditions. 
We will propose a general method of solution valid in the 
general case, Eqs. (5) and (6), and which will enable us to 
recover the results of Hock and McQuistan in a much more 
efficient and straightforward way, while obtaining at the 
same time, new results with no extra work. 

III. GENERATING FUNCTION METHOD 

With every Aj(n) one associates a generating function 
Gj(X), 

E8 OJ 

o 

FIG. 2. We show here the last 2X2 array in the 2X2XN lattice. with no 
compartment (A d. one compartment (A 2 ). two compartments (A3 and A.). 
and three compartments (A,) missing. 

(10) 

where n l , n2, ••• run over the possible values of the coordi­
nates of point n such that nEf!I1. For compactness, we will use 
the notation 

(Xt = (XI)nl(X2t2 ... 

so that Eq. (10) becomes 

(11) 

Gj(X) = L Aj(n)(x)n. (12) 
DESf 

Combining Eqs. (5), (6), and (12), it is easy to show that 

D 

Gi(X) = L L Cijk(X(ijkGj(X) + Fi(X), (13) 
j~ I k 

where Fj(X) is a function of X that can be calculated in terms 
of the boundary values A. il and the inhomogeneous term Ii' 
Clearly, Eq. (13) is a system of D equations with D un­
knowns, Gj,j = 1 to D. This system can be written in the 
form 

f [Dij - L Cijk (Xtijk] Gj = Fi · (14) 
j= I k 

8ij is the usual Kronecker's delta. Let Mbe the D X D matrix 
defined by 

Mij = 8ij - LCijk(X)Dijk. (15) 
k 

Let G and F be the column matrices representing Gj and Fj, 
then Eq. (14) becomes 

MG=F, (16) 

and, solving for G, one finds 

G=M-IF. (17) 

TABLE I. Total number of arrangements of q dumbbells on the nontruncated 2 X 2 X N lattice (type A d. 

AM.N) 

~ 
0 2 3 4 5 6 7 8 

0 
1 4 2 
2 12 42 44 9 
3 20 142 440 588 288 32 
4 28 306 1672 4863 7416 5470 1620 121 
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TABLE II. Total number ofarrangements of q dumbbells on the truncated 2 X 2 X N lattice of type A 2• 

A 2(q,N) 

~ 
0 2 3 

0 0 
1 2 
2 9 21 11 

3 17 98 230 

4 25 238 1097 

We now apply the generating function method to the 
problem discussed by Hock and McQuistan. In this case, 

00 2N 

Gj(x,y) = L L Aj(q,N)xqyv. (18) 
N=Oq=O 

Here n is a point in a two-dimensional space of coordinates 
(q,N) and X stands for (x,y). Equation (14) specialized to this 
problem becomes 

[1 - y(1 + 4x + 2x2) - x 4y2]GI - 4xy(1 + 2x)G2 

- 4x2y(1 + x)G3 - 2x2yG4 - 4x3yG5 = 1, 
- y(1 + 2x)GI + (1 - 3xy - 2x2y)G2 

- 2x2yG3 - X2yG4 - X3yG5 = 0, 

- y(1 + x)GI - 2xyG2 + (1 - X2y)G3 = 0, 
- yGI - 2xyG2 + (1 - X2y)G4 = 0, 

=0. 

(19) 

The solution of this system of five linear equations with 
five unknowns is 

Gj = Nj(x,y)/D (x,y), 

where 

D(x,y) = 1 - y(1 + 7x + 6x2) 
- xy2(1 + 6x + 6x2 _ 7x3) 

+ 2x3y3( 1 + 5x + 13x2 + 4x3) 

_ X
5y4( 1 + 2x + 6x2 + 9x3

) 

_ X 8y5( 1 _ x + 2x2 ) + X 12y6, 

NI(x,y) = (1 - x2y)[ 1 - 3xy(1 + x) 
+ x3y2(X _ 3) + X6y3], 

N2(x,y) = (1 -x2y)[y(1 + 2x) 
+ x 2y2(2 + x) _ X

5y3] , 

N3(X,y) = [y(1 +x)NI + 2xyN2 ]1(1 _x2y), 

N 4(x,y) = [yNI + 2xyN2]1(1 - x2y), 

N 5(x,y) = yNI + xyN2• 

(20) 

(21) 

(22a) 

(22b) 

(22c) 

(22d) 

(22e) 

4 5 6 7 8 

206 50 
2574 2955 1445 208 

IV. DECOUPLING OF THE DIFFERENCE EQUATIONS 

The explicit expression of the generating function Gj (X) 
can be presented in the form 

Gj(X) = ~(X)lD (X), (23) 

where D (X) is the determinant of matrix M. As exhibited in 
Eq. (15), matrix element Mij is a finite polynomial. There­
fore, D (X) is also a finite polynomial. It is straightforward to 
show that 

(24) 

generates a multi-term difference equation involving Aj(n) 
only. Indeed, let 

(25) 
p 

The left-hand side of Eq. (24) becomes 

D (X)Gj(X) = L(xtpap L Aj(n)(X)D 
p DE9/' 

= L L apAj(n)(X)D + Dp. (26) 
DE9/' P 

The equivalence between the right-hand side ofEq. (23) and 
the right-hand side ofEq. (24) provides the difference equa­
tion for Aj(n). By relabeling n the combination n + np, one 
finds 

L L apAj(n - np)(X)D=~(X) (27) 
D p 

or 

LapAj(n - np) = Kj(n), (28) 
p 

where Kj(n) is an inhomogeneous term which comes from 
the expression of ~ (X); it is the coefficient of (X)D in the series 
expansion of ~(X). This completes the decoupling of our 
system of linearly coupled difference equations. 

TABLE III. Total number of arrangements of q dumbbells on the truncated 2 X 2 X N lattice of type A,. 

N'Z 
0 
1 
2 
3 
4 

0 

0 
1 
1 
1 
1 

1 
7 

15 
23 

2 

11 
73 

197 
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3 

3 
135 
793 

4 

86 
1561 

5 

12 
1423 

6 7 8 

506 44 
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TABLE IV. Total number of arrangements of q dumbbells on the truncated 2X2XN lattice of type A •. 

A.(q,N) 

0Z 0 2 3 

0 0 
1 1 
2 I 6 7 
3 14 61 92 
4 22 177 650 

For the purpose of illustration, let us apply our general 
method to the problem discussed by Hock and McQuistan. 
It is clear that a monomial X Yy'5 in the expression of D (x,y) 
generates a term A (q - y,N - 8). Since D (x,y) is the sum of 
20 monomials, then each oftheAj's satisfies a 20-term recur­
rence relation. It happens that, in this case, there is no inho­
mogeneous term. Identifying the left side with the right side 
ofEq. (24) settingj = 1, and taking for D (X) expression (21) 
and for N 1(X) expression (22a), one finds thatAI!q,N) should 
satisfy the initial values listed in Table I and the relation 

A 1(q,N) -A 1(q,N -1) -7A 1(q -l,N - 1) 

- 6AI!q - 2,N - 1) -Al(q - I,N - 2) 

- 6AI!q - 2,N - 2) - 6A 1(q - 3,N - 2) 

+ 7AI!q - 4,N - 2) + 2A 1(q - 3,N - 3) 

+ 10A 1(q - 4,N - 3) + 26A 1(q - 5,N - 3) 

+ 8A 1(q - 6,N - 3) -A1(q - 5,N - 4) 

- 2Al(q- 6,N - 4) - 6AI!q-7,N - 4) 

- 9A 1(q - 8,N - 4) -AI!q - 8,N - 5) 

+Al(q - 9,N - 5) - 2A 1(q -10,N - 5) 

+A 1(q - 12,N - 6) = O. (29) 

The initial values listed in Table I are precisely the val­
ues computed by Hock and McQuistan. s 

A result not previously obtained by Hock and McQuis­
tan is that A 2, A 3 , A 4 , and As all satisfy the same difference 
equation (29). However, these quantities do not have the 
same set of initial values. Since the method of obtaining the 
initial values for the A 's is the same for all the A's, we will 
drop the indices 1 to 5 on the G 's, the generating functions, 
and the A's. We write G (x,y) and D (x,y) in the form, 

4 5 6 7 8 

38 
1109 792 170 

'" 2N 

G(x,y) = L LA (q,N)xqyN, 
N=Oq=O 

D (x,y) = L L dijxyj, 
(30) 

i=Oj=O 

so that their product becomes 

1m jm 00 2N 

D(x,y)G(x,y) = L L L L dijA (q,N)xq+y+f. 
i=Oj=O N=O q=O 

(31) 

This product must be identical to the polynomial N (x,y) 
(here again we are dropping the index on function N pretty 
much the same way we did it for G and A ). N (x,y) is a polyno­
mial of the form 

(32) 

Coefficients dij and ek1 are immediately identified 
knowing the explicit expressions of D (x,y) and N (x ,y), respec­
tively. Since expansions (31) and (32) must be equivalent, one 
finds the condition 

L L dijA (q,N) = ek1 · (33) 
q+i=kN+j=1 

For k > km and!> 1m ,A (q,N)satisfiesthedifferenceequation 
(29) and Eq. (33) enables one to obtain the initial values listed 
in Tables II, III, IV, and V for AI> A 2 , A 3,A4 , and As, respec­
tively. 

v. CONCLUSION 

We have shown that any system of linearly coupled dif­
ference equations with constant coefficients can be decou­
pled by use of suitably chosen generating functions Gj(X). 
All functions Aj(n) are shown to satisfy the same decoupled 
difference equation with appropriate initial value condi-

TABLE V. Total number ofarrangements of q dumbbells on the truncated 2X2XN lattice of type As. 

A,(q,N) 

~ 0 2 3 4 5 6 7 8 

0 0 
1 1 
2 5 4 
3 13 51 65 20 
4 21 159 538 818 494 82 
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tions. Application of the general theory to a specific problem 
discussed by Hock and McQuistan has been successful and 
enables one to not only elegantly reproduce their results, but 
also obtain new results with no extra hardship. This is due to 
the fact that our theory shows that aIIAj(n)'s satisfy the same 
decoupled difference equation. 6 
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We investigate the statistical properties of a special branching point process. The initial process is 
assumed to be a homogeneous Poisson point process (HPP). The initiating events at each 
branching stage are carried forward to the following stage. In addition, each initiating event 
independently contributes a nonstationary Poisson point process (whose rate is a specified 
function) located at that point. The additional contributions from all points of a given stage 
constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the 
initiating point process at that stage. The process studied is a generalization of a Poisson 
branching process in which random time delays are permitted in the generation of events. 
Particular attention is given to the limit in which the number of branching stages is infinite while 
the average number of added events per event of the previous stage is infinitesimal. In the special 
case when the branching is instantaneous this limit of continuous branching corresponds to the 
well-known Yule-Furry process with an initial Poisson population. The Poisson branching point 
process provides a useful description for many problems in various scientific disciplines, such as 
the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers. 

PACS numbers: 02.50. + s, 29.70. - e, 94.40.Pa 

I. INTRODUCTION 

The theory of branching processes provides an impor­
tant set of mathematical tools which may be applied to many 
problems in modem physics. 1,2 These range from multiple 
atomic transitions to extensive air showers produced by cos­
mic rays. In many of the existing mathematical treatments of 
these problems, the branching is treated as an instantaneous 
effect. However, in most physical systems, a random time 
delay (or spatial dispersion) is inherent in the multiplication 
process, 

In a recent set of papers, we examined a special general­
ized branching process in which the multiplication of each 
event is Poisson and a random time delay is introduced at 
every stage. The first model that we analyzed3

-
5 is the two­

stage cascaded Poisson, in which each event of a primary 
Poisson point process produces a virtual inhomogeneous 
rate function which, in turn, generates a secondary Poisson 
point process. These secondary point processes are superim­
posed to form the final point process. In that model, primary 
events themselves are excluded from the final point pro­
cess.3

-
5 The description turns out to be that of a doubly sto­

chastic Poisson point process (DSPP), which we refer to as 
the shot-noise-driven process (SNDP). 3 The SNDP is also a 
special case of the Neyman-Scott cluster process. 3,5 Because 
of the great body of theoretical results available for the 
DSPP, our calculations for the statistical properties of the 
process turned out to be relatively straightforward. In an­
other version of this two-stage model, primary events are 
carried forward to the final process. 6 

The second system which we analyzed7 is an m-stage 
cascade of Poisson processes buffered by linear filters. Each 
filtered point process forms the input to the following stage, 

acting as a rate for a DSPP. This is equivalent to a cascaded 
SNDP. We obtained the counting and time statistics, as well 
as the autocovariance function. The results of that study are 
likely to find use in problems where a series of multiplicative 
effects occur. Examples are the behavior of photon and 
charged-particle detectors, the production of cosmic rays, 
and the transfer of neural information. 

In this paper, we consider a cascade model in which 
primary events are carried forward together with secondary 
events, to form the point process at the input to each succes­
sive stage. Since the primary and secondary events compris­
ing the union process at each stage are not independent,6 the 
solution is somewhat more difficult than for the cascaded 
Poisson case considered previously.7 The initial point pro­
cess is assumed to be a homogeneous Poisson process (HPP). 
The final process is itself homogeneous (stationary). This 
treatment should allow us to model a wide variety of phys­
ical phenomena in which particles produce more particles, 
and so on, with the original particles remaining. Our process 
may also be regarded as a special generalized branching pro­
cess,1 in which each event of the HPP produces an age-de­
pendent point process. However, our interest is in the union 
of the branching point processes rather than in the statistics 
of the number of events at a certain time (or place), as is the 
customary quantity of interest in age-dependent branching 
processes. 

Branching processes with properties such as age depen­
dence, random walk, and diffusion have been studied exten­
sively from a general theoretical point of view. 1 Few ofthe 
statistical properties are obtained in a form amenable to nu­
merical solution, however. The present work examines a rel­
atively simple process that describes branching with time 
delay. Thanks to the simplicity offered by the Poisson as-
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sumption, we can obtain explicit formulas for useful statisti­
cal properties that may be experimentally measured. Exam­
ples are the counting distribution, moments, and power 
spectral density, as we demonstrate. 

In Sec. II, we review the properties of a Poisson branch­
ing process in which the branching is instantaneous. This 
establishes the properties of the limiting situation, to which 
our process must converge when time delay is negligible. We 
also consider the limiting case when the number of branch­
ing stages approaches infinity while the average number of 
secondary events per primary event approaches zero. In the 
instantaneous multiplication case, this results in the Yule­
Furry process, 2 driven by HPP initial events. 

In Sec. III, we introduce time delay at each stage of 
branching and define the process formally. We provide ex­
pressions for the moment generating functional of the pro­
cess, from which we compute the moments, counting prob­
ability distribution, and autocorrelation function (or power 
spectral density). In Sec. IV, we discuss the important limit 
of the continuous branching point process with time delay, 
showing how it differs from the instantaneous continuous 
branching case. 

II. INSTANTANEOUS POISSON BRANCHING PROCESS 

This section is divided into three subsections. In Subsec. 
A, we briefly discuss the well-known general Galton-Wat­
son (GW) branching process. I In Subsec. B, a special Gal­
ton-Watson branching process, in which the multiplication 
is Poisson, is examined. The properties of a Poisson Galton­
Watson process, in which the initial number of events is itself 
Poisson, are examined in detail in Subsec. C. 

A. Galton-Watson branching process 

Let No,N1,N2, ••• be nonnegative integers denoting the 
successive random variables of a Markov chain, where N m 

denotes the size of the population of the mth generation of 
the branching process. The population N m + I at the 
{m + 1 )st generation is determined by the sum 

Nm 

Nm + l = I Z'!: (I ) 
k=1 

of N m independent, identically distributed (iid) random var­
iables Z '{',Z '{', ... ,Z 'jJ, each with probability distribution 

k = 0,1,2, .... (2) 

This determines the transition matrix of the Markov chain. 
It is assumed that No = 1. The chain is known as a Galton­
Watson (GW) process. 

The basic assumption is that each of the members of a 
generation branches independently and identically to gener­
ate the population of the following generation. The statisti­
cal properties of the random number N m may be determined 
from its probability generating function 

(3) 

which may be calculated by use of recursive equations. These 
are easily determined by using the iid assumption: 
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Go{z) =z, 

Gm+ dz) = Gm [Om{z)], m = 0,1, ... , 

where 
00 

Om{z) = I p'!: Zk 
k=O 

(4) 

(5) 

is the probability generating function of the random variable 
zm. 

B. POisson Galton-Watson process 

We now consider a special case of the G W process by 
taking 

{
o, k=O, 

p'!:= a~-Ie-am/{k_l)!, k=I,2, ... , (6) 

i.e., Z '!: obeys a shifted version of the Poisson distributionS of 
mean am' This signifies that each member of the mth genera­
tion survives and remains in the (m + 1 )st generation, add­
ing a cluster of offspring which is Poisson distributed with 
mean am' We shall call this special GW process the Poisson 
GW process (PGW). 

By substituting (6) in (5), we obtain 

Om{z)=zeam(Z-II, m=0,1,2,.... (7) 

Therefore, from (4), the probability generating function is 

Go{z) =Z, 

G () G [ am(Z-II] 
m+ I Z = m ze , m =0,1, .... 

C. Poisson Galton-Watson process with an Initial 
Poisson population 

(8) 

In this subsection, we define a process in which 
members of an initial population of random size No each 
independently generate identical PGW processes. The final 
process is the sum of these processes. Furthermore, we as­
sume that No is Poisson with mean a. 

The properties of this process may be obtained by re­
garding it as a shifted version of a special GW process in 
which No = 1, and the p'!: are given by 

Pk=ake-a/k!, k=O,I, ... , 
(9) 

k=O } 
k 

' m = 2,3, .... 
= 1,2, ... 

Thus NI = Z I is Poisson with mean a, and the branching to 
generations m = 2,3, ... occurs in accordance with a shifted 
Poisson law (in which no deaths occur) with parameters 
a 2,a3,· •• • This allows us to write the probability generating 
function for this special process as 

Go{z) =Z, 

G1{z) = ea(z-II, (1O) 

Gm + I (z) = Gm [zeam(z-II], m = 1,2, .... 

Because (10) forms the limiting case for the process we 
shall define in Sec. III, some of its important statistical prop­
erties will be provided in the following. All of these proper­
ties may be determined by using (10). 
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1. Moment generating function 

The moment generating function (mgt) 
Qm(s) = (exp( - sNm) may be obtained from the probabil­
ity generating function G m (z) by the use of 7 

Qm(s) = Gm(e- S
). (11 ) 

With the help oft 10) we can show that for a Poisson branch­
ing process, with homogeneous branching (i.e., a j = a), and 
with a Poisson initial population, 

Qm(s) = exp!a[Dm(s) -1] J, m>l, 

where 

Dm(s) = D,(s) exp {a 1-11 [Dj(s) - 11 } , 

D,(s) = e- S
• 

(12) 

For m = 1 and m = 2, we recover the mgfs for the Poisson 
and Thomas counting distributions, respectively.6,8,9 

2. Moments 

The moments of the count number N m may be obtained 
from (11). The mean and variance are 7 

m-I 

(Nm) =a II (1 +ak), m>2 
k=1 

and 
m-l m-l 

Var[Nm 1 =a I Ck II (1 +ar )2, 
k=O r=k+ I 

where 

Co = 1, 

CI=al , 

k-I 
Ck = a k I (1 + a r ), k>2. 

r= 1 

(13) 

(14) 

The count variance-to-mean ratio (Fano factor F) provides a 
suitable index for the degree of deviation from a Poisson 
counting process for which F = 1.9 We form this ratio with 
the help of(13) and (14): 

F = Var[Nm 1 
m (N

m
) 

= ~~ {ak [)X (1 + a r )] L:~~ 1(1 + a r )2]) 

XC!}>1 +ak)r
'

, 

where 

a O = 1, 
S 

II (.) = 1 for s < t . 
,.=1 

For homogeneous branching 

(15) 

(Nm}=a(l+a)m-" m>l, (16) 

Var[Nm 1 
=a(1 +a)m-2[(2+a)(1 +a)m-'-1], m>1,(17) 

Fm=[l/(I+a)][(2+a)(l+a)m-'-l], m>l. (18) 
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The results for the one- and two-stage cases are clearly iden­
tical to those for the Poisson and Thomas distributions, re­
spectively.6.9 

When the branching is homogeneous, the nth moment 
of N m may be determined from the mgf provided in (12). The 
result is the recurrence relation 

(N':.,+ I) = (Nm ) kto (~) (N':.,-k) 1~+ 1), m>2, (19) 

where 

11/,/ = 1 , 

llk+')= (_I)k D k + 1 

m (l+at-
' 

m , 

Dlk+ I) = Dk + a "" D(k-I) "" D(l+ I) 
k (k) m-I 

m m "'-I m £..i J' 
1=0 j= I 

DI:;/=I, 
D\k) = 1, k>l, 

(Nm ) =a(1 +a)m-I. 

3. Counting probability distribution 

The probability distribution Pm (n) of N m may be ob­
tained by differentiating the probability generating function 
Gm (Z),6 

1 an I Pm(n)=,-n Gm(z) . 
n. az z=O 

(20) 

Using (10) and (20), we obtain the recurrence relation for the 
homogeneous case, 

(21) 
n 

(n+1)Pm(n+1)=(Nm) IPm(n-k)J~+II, 
k=O 

where 

Jlk+ I) = (- l)k+ I E(k+ II 
m (1 + at - I k! m , 

k (k) m-I Elk+I)= ylkl+a "" Elk-II"" EI,l+11 
m m £"'/ m £",1' 

1=0 j= 1 

y~+I)=a ± (k) y~-Ilmil Ey+ll, 
1=0/ j=1 

y~) = exp {a '"i I [E jO) - 1]} , 
1=1 

E~) = 0 for all m> 1, all k>O, except (m,k) = (1,1), 

E\I) = - 1. 

In Fig. l(a), we present a graphical representation of the 
counting distribution Pm (n) versus the count number n for 
m = 2,3,4, and 10, with a = 0.5 and (N m) = 10. It is seen 
that the distribution for m = 10 approaches a o-function at 
the origin plus a relatively flat component, indicating very 
strong pulse clustering. In Fig. l(b), the case for a = 2.0 is 
shown. For both cases, it is clear that the variance of the 
counting distributions increases as the number of stages in­
creases. It is also apparent that the variance increases with 
increasing a, when m and (N m ) are fixed. The results for 
m = 2 are identical to those for the instantaneous Thomas 
process.6,9 
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4. Limit of continuous branching 

An important special case is one in which the number of 
branching stages approaches infinity, while the branching at 
each stage becomes infinitesimal. Let 
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rn-+oo , 

a-+O, 

with the product 

rna=x 

(22a) 

(22b) 

(22c) 

remaining finite. In this limit, we denote N m and Qm (s) as Nx 
and Q,,(s), respectively. The limit of(12) yields 

Q" (s) = exp! a [D" (s) - 1]) , (23a) 

where Dx(s) satisfies the differential equation 

~D,,(s) = D,,(s) [D,,(s) - 1] , (23b) ax 
and the initial condition is 

Do(S) = e- S
• (23c) 

Equation (23) has the solution 

Qx (s) = exp { - a 1 _ (~ = : = :)e - s} , (24) 

which is recognized as the moment generating function for 
the linear birth (Yule-Furry) process with a Poisson initial 
population. 10 

The nth ordinary moment of Nx is found to satisfy 

(N~+I)=(N,,) kto(~)(N~-k)I~+l), (25) 

where 

I~)= 1, 

( _ l)k+ le- 2x '" I k+ I 
I(k+I)= L ----.,. 

" l-e-" 1=1 (l-e- XV 
The mean count is 

(26) 

and the variance, which is readily obtained from (25), is given 
by 

(27a) 

The Fano factor therefore takes the particularly simple form 

F" = 2~ - 1 , (27b) 

which is, of course, also obtainable from (18). 
The probability (counting) distribution p,,(n) ofNx may 

be determined from (24) or from the limit of(21). The result is 

(28) 
n 

(n + l)px(n + 1) = (Nx) L px(n - k)J~+ I), 
k=O 

where 

J~+ I) = e- 2x(k + 1)(1- e-x)k. 

It is of interest to show the manner in which the distri­
bution Pm(n) approaches px(n) as m-+oo and a = x/m-+O. 
In Fig. 2, we plotthe counting distributions Pm (n) for m = 5, 
10, and 50, with fixed rna = x = 1.0. We also plot p,,(n) for 
x = 1.0, which is labeled Y -F (Yule-Furry). The final count 
mean of all distributions was kept constant at a value 
(N m) = 10 [this means that the initial mean a differs from 
curve to curve; see (16) and (26)]. The results demonstrate 
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that the limiting Yule-Furry distribution Px (n) is essentially 
attained (for this particular set of parameters) when m;;;,50. 

III. POISSON BRANCHING POINT PROCESS 

A. General branching point process 

A generalization of the sequence of integers N o,N I ,N2, ••• 

discussed in Sec. IIA is the sequence of point processes No(t ), 
NI (t ), N 2(t ), .... Events now have times associated with them. 
The variable N m (t ) represents the numbers of events of the 
mth generation which occur in the time interval ( - oo,t]. It 
is again assumed that the sequence N m (t) is Markov, i.e., 
given the point process N m (t), the statistics of the point pro­
cess N m + I (t ) are completely defined. The transition from 
the process N m (t ) is obtained as follows. Each event of a 
given generation independently generates a point process. 
These point processes are statistically identical when each is 
measured from the occurrence time of the event that gener­
ated it. The following generation is comprised of the union of 
those point processes. For example, if the process N m (t) has 
occurrence (jump) times t;n, t~, t'k, ... , thektheventofthe 
mth generation, which occurs at time t 'k, generates a point 
process Z ;;Z(t - t 'k). The point processes Z ;n(t), Z ~(t ), ... 
are iid. The process N m + I (t ) is the union of the processes 
Z'k(t - t'k), k = 1,2, ... ; i.e., 

Nmlt) 

N m + Ilt) = L Z 'k(t - t 'k) . 
k~1 
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The general branching point process No(t), NI(t ), ... is com­
pletely defined once the point processes Z mIt ) are defined 
for m = 0,1, .... 

B. Poisson branching point process 

We shall call a general branching point process Poisson 
if Z m(t) is the union of a Poisson point process of rate hm (t), 
with a process u(t) [u(t) = 0, t < 0; u(t) = 1, t;;;,O] containing 
only one count at t = 0. The initial process No(t ) also con­
tains a single event at t = 0, i.e., No(t) = u(t). 

C. Poisson branching pOint process driven by an initial 
Poisson pOint process 

Here we assume that the 1st generation NI(t) is de­
scribed by an HPP counting process of rate ft. Subsequent 
branching follows a Poisson branching point process as de­
scribed in Sec. IIIB. Because of the stationarity of the initial 
generation NI (t ), the point processes of subsequent genera­
tions will remain stationary. This process shall be referred to 
as the Poisson-driven Poisson branching point process. 

To understand the nature of the formation of this pro­
cess, and its possible applicability to physical systems, we 
can think of it schematically as a cascade of systems T m 

operating on random point signals. Consider an operator P 
representing a Poisson point generator that operates on a 
function X (t ) to produce a sequence of impulses 
dN (t) = LkO(t - tk ); dN (t) represents a Poisson point pro­
cess of rate X (t). Consider also a unit system designated 
hm (t), representing a time-invariant linear system of impulse 
response hm (t), that operates on the signal LkO(t - tk ) to 
produce the signal Lkhm (t - tk)' The functions hm (t) are as­
sumed nonnegative. 

The Poisson branching point process with an initial 
Poisson popUlation is formed as follows. The first generation 
dNI(t) is a homogeneous set of Poisson impulses of rate ft as 
shown in Fig. 3(a). This signal is modified by the system TI to 
produce a set of random impulses dN2(t ) representing the 
second generation, and so on, as indicated in the figure. The 
system T m' which is shown in Fig. 3(b), filters the stream of 
impulses provided to its input with a linear time-invariant 
filter of impulse response hm (t). The filtered signalXm (t) is a 
random continuous process, which in tum acts as the sto­
chastic rate of a DSPP, represented by the set of impulses 
dM m (t). The union of this set of impulses with the input set 
dN m (t ) constitutes the final output set of impulses 
dN m + I (t). [Figure 3(c) will be discussed subsequently.] 

We now proceed to determine the statistical properties 
of the above-described Poisson-driven Poisson branching 
point process. The quantities we derive in this section in­
clude: (i) the moment generating functional for the process 
N m (t ); (ii) the multifold and singlefold moment generating 
functions for the numbers of counts in L intervals 
[tj,tj + 1j ], j = 1,2, .. ,L; (iii) the moments of the number of 
countsNm (t) in the interval [O,T]; (iv) the countingprobabil­
ity distribution for N m (T) in [0, T]; and (v) the correlation 
function and power spectral density. 

Matsuo, Teich, and Saleh 2178 



                                                                                                                                    

dN1Ct) d~J2Ct) &Jlt) &.mCt) 

r---'H~KD ... ~ Tm - I ~--fJ~ D 
I 

(a) 

&J Ct) 
m 

(b) 

d~J C t) 
m 

(c) 

dIY1CtF-em (d , __ -,m m+l 

+ 

L----_~ i ' 

m m+ 

c-------<:+ + 
CH'lCt)FiJ l(t) 

L-________ ~ 

T 
I 
m 

FIG. 3. (a) Schematic representation for the m-stage Poisson branching 
process excited by a homogeneous Poisson process with rate ft. P represents 
a Poisson point process generator whereas T m represents a random point 
process transformation operator. (b) Point process transformation unit cell 
for each stage. The box hm (t) represents the impulse-response function for a 
time-invariant linear filter, and P is a Poisson point process generator. (c) 
Equivalent unit cell useful for calculating the count mean and variance. 
W m (t) is a stationary, zero-mean, white process. 

1. Moment generating functional 

The moment generating functional associated with a 
Poisson-driven Poisson branching point process N m (t ), at 
the mth stage, is defined by the expectation 

(29) 

It can be shown6
•
7 that Lm (s) satisfies the following recur­

rence relation: 

Lm(s) = (exp [- J: "" !s(t) 

- hm~ d - t)*[e~s(t) - 1] l dNm~ dtJ]) 
=Lm~1 !s(t)-hm~d-t)*[e~s(t)-lll ,(30) 

where the symbol * indicates convolution. The moment gen­
erating functional for the first stage is 

LI(s) = exp {Jl J: "" [e~slt) - 1] dt} . (31) 

For convenience, we define the following operator: 

qm(') = -(.) + f""" hm (u-t)[exP!-(·)l-l]du.(32) 

Combining (29)-(32) then yields 
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Lm (s) = exp {Jl F"" "" [exp ! qt\q2·"qm ~ I (s(t ))) l - 1] dt } , 

m>2, (33) 

For the case of identical impulse response functions at 
each stage [h m (t) = h (t) for all m], (33) can be expressed as 

Lm(S)=exP{Jl J:"" [Dm(s,t)-l]dt}, m>l, (34) 

where 

Dm(S,t)=Dt(S,t)exP{h(-t)* ;~tt [Dj(S,t)-I]}, 

Dt(s,t) = e~slt), 

2. Multifold and sing/efo/d moment generating function 

The L-fold moment generating function for the 
numbers of counts in the intervals [tj,tj + Tj] , 
j = 1,2,oo.,L, can be obtained from the moment generating 
functional Lm (s) by the substitution 

s(t) = svt(t) , (35) 

where sand v(t) are vectors defined by 

v(t) = (v t(t),v2(t),oo"vL (t)), 

{
I, tj<,t<,tj+Tj, 

v(t) = 
J 0, otherwise, j = 1,2,3,oo"L . 

The symbol t indicates vector transposition, This results in 

QI(S) = exp {Jl {>O"" [exp ! - svt(t II - 1] dt} , 

Qm (s) = exp {Jl I'O "" [exp ! QI(Q2(Q3,,,qm ~ dsvt(t)))) l 

- 1] dt}, m>2. 

For identical branching, it follows that 

Qm(s)=exP{Jl F"""" [Dm(S,t)-I]dt}, m>l, 

where 

(36) 

(37) 

Dm (s,t) = DI(s,t) exp { h ( - t)* JI
I 

[Dj(s,t) - 1] } , 

DI(s,t) = exp { - }tl Sj Vj(t)} , 

Equation (37) will be used to determine the correlation func­
tion and power spectral density for the process, 

The statistical properties of N m (T), the number of 
counts in an interval [O,T] at the mth stage, may be deter­
mined from the singlefold moment generating function, 
which is readily obtained from (36) by substituting L = 1: 

QI(S) = exp {Jl I'''"" [exp! - sv(t II - 1] dt} , 

Qm (s) = exp {Jl L"" "" [exp ! Qt!q2(Q3'''Qm ~ dsv(t)))) l 

- 1] dt }, m>2. 
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This recurrence relation is difficult to use unless the branch­
ing stages are identical (homogeneous branching), in which 
case it reduces to 

Qm(s)=exp{,u roooo [Dm(S,t)-l)dt}, m>I,(39) 

with 

Dm(s,t) = DI(s,t) exp {h ( - t). ~II [Dj(s,t) - I]} , 
DI(s,t) = e-Sv(I) , 

{
I, O<.t<.T, 

vItI = 0, otherwise. 

3. Moments 

The nth ordinary moment of N m (T) follows directly 
from the singlefold mgf by means of the relation 11 

(N;:'(T)=(-lr~Qm(S)1 . 
as" s=o 

(40) 

Using (39) and (40), the recurrence relation for the moments 
(in the special case of homogeneous branching) becomes 

(N;:,+I(T) 

= (Nm(T) kto (~) (N;:,-k(T) 1~+ I), m>2, (41) 

where 

1t;,)= I, 

1(k+I)= I foo D(k+I)(t)dt 
m T(l + a)m-I _ 00 m , 

D~+ I)(t) = v(t)D~)(t) + Ito e) D~-I)(t) 

x [ h ( - t ):J.II D Y + I)(t)] , 

D~)(t) = I for all t, 

D~k)=V(t), k>l. 

This should be compared with the expression for the instan­
taneous case given in (19). 

For homogeneous branching, the mean number of 
counts is 

(Nm(T) = (N:"(T) =,uT(1 +at- I
, 

and the variance of N m (T) is 

with 

12 = 1 foo D(2)(t)dt, 
m T(I +a)m-I -00 m 

m-I 

D~)(t) = {Dt;,)(tW + h (- t). L Dj2)(t) , 
j=l 

m-I 

D t;,)(t ) = V(t) + h ( - t). L D Y)(t ) , 
j=l 

D\I)(t) = V(t). 
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(42) 

(43) 

In the limit of long counting times 

Var[Nm ] =,uT(1 +at- 2 [(2+a)(1 +at-I-I], (44) 

in accord with (17) for instantaneous branching. Though 
higher statistical properties are difficult to compute for non­
homogeneous branching, the count mean and variance can 
be obtained. 

For this purpose, we consider the representation pro­
vided in Fig. 3(c), where W m (t ) is a stationary, zero-mean, 
white random process, with a cross-correlation function giv­
en by 

R w, W, (-1") = (Wi(t + 7) Jfj (t ) = (Xj(t) 1/28(t)<5". (45) 

8(t) and 8" are the Dirac and Kronecker delta functions, 
respectively. The system in Fig. 3(c) turns out to be identical­
ly equivalent to the one in Fig. 3(b) as far as computation of 
the first and second moments are concerned. 7,12.13 A 
straightforward calculation provides 

m-I 

(Nm(T) =,uT IT (I + ak)' m>2 
k=1 

and 

Var[ Nm(T)] 

=,u ~~ Ck f~T(T-171) 

where 

Co = 1, 

C I = I, 

m-I 

x • [8(7) + hr(7) + hr( - 7) + gr(7)] d7, 
r=k+1 

m>2, 

k-I 
Ck=ak IT (I+ar), k>2. 

r= 1 

a r = f: 00 hr(t) dt , 

gr(7) = hr(7).h r( - 7) , 
j 

•. [8(7) + hr(7) + hr( - 7) + gr(7)] = 8(7) for j <i . 
r=l 

(46) 

(47) 

The symbol .k = 1 indicates n-fold convolution. The Fano 
factor is therefore 

Fm(T) = [)J: (I + a k )] -I :~~ Ck f~ T(I - Ii) 
m-I 

X • [8(7) + hr(7) + hr( - 7) + gr(7)] d7, 
r=k+1 

m>2. (48) 

When all aj are identical and equal to a, (46) and (47) reduce 
to (42) and (43). respectively. In the limit oflong counting 
times, the process is effectively instantaneous and the above 
expressions for the mean, variance. and Fano factor become 
(13), (14). and (IS), with a = ,uT, respectively. In the special 
case m = 2, (46)-(48) reproduce the previously obtained re­
sults for the Thomas point process. 6 

Because ofthe importance of the Fano factor as a sim­
ple measure characterizing the departure of a process from 
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the HPP, we carry out a parametric study of its dependence 
in our branching process. For simplicity, we assume that the 
impulse response functions hm (t) are identical at each stage, 
and have the simple exponential form 

{
(2alrp )exp( - 2t Irp) , t>O , 

hIt) = 
0, t<O. 

(49) 

Here rpl2 is the characteristic decay time of the filter and a 
is the area under the function. 

In Fig. 4, we plot the Fano factor Fm(T) versus the 
number of stages m, with 2T Irp and a as parameters. All of 
the curves are monotonically increasing functions of m (as 
are the underlying mean and variance curves). This is to be 
contrasted with the results for the cascaded Poisson process 
that we studied earlier/ in which the mean and variance 
decay with increasing m if a < 1. The distinction arises be­
cause of the presence of the feed-forward path [shown in Fig. 
3(b)], whch distinguishes the present model as a branching 
process, rather than as a simple cascade of stages. For 
T Irp > 1, the curves will obey (18), which provides essential­
ly exponential growth (straight-line behavior on a logarith­
mic ordinate). For T Irp.( 1, the particlelike clusters ofthe 
points in the process are chopped apart by the small sam­
pling time, leading to the independence that is characteristic 
of the HPP. 6 Indeed, as the curves for 2T Irp = 0.01 show, 
Fm(T) remains essentially constant at unity, up to four 
stages. The small residual clustering is amplified as m in­
creases above this value. Increasing values of a, of course, 
correspond to increased clustering. 
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4. Counting probability distribution 

The counting probability distribution function of 
Nm(T)can be derived byusing(II), (20), and (38) from which 
it follows that 

Pm (0) = exp {Il L"""" [E~)(t) -1] dt}, (50) 

n 

(n + l)Pm(n + 1) = (Nm(T) L Pm(n - k)J<:,+ I), 

k=O 

where 

Jlk+I)= (_I)k+1 f"" EIk+I)(t)dt, 
m T(l+a)m-lk! _"" m 

E<:,+ I)(t) = E~)y<:,l(t) 

+ Ito e) E<:,-/l(t)h (- t). 1-11 Ey+ Il(t), 

y<:,+ Il(t) = ± (k) y<:,-/lh (_ t). mil EY+ Il(t), 
1=0 / j=1 

y~l(t ) = exp {h ( - t). 1-11 [E J01(t ) - 1] } , 

{

a, 
EI01(t) _ { m-I } 

m - exp h ( - t )* j~1 [Ej(t) - 1] , otherwise, 

E~OI(t) = {a, O<t<T, 
1, otherwise, 

111( ) _ { - 1. O<t<T EI t - a , otherwise, 

E!(l(t) = a for all t, k>2. 

Equation (50) reduces to (21) in the limit T Irp > 1. As T Irp 
is reduced, Fm(T) will decrease (see Fig. 4), and the counting 
distributions will narrow. The transition in Pm (n) vs n will 
not be unlike that demonstrated for the cascaded Poisson 
process (see Ref. 7, Fig. 8). 

5. Autocorrelation function and power spectral density 

In this subsection, we derive the autocorrelation func­
tion and the power spectral density for the Poisson branch­
ing point process. The autocorrelation function r m (r) is de­
fined as 

rm(r) = lim _1-z (..::1Nm(t~Nm(t+r), (51) 
Ar->O (..::1t) 

where the quantity ..::1N m (t ) represents the number of counts 
in the time interval [t,t +..::1t], at the mth stage. The equation 
for (..::1N m (t)..::1N m (t + r) may be obtained from (37) by sub­
stituting 

L=2, 

{
I, O..;to;;;:..::1t, 

vl(t) = o , otherwise , 

{
I, r<t<r+..::1t, 

vz(t) = o , otherwise . 

Differentiating (37) with respect to SI and S2' substituting 
SI = S2 = 0, and letting ..::1t-o leads to (see Appendix) 
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rm(7) = {,u(I + at-
I J2 + ,u f: '" Yrn(W) ejWT ~:, (52a) 

where 

Yrn (w) = 11 + H(w)1 2(m - I) + a(I + aim - 2 

X 1- [11 +H(wW/(I +a)]m-I (52b) 
1 - 11 + H(wW/(I + a) 

H (w) is the Fourier transform ofh (t). Substituting 7 = o into 
the second term of (52a) yields the variance 

which represents the power fluctuations of the process 
dN m (t ) in the infinitesimal duration .J t. 

(53) 

The power spectral density Sm (w) is defined as the Four­
ier transform of the autocorrelation function r m (7), which is 
clearly 

Sm (w) = 217" { Jl(I + at - I J 28(w) + Jl Y m (w) . (54) 

The first term of (54) represents the dc power of the process 
dN m (t ), whereas the second term represents the frequency 
distribution of the ac power, which depends on the shape of 
the impulse response function h (t) through H (w). 

The autocorrelation function between the number of 
counts in the interval T, separated by a time delay 7, is de­
fined as 

Rm(7) = ([Nm(t + T) - Nm(t)] 

X [Nm(t + T + 7) - Nm{t + 7)] > , (55) 

which can be easily obtained from (52a) by means of 

Rm(7) = iT iTrm(tl-t2+7)dtldt2' 

Substituting (52a) into (56) gives rise to 

Rm(7) = {,uT(I +at- IJ2 

where 

<PT(W) = T [sin(wT /2)/(wT /2W . 

(56) 

(57a) 

(57b) 

Substituting 7 = 0 into the second term of (57a) leads to the 
variance of the counting process, 

(58) 

which is the frequency-domain representation of (43). The 
power spectral density for the counts is easily obtained by 
taking the Fourier transform of (57a), which provides 

Sm(w) = 217" {JlT(l + aim -IJ 28(w) + JlTYm(W)<PT(W). (59) 

IV. POISSON BRANCHING POINT PROCESS IN THE 
LIMIT OF CONTINUOUS BRANCHING 

A. Introduction 

In this section we investigate properties of the Poisson 
branching point process in the limit of an infinite number of 
branching stages, when the branching at each stage is infini­
tesimal. Thus we allow 
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m-+oo , 

a-+O, 

with the product 

ma=x 

(22a) 

(22b) 

(22c) 

remaining finite. In this limit we replace the discrete index 
m, which has been used throughout Sec. III to indicate the 
branching stage number, with the continuous index x. Thus 
L m, Qm' Nm, .. · become Lx , Qx, Nx, ... , respectively. Fur­
thermore we define a normalized impulse response function 
ho(t) such that 

h (t) = aho(t) (60) 

and 

f: '" ho(t) dt = 1 . 

By applying this limit to the expression derived in Sec. III, 
we obtain a number of results that form a simple generaliza­
tion of the Yule-Furry process. Their application to the gen­
eration of cosmic ray showers is likely to be useful. 

B. Results 

Weare able to obtain results for the moment generating 
functional and moment generating function in the case of 
instantaneous branching, when the initial process is Poisson. 
These are, of course, identical to those for the Poisson-driven 
Yule-Furry process, as provided in Sec. II C. General re­
sults, with arbitrary time dynamics, have been derived for 
the count mean, variance, and Fano factor, and for the auto­
correlation function and power spectral density of the point 
process. It will be evident in the following that the count 
mean and variance depend critically on m. The results below 
should be compared with those provided in Secs. II C and 
III C. 

1. Moment generating functional 

The moment generating functional (34) becomes 

Lx(s) = exp {,u L"'", [Dx(s,t) - 1] dt} , (61a) 

where Dx (s,t) satisfies the nonlinear integro-differential 
functional equation 

~Dx(s,t) = Dx(s,t) {hoi -t)*[Dx(s,t) -1] J, (61b) ax 
with the initial condition 

Do(s,t) = e-S(t). (61c) 

We are unable to obtain a general solution to (61 b). However, 
in the simple special case where 

ho(t) = 8(t ) , (62) 

(6lb) can be shown to have the solution 
e-xe-s(t) 

D (st)=-----~ 
x' 1 _ (1 _ e - X)e - s(t) 

(63) 

The moment generating functional is then 

{ f'" l_e-s(t) } 

Lx(s)=exp -Jl _",I_(I_e- X )e- S(t)dt . (64) 
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2. Moment generating function 

The moment generating function Qx (s) of the random 
variable Nx(T) may be obtained from the moment generat­
ing functional Lx (x) by settings(t) = sv(t). Equation (6lb) is 
then a nonlinear integro-differential equation which is diffi­
cult to solve. In the special case of instantaneous branching, 
we can use (64) to obtain 

s =ex - T , { 
l-e- S

} 

Qx ( ) p /-L 1 _ (1 _ e - X) e - S (65) 

which is identical to (24) with a = /-L T, as it should be. Equa­
tions (24) and (65) are identified as the moment generating 
function of a Yule-Furry process driven by a homogeneous 
Poisson point process, as mentioned above. 

3. Moments 

It is possible to obtain expressions for the mean and 
variance of N x (T) for an arbitrary impulse response function 
ho(t). Applying the limits of (22) on (42) leads to 

(66) 

Note that (66) is identical to (26) with a = /-LT. A similar 
operation on (52b) yields 

m~", 

= [H(w) +H( _w)]~[H("'I+H(-"'II_ eX 

H(w) +H( -w) - 1 
(67) 

so that the count variance is [see (58)] 

(68) 

HereH (w) is the Fourier transform of holt ) (the transfer func­
tion of the filtering system), H ( - w) is the complex conju­
gate of H (w), and the function cPT(w) is given in (57b). Using 
Eqs. (66) and (68), the Fano factor becomes 

Fx(T) = J: '" cPT(w) 

[H(w) + H ( - w)] ex[H("'1 + HI -"'1- II - 1 dw 
x~~~--~--~---------------

H(w)+H(-w)-l 21T 
(69) 

Forthecaseofinstantaneousmultiplication,H(w) = 1 for all 
w so that (68) and (69) reduce to the Poisson-driven Yule­
Furry results 

(70) 

and 

Fx = 2~ - 1 , (71) 

respectively. Of course, (70) and (71) are then identical with 
(27a) and (27b) with a = /-LT. 

To assess the effects of the characteristic decay time Tp 
of the filter ho(t) on the fluctuation properties of the counting 
process Nx (T), we consider a simple example. We make use 
of the ideal low-pass filter transfer function 

2183 

{
I, Iwl<wc , 

H(w) = o , otherwise, 
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(72) 

where wJ2 = lhp • It can be shown that (69) then leads to 

Fx = [2ex -lJ S(Thp)+ [l-S(Thp)] ' (73a) 

where 

and 

S (j3) = (2/1T) Sit P /2) - (4/P)[ 1 - cost P /2)] (73b) 

Si(P) = ifJ 
sin(y) dy. 

o y 
(73c) 

In Fig. 5 we plot the Fano factor Fx(T) as a function of 
the branching parameter x, with the ratio P = T hp as a 
parameter. In the limit T>Tp' S (T hp)-+I, and 

Fx = 2~ - 1 for T>Tp , (73d) 

in accord with the (instantaneous) results presented in (71). 
In the opposite limit (T<Tp)' SIT h p)-+2T hp, corre­
sponding to a reduced Fano factor 

Fx = [~- 1 ](2T hpj + 1 - (2T hpj for T<Tp. (74) 

It is apparent from (74) and from Fig. 5 that as T hp de­
creases, the Fano factor, and therefore the degree offluctu· 
ation, decreases. The reason for this, once again, is the cut­
ting apart of the particlelike clusters of multiplied events. 

4. Autocorrelation function and power spectral density 

The autocorrelation function and power spectral den­
sity for the process dNx (t ) may be determined by taking the 
limit of (52a) and (54), respectively. The results are 

A 
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FIG. 5. Fano factor Fx(T) as a function of the branching parameter x, with 
T ITp as a parameter. In this example of continuous branching, the time 
dependence of the process is represented by an impulse-response function 
whose Fourier transform is an ideal low-pass filter. 
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(75) 

and 
Sx (cu) = 21T,u2e2x8(w) +,u Yx (w) , (76) 

where Yx(w) is given by (67). 
The autocorrelation function of the counts N x (T) for 

the infinite branching case is obtained from (75) by using (56). 
This provides 

22x J- . ~ Rx(1") = (,uT) e +,uT Yx(W)CPT(W) e,"I7·_. 
- _ 21T 

(77) 

The power spectral density in this case is 

Sx (w) = 21T( ,uT)2e2X8(w) + ,uTYx (W)CPT(W) , (78) 

corresponding to (59). 
In Fig. 6, we present the power spectral density for the 

Poisson branching point process Sm (W1"p) versus normalized 
frequency W1"p [see (54) and (76)] with m as a parameter. For 
the purposes of illustration, we have chosen an exponential 
impulse response function [see (49)] and ignored the delta 
function at W1"p = O. The product ma = x was maintained 
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FIG. 6. Power spectral density for the Poisson branching point process 
Sm(WTp) vs normalized frequency WTp ' with m as a parameter. For the pur­
poses of this illustration, we have chosen an exponential impulse response 
function, and eliminated the delta function at WTp = O. The driving rate 
Jl = (1 + a) - m = (1 + 11m) - m in all cases. (a) ma = x = 1.0; (b) 
ma =x=4.0. 
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constant for each plot [ma = x = 1.0 in Fig. 6(a); 
ma = x = 4.0 in Fig. 6(b)]. This enables us to follow the be­
havior of Sm (W1"p) as m increases toward the continuous limit 
(m = 00). The driving rate was adjusted in all cases to be 
,u = (1 + a) - m = (1 + 11m) - m so that the rate of the final 
point processes is unity. For the parameters shown, it is evi­
dent that the curves are of very similar shape, although their 
absolute and relative magnitudes are strongly dependent on 
m and on ma = x. 

Finally, we note that while we generally think of x as 
position in a continuum of branching stages, and t as time, it 
may be more appropriate in some applications to regard the 
variable x as time along which branching progresses, and t as 
position. In such an interpretation, h (t ) will indicate diffu­
sion or migration of particles in space, and Nx(T) the num­
ber of particles in the space [O,T] at the time x. 
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APPENDIX: DERIVATION OF THE CORRELATION 
FUNCTION r m(r) FOR THE POISSON BRANCHING 
POINT PROCESS 

Differentiating (37) with respect tosl ands2, and setting 
S I = S2 = 0, provides 

'm(1") = lim _1_2 <.:::1Nm(t~Nm(t + 1") 
.jt--o (.:::1t) 

=,u2 L-00 cP ~I (t)dt f: 00 cP ~I (t )dt 

+ ,u f: 00 cP~1 (t)dt, (AI) 

where 
m-l 

cP ~I(t) = cP ~1)(t) + h ( - t) * L cP ;I)(t) , 
j~1 

m-I 

CP~I(/) = CP~21(/) + h (- I) * L CP;2)(t) , 
j~1 

cP ~)(/) = cP ~31(/) + cP ~I)(/)[ h ( - I) * ~~II cP Y)(t)] 

+ cP ~2)(1 ) [ h ( _ 1)* ~~II cP ;11(/)] 

m-I 

+ h ( - t) * L cP Y)(/) 
j~1 

+ [h ( - I) * ~tll cP ;1)(1) ] 

X [ h ( - 1)* ~tll cP yilt )] , 

with the initial conditions 

CP~ll(t) = - 8(t), 

cP ~2)(t) = - 8(t - 1") , 

cP ~31(t) = 8(1 )8(1") . 
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Taking the Fourier transform of (A2) and (A3) to obtain the 
frequency-domain equivalent ofEq. (AI) provides 

r m (7) = p,2 if> ~1(0)if> ~I(O) + p,if> \;.1(0) , (A4) 

where if> ~ (0) is the Fourier transform of <P ~ (t ) evaluated at 
w = O. A simple calculation shows that the first term in (A4) 
is 

p,2if> ~1(0)if> ~I(O) = I p,( 1 + at - Il2 , 

whereas the second term of (A4) is 

- Joo . dw p,<P \;.1(0) = P, Ym (w)e}(uT -2 ' 
- 00 1T 

with Ym(w) as given in (S2b). 

(AS) 

(A6) 

'T. E. Harris, The Theory of Branching Processes (Springer, New York, 
1963). 

2W. Feller, An Introduction to Probability Theory and its Applications (Wi-

2185 J. Math. Phys., Vol. 25, No.7, July 1984 

ley, New York, 1968), 3rd ed., Vol. I, Chap. XII. 
3B. E. A. Saleh and M. C. Teich, "Multiplied-Poisson noise in pulse, parti­
cle, and photon detection," Proc. IEEE 70,229-245 (1982). 

4M. C. Teich and B. E. A. Saleh, "Interevent-time statistics for shot-noise 
driven self-exciting point processes in photon detection," J. Opt. Soc. Am. 
71,771-776(1981). 
sB. E. A. Saleh and M. C. Teich, "Statistical properties of a nonstationary 
Neyman-Scott cluster process," IEEE Trans. Inform. Theory IT -29, 939-
941 (1983). • 

6K. Matsuo, M. C. Teich, and B. E. A. Saleh, "Thomas point process in 
pulse, particle, and photon detection," Appl. Opt. 22, 1898-1909 (1983). 

7K. Matsuo, B. E. A. Saleh, and M. C. Teich, "Cascaded Poisson Pro­
cesses," J. Math. Phys. 23, 2353-2364 (1982). 

8M. Thomas, "A generalization of Poisson's binomial limit for use in eco­
logy," Biometrika 36,18-25 (1949). 

9M. C. Teich, "Role of the doubly stochastic Neyman Type-A and Thomas 
counting distributions in photon detection," Appl. Opt. 20, 2457-2467 
(1981). 

IOE. Parzen, Stochastic Processes (Holden-Day, San Francisco, 1962). 
"B. E. A. Saleh, Photoelectron Statistics (Springer, New York, 1978). 
'2A. Papoulis, Probability, Random Variables, and Stochastic Processes 

(McGraw-Hill, New York, 1965). 
130. L. Snyder, Random Point Processes (Wiley, New York, 1975). 

Matsuo, Teich, and Saleh 2185 



                                                                                                                                    

Orthogonal polynomials with exponential weight in a finite interval and 
application to the optical model 
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A quadrature procedure is developed which makes the construction of momentum-space meson­
nucleus optical potentials more accurate. We deal with numerical evaluation of integrals with 
finite t-integration range which contain exp(Dt) explicitly, where D is a parameter. The Gaussian 
rule is used with abscissas determined as roots of orthogonal polynomials with exponential weight 
function in the interval [ - 1,1]. Recurrence relations and inequalities for these polynomials are 
obtained. A nonlinear recursion is derived, which permits the evaluation of abscissas and weights 
without accumulation of roundoff error. The nonlinear recursion is solved by means of an 
iterative procedure, the convergence properties of which are established. The quadrature 
procedure is summarized as an easily implementable algorithm. The rate of convergence is 
demonstrated for several test integrals. 

PACS numbers: 02.60.Jh, 02.30.Bi 

I. INTRODUCTION 

Meson-nucleus scattering at medium energies is cur­
rently studied in the framework of multiple scattering the­
ory. The meson-nucleus scattering amplitude is obtained as a 
solution of Lippmann-Schwinger or coupled-channel equa­
tions, where the optical potential (or potential matrix) is typi­
cally of the form I 

V/(p',p,E)=(21+ l)A fl p/(costl) 

X t (p' ,p, E) F (q)d (cos tl ). (1.1) 

Here, p/(cos tl) are Legendre polynomials, cos tl = P"p/ 
(P'p) and I labels the meson-nucleus partial waves. The ele­
mentary meson-nucleon amplitude is usually given in terms 
of the partial wave decomposition 

t(p',p,E)= L (2.11.+ 1)(dp',p,E)P,dcostl) (1.2) 
A=O 

and the nuclear form factor can be represented as 

F(q) = exp( _ a:
2

) Qn(q2),q = Ip' - pI. (1.3) 

Here, Qn (q2) is a polynomial and a is related to the nuclear 
radius. Since q2 = p,2 + p2 - 2p'p cos tl, from Eqs. (1.1)­
(1.3) we have 

V/(p',p,E)- fl e>iQm(p',p,E;t)dt, (1.4) 

where D = 0.5 p'pa2 and Om = Om (p', p,E;t ) is a polyno­
mial in the variable t = cos tl. The degree of the polynomial 
increases with the increasing mass number A and the energy 
E. In typical medium energy calculations it does not exceed 
ten or twenty. Relativistic and Fermi motion corrections 
spoil somewhat the polynomial behavior of Om; however, 
their role at intermediate energies is not of crucial impor­
tance.2 

The angular integration indicated in (1.4) is to be per­
formed with high accuracy, since the optical potential 
V/ (p', p, E) enters the kernel of Lippmann-Schwinger or 

coupled-channel equations and it is necessary to ensure that 
the resulting meson-nucleus amplitudes are not biased by 
numerical uncertainty and that they reflect actual physical 
assumptions made in constructing the optical potential. 3 

With increasing D, the function exp(Dt ) Om represents a 
more and more narrow peak in the vicinity of t = 1. There­
fore, the usual methods of evaluating (1.4), e.g., Gauss-Le­
gendre quadrature, are rather awkward for momenta p' and 
p higher than typical nuclear values ( - 1/ a), since either only 
few abscissas fall into the region, where exp(Dt )Om is actual­
ly concentrated, or the number of prints in the quadrature 
rule becomes impractically large. 

The aim of the present paper is to develop an efficient 
and numerically stable procedure for evaluation of the inte­
grals 

1 fl I = - w(t )f(t )dt, 
2 ~ I 

(1.5) 

where w(t ) = exp(Dt) is the weight function, D is a real pa­
rameter, andf(t) is a function which can be approximated to 
good accuracy by a polynomial. The Gauss quadrature rule 
will be applied to Eq. (1.5), i.e., the integral lis approximated 
by IN' where 

N 

IN = L AJ(tJ (1.6) 
i= 1 

The method is based on the existence (for any w(t ) > 0) of 
a sequence of polynomials I Sn (t ) J:' = 0 which are orthogonal 
with respect to W(t ) and in which Sn (t ) is of exact degree n so 
that 

1 fl (Sn,sm) = - w(t)Sn (t )Sm (t )dt = hn when n = m 
2 ~I 

= 0 when n:j:.m. (1.7) 

The polynomial SN(t) = kNII;"= I (t - t;), kN > 0, has N real 
roots - I < t I < t2 < ... < t N < 1. Further, the weights are giv­
en by 

kN+ IhN A; = - , i = 1,2, ... ,N, (1.8) 
kNS N(t;)SN + Ilt;) 
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where S ;"'(t;) = (dS (t )ldt)1 = Ii' Note that t; and A; depend 
onN, as well as t;.A;. hN, andSN(t) in our case depend onD. 
However, the dependence on Nand D has been suppressed 
here to simplify the notation. 

It can be shown that forf(t )EC 2N[ - 1,1] 

Jl2NI(S)hN 
I=IN + and -1<5'<1 (1.9) 

(2N)!k~ 

holds, thus the Gaussian rule is exact for all polynomials of 
degree <.2N - 1. Proofs of the statements (1.7)-(1.9) can be 
found in Ref. 4. 

The abscissas t; can be, of course, chosen also in a differ­
ent manner.s However it is for the property of the highest 
algebraic accuracy (1.9) that we prefer to use the Gauss qua­
drature. The property enables one to minimize the number 
of usually time-consuming evaluations of the integrand in 
(1.4). 

The existence of the three term recurrence relation [for 
any w(t ) > 0] 

Sn + I (t) = (ant + fln)Sn(t) - YnSn _ I (t ),n = O,I, ... ,N - 1 
(1.10) 

with an>O, Yn>O, S_I(t)=O, and So(t) = 1 

makes it possible6 to determine the roots t; and weights A; by 
solving an eigenvalue problem provided that the coefficients 
{ an' fl n' Y n I are known. The method is briefly reviewed in 
Sec. II. 

A numerically stable algorithm is not known for eva­
luation ofthe coefficients of the three term recurrence rela­
tion (1.10) in the case of an arbitrary weight w(t ) > O. This 
represents a serious difficulty in generating t; and A;. With 
the aim of developing a method for computation of the coef­
ficients {an ,/3n ,Yn I in thecasew(t) = exp(Dt), the properties 
of the corresponding orthogonal polynomials are investigat­
ed in Sec. III. Relations between the polynomials [we call 
them Pn (D,t )] and their derivatives are obtained. The links 
are established between Pn (D,t ) and Legendre and Laguerre 
polynomials. Further, we succeeded in finding a nonlinear 
recursion among the coefficients {an, fl n' Y n I, which turned 
out to be very useful for practical purposes. 

The nonlinear recursion can be solved by an iterative 
procedure, the convergence of which is proved in Sec. IV. An 
algorithm is given, which permits an easy and numerically 
stable evaluation of the coefficients {an, fln,Yn I and, hence, 
of t; and A;. too. The rate of convergence of the quadrature 
rule is shown in Sec. V and compared with that of Gauss­
Legendre rule in the case of several test integrals. 

Section VI contains a summary and conclusions. 

II. GENERATING ABSCISSAS AND WEIGHTS 

It was established more than twenty years ag06 that a 
very powerful method for generating roots of orthogonal 
polynomials consists in rewriting the condition SN(t) = 0 
into the matrix form 

T SIt) = t SIt). (2.1) 

Here, the three term recurrence relation (1.10) was used, 
S T(t) = (So(t ),SI(t ),,,,,SN _ I (t)) and Tis the tridiagonal ma­
trix with the diagonal elements tnn = - fln _ I Ian _ 1> 
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n = 1, ... ,N, and the off-diagonal elements tn,n + I = lIan _ I 

and tn + I.n = Ynlan for n = 1, ... ,N - 1. Thus SNIt;) = 0 
holds if and only if t; is an eigenvalue of the matrix T. 
Further, it can be shown6

•
7 that Tis symmetric if the polyno­

mials Sn (t ) are orthonormal. If T is not symmetric, then a 
diagonal similarity transformation is to be performed, which 
yields the orthonormal set of polynomials S (t ) = Z S (t ) and 
the symmetric tridiagonal matrix J = Z T Z -I. Eigenvalues 
of the matrix J are abscissas of the Gauss rule. Calculating 
the eigenvectors S (t;), associated with the eigenvalue t;, one 
can obtain the weights A; from 

- rc:; . 
A; [SIt;)] SIt;) = 1, 1= 1, ... ,N, (2.2) 

which is a consequence of Christoffel-Darboux identity. 8 

Therefore, the crucial point in generating abscissas and 
weights is the evaluation ofthe coefficients {an, fln ,Yn J, 
which form the elements of the matrix J. The polynomials 
can be expressed in terms of the moments 

1 II Rj = - w(t)t j dt, j = 0, ... ,2N - 1 
2 -I 

(2.3) 

as 

Ro RI Rn 

k 
RI R2 Rn+ I 

S (t) _ n 
n - Bini 

R n_ 1 Rn n R 2n _ 1 

t t n 

k n 
= _n_ I Blnlt; (2.4) 

Bini. I' 
n 1= 0 

whereB~1 = 1, 

B~I=Det(B;j»O, Bij =R;+j_2 

for l<.i<.n - 1, 1<J<.n - 1, (2.5) 

k n #0 is arbitrary and the remaining coefficients B \n l can be 
inferred from (2.4). It is tempting to express the coefficients 
{an. fln,Yn I in terms of the moments (2.3), which can be 
easily calculated in the case of w(t) = exp(Dt ). Such a proce­
dure consists of two steps.7 

(i) The norm of the polynomials Sn(t) is 
hn = k ~ B ~n: 1l)/B ~nl and the three term recurrence relation 
(1.10) takes the form 

~Sn+ tit) = (an - an+ I + t)Sn(t) 

- Jb,: Sn _ I (t), n = O, ... ,N - 1 (2.6) 

with S_ dt) = 0 and So(t) = lIffo 

for orthonomal polynomials Sn (t) = Sn (t)1 {fl::, where 

an = - B ~n,- I IB ~nl, bn = B ~n: /IB ~"'=- /'I [ B ~Ip > 0 
(2.7) 

and ao = bo = O. 

The matrix J, which is to be diagonalized, has the following 
nonzero elements: J;.; = a; - a;_ 1 for i = 1, ... ,N and 

J;,; + 1 = J; + 1.; =.jli; for i = 1, ... ,N - 1. 
(ii) The matrix B = {B;j J, where B;j are defined in (2.5), 

is symmetric and positive definite. Such a matrix can be de-
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composed as B = F T F, where F is an upper tridiagonal ma­
trix with elements 

( 
i-I) 

Fik = Ri+k- 2 - .L Fji Fjk IFii i<k, i= 1, ... ,N + 1. 
J= I 

(2.8) 

Golub and Welsch have shown 7 that 

ai = Fi,i+ IIFi,i bi = (Fi+ I,i+ IIFi,i)2, (2,9) 

The decomposition (2.8) represents a straightforward meth­
od for obtaining all the coefficients a i and bi necessary for 
constructing the J matrix. 

Unfortunately, in the case ofweightw(t) = exp(Dt), the 
method (ii) gives numerically unstable results9 for all values 
D and for as small a degree as N = 10. It would be desirable 
to obtain a recursion among the coefficients ai and bi' which 
is more transparent than Eq. (2.8) and does not contain re­
dundantelementsFi,j+i,j= 2,3, ... ,N + 1. This is the reason 
why properties of orthogonal polynomials with exponential 
weight are studied in some detail in the next section. 

III. ORTHOGONAL POLYNOMIALS WITH 
EXPONENTIAL WEIGHT IN [-1,1] 

In this section, the weight is specified as 

w(t) = exp(Dt ), (3.0.1) 

where D is a real parameter. The properties of the polynomi­
als 

Pn(D,t) = Sn(D,t )lkn = t n 
- an(D)t n - 1+... (3.0.2) 

are studied, since most of the expressions obtained have a 
simpler form for Pn (D,t ) than for Sn (D,t ) or Sn (D,t). When­
ever the quantities under consideration depend on the pa­
rameter D [e.g., an(D) and bn (D ) as defined in (2.7)], it will be 
shown explicitly in this section. 

111.1 Moments 

The following recurrence relations hold for the mo­
ments (2.3) 

sinh(D) 2k 
R 2k (D) = - -R2k _ I(D), R_I(D)=O, 

D D 
(3.1.1) 

R 2k + I(D)= COS~D) _ 2k;; 1 R 2k (D), k=O,I, .... 

Another obvious relation 

R k+ I (D) = d(Rk(D ))ldD 

can be obtained from Eq. (2.4). 

111.2 Symmetry properties 

(3.1.2) 

It follows from (3.1.1) thatR2dD) = R2d - D) and 
R2k + I (D ) = - R2k + I ( - D). Using Eq. (2.5), we have after 
simple manipulations 

(3.2.1) 

and 

(3.2.2) 

This is the reason why we restrict ourselves to nonnegative 
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values D in our further investigation. Particularly, 

an(D) = - ant -D) bn(D) = bn( -D). (3.2.3) 

111.3 Explicit expressions for Pn(D,t) with n<2 

It is instructive to evaluate the lowest degree polynomi­
als Pn (D,t) using moments (2.3) and Eq. (2.4). We have 

Po(D,t) = 1, PI(D,t) = t + liD - coth(D) 

and 

P (D t ) = t 2 2t [1 + 1 - D coth(D ) ] 
2' + D 1 +D 2(1-coth2(D)) 

_ 1 _ ~ + ~ D 2 - 2D coth(D) + 2 . 
D 2 D 2 1 + D 2(1 - coth2(D )) 

(3.3.1) 

With increasing degree n, the coefficients of Pn (D,t ) contain 
higher and higher powers of coth(D ) and D. 

111.4 limiting cases 

It is evident from (2.3) that in the caseD = 0 (w(t) = 1), 
the polynomials Pn (D,t ) go over to the Legendre polynomi­
als Pn(t). We have 

~ Pn(D,t) = (2n: 1)1! Pn(t). 

If the values 

lim R2dD) = _1_, 
D-oO 2k + 1 

lim R2k+ I(D) = 0, k = 0, ... ,2n - 2 
D-oO 

are substituted in (2.4), we are left with 

lim B (n)(D) _ nrr-1 __ 1_ [ k! ]2 
D-oO n - k = 0 2k + 1 (2k - I)!! . 

Using Eqs. (3.4.1) and (3.4.3) we have 
2 

lim an(D) = 0 lim bn(D) = ; 
D-.O D-.O 4n - 1 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

In investigating the asymptotic region of large D, we 
begin with 

eD 
k kl ( l)j 

Rk(D)= - L --'- - - +O(e- D). (3.4.5) 
2D j =o(k-j)! D 

After substituting (3.4.5) into Eqs. (2.4) and (2.5), we have for 
fixed n 

(3.4.6) 

and 

Pn(D,t) = ~Ln [(1 - t)D] + O(e- 2D ), 
D n 

(3.4.7) 

respectively. Here, 

Ln(z) = i (~) (~1z)j 
j=O ] J. 

(3.4.8) 

are Laguerre polynomials. Finally, we obtain 

an(D) = n - n21D + O(e- 2D ) 

bn(D) = n21D2 + O(e- 2D ). (3.4.9) 
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It can be concluded that the quadrature procedure 
studied here turns out to be the Gauss-Legendre rule for 
D = 0 and asymptotically goes over to the Gauss-Laguerre 
rule for large D. 

111.5 Relations among polynomials and their derivatives 

We begin with the observation that the three term re­
currence relation (2.6) can be rewritten for the polynomials 
Pn(D,t) as 

Pn+ I (D,t) - (an(D) - an+ ,(D) + t)pn(D,t) 

+ bn(D)Pn_dD,t) =0 (3.5.1) 

withP _,(D,t) = OandPo(D,t) = 1. Except for Eq. (3.5.1), all 
other relations derived in this subsection reflect the special 
properties 

dw(t) = Dw(t) and dw(t) = tw(t) 
dt dD 

(3.5.2) 

of our weight function (3.0.1). 
It can be seen from Eq. (3.0.2) that dPn (D,t )1 dD is a 

linear combination of polynomials P;(D,t) with the highest 
possible degree i = n - 1, 

dPn(D,t) n-I 

-d-D- = j~O 8;P;(D,t). 

Constructing now the expressions 

d 
- (Pn(D,t), P;(D,t)) 
dD 

= (Pn (D,t ),t Pj(D,t)) + (d~ Pn (D,t), P;(D,t)) 

+ ( Pn (D,t), d~ P;(D,t)) i = O, ... ,n - 1 

and using 

(Pj(D,t), Pj(D,t)) 

=B\;:/I(D)lB\'l(D) for i=j 

= 0 for iO/=j 

(3.5.3) 

(3.5.4) 

(3.5.5) 

we arrive at the conclusion that 8; = 0 for i = O, ... ,n - 2 and 
8n _ I = - bn (D), so that we are left with the important rela­
tion 

d Pn (D,t )/dD + bn (D) Pn _ I (D,t) = O. (3.5.6) 

It follows from the comparison of the coefficients at t n - I in 
Eq. (3.5.6) that 

dan(D)ldD=bn(D»O. (3.5.7) 

Therefore, an (D) is an increasing function of D, positive [see 
Eq. (3.4.1)] for D>O. 

Another class of relations involves derivatives 
d Pn (D,t )/dt. The relation 

2 d n+1 
(t -1)-Pn(D,t) = L Ej P;(D,t) (3.5.8) 

dt ;= n-2 
holds, since 

( P;(D,t)(/ 2 - 1) ~ Pn(D,t)) 

= - (Pn(D,/), _1_!!... [(/ 2 - l)UJ(t)Pj(D,t)]) = 0 
w(t) dt 

(3.5.9) 
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for; < n - 2. The coefficients E; can be determined from Eqs. 
(3.5.8), (3.0.2), and the orthogonality relation (3.5.5). 
Further, using the three term recurrence relation (3.5.1), we 
have 

2 d Pn(D,t) 
(t - 1) dt 

= (nt + an(D) + Dbn(D)) Pn(D,t) 

- bn (D)[ 2n + 1 + D (t + an + I (D) - an (D))] 

XPn_dD,t). (3.5.10) 

From similar considerations we also obtain 

t 2 
- 1 d 

--- [w(t)Pn_,(D,t)] 
w(t) dt 

= [2n - 1 +D(t + an(D) - an_ dD))] Pn(D,t) 

- (nt + an(D) + Dbn(D)) Pn -I (D,t). (3.5.11) 

The last two equations serve as a starting point in deriving 
the relations among the coefficients an (D ) and b n (D ) as well 
as the differential equation for Pn(D,t). 

111.6 Relations among 8 n{D) and bn{D) 

At the points t = 1 and t = - 1, Eqs. (3.5.10) and 
(3.5.11) reach an especially simple form. Denoting 

Xj(D) = 2; + 1 + D (a j+ I (D) - a;(D )), i = O,I, ... ,n. 
(3.6.1) 

wehavefort= 1 

(n + an(D) + Dbn(D)) Pn(D,I) 

= bn(D)(Xn(D) +D)Pn_ , (D,I), 

(3.6.2) 

(Xn_,(D) +D)Pn(D,I) 

= (n + an(D) + Dbn(D)) Pn -I (D,I). 

Since Pj(D,I)o/=O for; = O, ... ,n, we have 

n +an(D) +Dbn(D) 

=~bn(D) ~Xn(D) +D ~Xn_,(D) +D. (3.6.3) 

Here, we used the inequalities an (D );>0 and bn (D) > 0 for 
D;>O, which have been proved in previous subsections and 
which imply [see Eqs. (3.6.2)] that (Xj(D) + D) does not 
change the sign for D;>O. It follows from (3.6.1) and (3.4.4) 
that (Xj(D ) + D) > o holds for D;>O. Further,Pj(D,I) > Ofol­
lows from Eq. (3.6.2). 

An analogous derivation can be performed also for 
t = - 1. Taking into account that 
Pj(D, - 1) = (- l)jl Pj(D, - 1)10/=0, ; = O, ... ,n, and 
Xo(D) - D = D coth(D) > 0 [see Eq. (3.3.1)], we obtain 

n -an(D) -Dbn(D) 

=~bn(D)~Xn(D)-D ~Xn_dD)-D, (3.6.4) 

where 

n >an(D»n - n21D, bn(D)«nID)2, and Xn(D»D 

for all D>O. (3.6.5) 

The system of two equations (3.6.3) and (3.6.4) can be 
treated as a recursion for an (D), n = 0, 1, ... ,N, and bn (D), 
n = 1, ... ,N - 1, with starting values ao(D) = 0 and a,(D) 
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= coth(D) - liD. Technical aspects associated with the 
evaluation of an (D ) and bn (D ) will be discussed in the next 
section. Here, we give two alternative formulations of the 
recursion, which are useful in practical applications. 

It is easy to verify that the system (3.6.3) and (3.6.4) is 
equivalent to the following one: 

~bn(D) = 2nIUXn(D) +D ~Xn_ dD) +D 

+ ~Xn(D)-D ~Xn_.(D)-D], (3.6.6) 

2n an(D) = bn(D )D2(an+ I (D) - an_I (D) + 2nID). 
(3.6.7) 

The second formulation is obtained when one intro­
ducesa;(D»O,i= l, ... ,N + l,byX;(D)lD=cosh(2a;(D)) 
and rewrites Eqs. (3.6.6) and (3.6.7) as 

an(D) = n cosh(an(D) - an - I (D)) 
cosh(an (D) + an _ I (D)) 

n2 1 
- D cosh2(an(D) + an _ dD))' 

(3.6.8) 

Using an analogous expression for an + I (D), one obtains 
after simple manipulations a very instructive recursion 

sinh(2an(D)) = (niD )tanh(an (D) + an _ I (D)) 

+ ((n + I)1D )tanh(an + I (D) + an (D)) 
(3.6.9) 

for an (D) with starting values a _I(D) = 0 and 

ao(D) = -! In(tanh D 12). (3.6.10) 

Taking into account Eq. (3.5.7), we can obtain from (3.6.3) 
and (3.6.4) also 

d n 
2 dD an(D) = D tanh(an(D) + a n_ I (D)) 

n+l - ----r;- tanh(an + I (D) + an(D I)· 

(3.6.11) 

Equations (3.6.6)-(3.6.11) provide a solid basis for numerical 
evaluation of an (D) and bn (D). 

IV. ALGORITHM FOR EVALUATING an (D) AND bn(D) 

The recursions derived in the previous section are not 
very transparent and are to be investigated in some detail 
before using them for computation of an (D ) and b n (D ). Our 
objective is to generate the sequences an (D ) and b n (D ), 
n = 1, ... ,N + 1, for fixed value D. 

Let us start with the case oflarge D. It is advantageous 
to rewrite Eqs. (3.6.6) and (3.6.7) as 

2D 2bn 

=D2 -X~_I + 2nXn _ 1 - 2an D - (X~_I _D)1/2 

X [(Xn _ 1 - 2n)2 + 4Dan - D2r12, (4.1.1) 

an +1 =an_ 1 +2nanlD 2bn -2nID, n= 1, ... ,N + 1 

with ao = 0 and a l = coth(D) - liD. In what follows, the 
dependence of an' bn , and Xn on D is suppressed to simplify 
the notation. The expression for Xn is given by Eq. (3.6.1). It 
can easily be verified that the asymptotic expression (3.4.9) 
for an and bn provide an exact solution to (4.1.1) for any 
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D > O. This causes some difficulty when an and bn are evalu­
ated numerically, since the starting value a I = coth(D ) - 11 
D is very close to 1 - liD forD> 1 and the asymptotic rather 
than desired solution is generated by (4.1.1) for n > 1. 

The problem can be solved by introducing 

an =n-n2ID+2gn and bn = (nIDf-2dn (4.1.2) 

and rewriting Eqs. (4.1.1) in the form 

dn = (gn -gn_I{I- ~) + ~ + (gn -gn- tl2 

+ [(gn -gn_tl2+(gn -gn_tl]l12 

[ ( 
2n ) 2g ] 1(2 

X (gn - gn - If + (gn - gn - I) 1 - D + D
n 

(4.1.3) 

gn+1 =gn-I + 2 [ngn +D(D-n)dn ]/(n2-2D 2dn), 

n = 1, ... ,N + 1, 

with go = 0 andgl = exp( - 2D). 
It should be noted thatgn+ I >gn >Oanddn > o follows 

from Eqs. (3.6.5) for D > O. Therefore, no cancellation occurs 
in (4. 1.3) ifdn andgn + I are calculated forn <min(N + I,D I 
2). The error in determining dn and gn + I is not larger than 
approximately 10 - 8, where {j is the number of digits carried 
in the calculation. We have verified by computer calculation 
that still for n < min(N + I,D) only two or three decimal dig­
its are lost if N,40, which is quite acceptable for practical 
purposes. On the contrary, the recursion (4.1.3) quickly 
breaks down for n > D due to enormous cancellation, which 
occurs especially in the expression for dn • 

To complete the algorithm for evaluating an and bn we 
need a method which works in the interval N + 1 >n >D. In 
this "small D " region, we encounter the following difficulty. 
Let us represent an and an _ I as 

J 

an =D L c\n lD 2; + O(D2I+2), 
;=0 

J 

an_I = D L c\n-I ID 2
; + O(D 2I +2

). (4.1.4) 
;=0 

This can be always done in a disk on the complex D-plane 
with the center at D = 0 and with a finite diameter, since an 
is an analytic function of D in the vicinity of the origin [see 
Eqs. (2.4), (2.9), and (3.4.4)]. Now we evaluate an + I using 
Eqs. (4.1.1). The error of this quantity will be of the order of 
o (D 2I)-larger than the error of the input values. We can 
conclude that in the "smallD "region the errors are accumu­
lated when we move in the recursion (4.1.1) from small to 
large values n. 

Unfortunately, the same is true when we move in (4.1.1) 
from large values n towards small ones. This property of the 
recursion remains unchanged also in the other formulations 
derived in the previous section. This is the reason why we 
prefer to solve the recursion in the D < n region by iterations. 
The method is based on the following theorem. 

Theorem: Let us consider a set S of sequences I a~'l ' 
where a(~ I = 0 for i = 1,2, ... ,a~) are arbitrary real numbers 
such that a~II>O holds for n = 0,1, ... , and a~l) > 0 holds at 
least for one n. Finally, the elements a~ + I) are defined by 
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sinh(2a(i + I)) = n + 1 tanh(a(11 + a(ll) 
n D n+1 n 

(4.1.5) 

for i = 1,2, ... ; n = 0,1, ... 

Then the limits 0< lim;~oo a~' = an < 00 exist for all D > 0, 
n = 0,1, ... , and define uniquely the sequence {an 1, which 
satisfies the recursion (3.6.9). There exists only one sequence 
{an 1, a -I = ° and an > 0, n = 0,1, ... , that satisfies (3.6.9) 
and its starting value is a o = - 0.51n(tanh D 12). 

Proof We start with several simple observations. For a 
sequence {an 1, an > 0, which satisfies Eq. (3.6.9), the in­
equalities 

. 2n+l 2 2n+l 
smh(2an)> --tanh(an) or cosh (an» --

D 2D 
(4.1.6) 

hold for n = 0,1, ... Further, we have 

lim an = 00, lim [l.- Sinh(2an)] = ~ (D> 0) 
n-<Xl n-oo n D 

(4.1.7) 

and 

Consider now a sequence {a~ll ES. There exist two se­
quences PI;;) 1 ES and {(X1,:11 ES with thefollowing properties: 

(i) Let a;,t) = 00, then cr,:) > ~ + I) and (X1,:1 > a~l hold for 
n = 0,1, ... ; i = 1,2, .... 

(ii) Let a~1) > ° be the first nonzero element from a~I), 
n =0,1, .... 

Wedefine~) = a~)if(2k + 1) < 2Danda~) = min(a~), 
arcosh[((2k + 1)/2D )1/2] otherwise. Further, weputa1"l) = ° 
for n #k. Then tr,:'<~ + I) [see Eq. (4.1.6)] and tr,:'<a~) hold 
for n = 0,1, ... ; i = 1,2, .... The limits lim;~oo tr,:' = an 
and lim;~oo (X1,:1 = an obviously exist, O<On <an holds, and 
an and an satisfy (3.6.9). 

Further, it can be shown from (3.6.1) and (3.6.8) that for 
any sequence {an J, an> ° which satisfies (3.6.9), 
n-I 
L cosh(2a;) 
;=0 

n2 D 
= D + "4 +7Jn (4.1.8) 

holds, where limn~oo 7Jn = 0. In deriving the last relation, 
Eqs. (3.6.1), (3.6.8), and (4.1. 7) were used. Therefore, 

n 

lim I [cosh(2a;) - cosh(2a;)] = ° 
n-oo ;=0 

(4.1.9) 

and {an 1 = {an 1. It means that lim;~oo a~l exist and define 
uniquely the sequence {an 1 = {an 1 = {an 1, which satisfies 
(3.6.9). 
Let us have a sequence {f3n 1,f3-1 = 0, andf3n >0, 
n = 0,1, ... , that satisfies Eq. (3.6.9). Since lim;~oo a~l = an' 
n = 0,1, ... , hold for {a~llES when a~) > ° is chosen arbitrar-
ily, the same must be true when a~l) = f3n' n = 0,1, .... 
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Therefore, we have {an 1 = { f3n 1 and the sequence {an 1 is 
the only one with a -I = ° and an > 0, n = 0,1, ... , that satis­
fies (3.6.9). The sequence with such properties was obtained 
already in Sec. 111.6 and its starting value is 
ao = - 0.5 In(tanh D 12). 
For practical purposes, the iterations (4.1.5) can be reformu­
lated in terms of o~l, which are defined by 

X~IID = 2n; 1 + a~\ I _ a~l = cosh(2a~l), ag) = 0 

(4.1.10) 

for n = 0,1, ... ; i = 1,2, ... 

The resulting expression is 

(;+ I) (i+ I) _ 1 - 2(2n + l)A~) + (DA ~1)2 
an+ 1 -an -D , 

2n + 1 + ~ D 2 + (2n + 1 _ D 2 A ~1)2 
(4.1.11) 

where 

A ~l n + 1 

2 D 2 + [D exp(a~l + I + a~l) ] 2 

+ n 
D 2 + [D exp(a~l + a~l_ I )2 

and D exp(2a~l) = 0.5(~X~1 + D + ~X~l_ D )2 for 
n = 0,1, ... As opposed to (4.1.5), the iterations (4.1.11) yield a 
finite result also for D = 0, and the expressions 
lim;~oo (a~l + I - a~l) = (an + I - an), the existence and 
uniqueness of which is guaranteed by the theorem, enter di­
rectly the J matrix, which was defined in Sec. II. 

In concluding this section, we would like to summarize 
the algorithm for obtaining abscissas and weights. 

(i) For n <No = min([D ],N + 1), the coefficients an and 
bn , n = O,I, ... ,No, are evaluated according to Eqs. (4.1.2)­
(4.1.3). 

(ii) If N + 1 > [D], the coefficients an' 
n = No + 1, ... ,N + 1, are obtained using the iterative proce­
dure (4.1.11). In such a case, we put 
X~l = 2n + 1 + D(an+ I - an) for all i = 0,1, ... , and 
n = 0, 1, ... ,No - 1, where an are those as obtained in (i). 
Further, the starting values X~I) = ((2n + 1)2 + D 2)1/2 are 
chosen for No<n<N + 10 andX~11 = ° for n > N + 10. The 
rate of convergence of (4.1.11) was checked for all 

-1 o 

FIG. 1. Roots of the polynomial PIO(D,!). 
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TABLE I. Results for moments RD(D). Underlined figures are those which disagree with the exact result. 

N=2 N=4 

L 0.581370827(00)" 0.838444018(00) 
R2(2) 

P 0.839047460(00) 0.839047460(00) 

L 0.564872965(02) 0.301756323(01) 
R4(4) 

P 0.310853243(01) 0.319174117(01) 

L 0.625817255(02) 0.516232310(02) 
R.(8) 

p 0.868697594(02) 0.901516209(02) 

L 
R'6(16) 

0.783142057(OQ) 0.153216831(01) 

p 0.131375034(06) 0.136595213(06) 

L 
Rn!32) 

0.122662294(0 I) 0.134972374(IQ) 

p 0.587945344( 12) 0.611726995(12) 

"(02) = J02 etc. 

No<n<N + 1. In fact, not more than four or five iterations 
were needed in order to achieve the results accurate up to ten 
decimal digits for N<40. Finally, the coefficients bn are ob­
tained for No<n<N + 1 from Eq. (3.6.6). 

(iii) The matrix J is constructed and diagonalized. The 
eigenvalues represent abscissas of Gauss rule and the 
weights are deduced from corresponding eigenvectors. 

v. APPLICATIONS 

Now we apply the quadrature rule to several test inte­
grals. Our aim is to examine the rate of convergence of the 
method as N (the number of abscissas) increases. A compari­
son is made with the convergence rate of Gauss-Legendre 
rule. The weights and abscissas needed were generated using 
the algorithm given at the end of the preceding section. Dou­
ble-precision arithmetic (15 decimal digits) were used 
throughout. The dependence of abscissas on the parameter 
D is demonstrated in Fig. 1, where all roots of the polynomial 
PIO(D,t) are shown. 

In Table I we present the results obtained for the mo­
ments 

N=8 N= 16 

0.839047460(00) 0.839047460(00) 

0.83904 7460(00) 0.839047460(00) 

0.319174000(01) 0.319174117(01) 

0.319174117(01) 0.319174117(01) 

0.900447566(02) 0.901570490(02) 

0.901570490(02) 0.901570490(02) 

0.125596652(06) 0.136642696(06) 

0.136642762(06) 0.136642762(06) 

0.306701218(12) 0.610801305(12) 

0.612041268(12) 0.612041282(12) 

1 JI RD(D) = - exp(Dt)t D dt, 
2 -1 

(5.1) 

D = 2,4,8, and 16, using the Gauss quadrature formulas 
(1.5)-(1.6) with N = 2,4,8,16, and 32 and with lU(t) = 1 and 
lU(t) = exp(Dt ), respectively. It can be seen that the Gauss­
Legendre quadrature (lU(t) = 1) converges much more slowly 
than the quadrature associated with the polynomials P n (D,t ) 
(henceforth referred to as Gauss-Pquadrature). Correspond­
ing results are denoted in Table I as Land P, respectively. 
Further, the Gauss-P quadrature yields results accurate up 
to ten decimal digits for D<2N - 1. This is a useful check on 
the consistency of the abscissas and weights. 

Table I demonstrates in the same time how useful is the 
Gauss-P quadrature in evaluating the optical potentials. The 
classical Kisslinger potential 10 or the "potential with the La­
placian"ll for pion-nucleus scattering are in fact linear com­
binations of the moments RN(D), where N< 10-;-.20. 

To test the rate of convergence of our method, we must 
choose integrands more complicated than Eq. (5.1). The re­
sults obtained for 

TABLE II. Results for 1,(D). Underlined figures are those which disagree with the exact result. 

N=2 N=4 N=8 N=16 

L - 0.227157369( 0) - 0.188794514( 0) - 0.188646335( 0) - 0.188644849( 0) 
1,(2) 

p - 0.188711893( 0) - 0.188684568( 0) - 0.188647342( 0) - 0.188644883( 0) 

L - 0.144553191( 0) - 0.111718436( 0) - 0.109380274( 0) - 0.10938024~( 0) 
1.(4) 

P - 0.109296871( 0) - 0.109381250( 0) - 0.1093801Q( 0) - 0.109380241( 0) 

L - 0.465429405( - 1)" - 0.704524333( - 1) - 0.585985648( - I) - 0.585937504( - I) 
1,(8) 

P - 0.585874532( - 1) - 0.585937479( - 1) - 0.585937501( - 1) - 0.585937504( - I) 

L - 0.294881876( -~) - 0.401779288( - 1) - 0.307437964( - 1) - 0.302734375( - 1) 
1,(16) 

P - 0.302730848( - 1) - 0.302734375( - 1) - 0.302734375( - I) - 0.302734375( - 1) 

"( - I) = 10-' etc. 
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TABLE III. Results for 12(D). Underlined figures are those which disagree with the exact result. 

N=16 N=32 

L 0.314300451 (01)' 0.314177425(01) 
12(2) 

P 0.314278144(01) 0.314175900(01) 

L 0.630446957(01) 0.628584626(01) 
12(4) 

P 0.629808233(01 ) 0.628540596(01) 

L 0.152239169(02) 0.128660592(02 ) 
12(8) 

P 0.138511482(02) 0.127758143(02) 

L 0.315315443(0~) 0.203651013(04) 
12(16) 

P 0.542248404(~) 0.100228118(04) 

a(OI) = 10' etc. 

il(D) = e ~2D f y(Dy + 4)ln( ~ )eDY dy 

= _1_ (1 _ 2D _ e- 2D ) (5.2) 
4D2 

are displayed in Table II. The Gauss-P quadrature gives 
again much better results than the Gauss-Legendre one 
especially for D = 16 and 32. The convergence is rather slow 
for smaller D even using the Gauss-P quadrature. Here, the 
exponential does not dominate and the integrand exhibits 
non polynomial behavior. 

Typical corrections to the optical potentials (e.g., the 
nonlocal..::1 33-propagation or relativistic corrections) have 
also monotone or slowly oscillating nonpolynomial behavior 
and Table II provides us with some idea about the efficiency 
of the Gauss-L and -P quadratures in such cases. 

Finally, the limitations of our method are demonstrated 
in Table III, where the results are shown as obtained for the 
integral 

i 2(D) = II eDtsin(D~)dt= rrD. (5.3) 
-I 2 

Although the Gauss-P quadrature works somewhat better 
than the GaUSS-Legendre one, the convergence is poor in 
both cases especially for large D. The reason is that the inte­
grand contains a rapidly oscillating function, the behavior of 
which is substantially non polynomial. 

VI. SUMMARY 
The quadrature procedure was developed for integrals 

with finite integration range that contain the weight function 
exp(Dt). The procedure is based on the Gauss rule, the ab-
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N=4O exact 

0.314168630(01) 
0.314159265(01) 

0.314167992(01) 

0.628455291(01) 
0.628318531(01) 

0.628436775(01 ) 

0.127186574(02) 
0.125663706(02) 

0.126805656(02) 

0.100273150(~) 

0.251327412(02) 
0.576163054(Ol) 

scissas being determined as roots of orthogonal polynomials 
with exponential weight in a finite interval. Properties of the 
polynomials were studied in some detail. A recursion was 
found for the coefficients of the three term recurrence rela­
tion which holds among the orthogonal polynomials. The 
recursion can be solved by iterations without accumulating 
roundoff errors, therefore the abscissas and weights are ob­
tained (with the help of the matrix diagonalization tech­
nique) with high precision. The rate of convergence of our 
quadrature procedure is very rapid for integrands that con­
tain a polynomial-like function in addition to the exponen­
tial. Such integrals are encountered in various physical ap­
plications, e.g., in constructing the optical model. 
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We present a direct approach to investigate the existence of an exact invariant for two­
dimensional Hamiltonians, in which the potential depends explicitly on time. The method is 
based on an expansion of the invariant in the velocities. The problem is solved completely for 
invariants linear and quadratic in the momenta. Our results contain as a particular case the results 
of Lewis and Leach on one-dimensional systems. 

PACS numbers: 03.20. + i, 02.30. + g 

I. INTRODUCTION 

The theoretical description of nonstationary physical 
phenomena often leads to time-dependent Hamiltonians. An 
example of historical importance is the description of the 
motion of a charged particle moving in an electromagnetic 
field. The Hamiltonian of the system can, in some cases at 
least, be reduced to the Hamiltonian of a harmonic oscilla­
tor, the frequency of which depends on time: 
H = Hi + w2(t ).x2]. Lewis l has shown that an exact invar­
iant, i.e., a conserved quantity, can be constructed for this 
problem: 

C = Hx2/p2 + (pi - ,oxf], 

in terms of an auxiliary function pIt ) which is the solution of 
the equationp + w2(t)p = l/p3. The derivation of the invar­
iant can be traced back to Ermakov2 who derived it in 1880. 
Gambier/ in 1910, has also analyzed the equation for p, or 
rather for CJI = p2, from the point of view of the Painleve 
property. He has integrated it by reducing it to a linear equa­
tion, which is exactly the equation for the harmonic oscilla­
tor x + w2(t ).x = 0, and obtained the invariant in the course 
of his analysis. The importance of the result of Lewis stems 
from the fact that he used the invariant in order to construct 
the solution of the quantum time-dependent oscillator,4 thus 
reducing the solution of a PDE (the Schrodinger equation) to 
the solution of an ODE (the equation for pl. 

The interest in time-dependent systems has increased 
appreciably these last years. Several methods have been de­
vised for the derivation of the Lewis invariant, which was 
originally obtained through an application of the asymptotic 
theory of Kruskal5 in closed form: Leach6 has obtained the 
same result using a time-dependent canonical transforma­
tion. Lutzky's7 derivation was based on Noether's theorem. 
Ray and Reid8 have resurrected the old Ermakov technique, 
and were able to obtain the existence of a Lewis-type invar­
iant for the case of two coupled nonlinear equations ofmo­
tion: 

x + w2(t).x = (l/x2p)g(p/X), 

P + w2(t)p = (l/p2xlf(x/p), 

namely 

1 fX

/
P fP

/
x 

C = "2 (x,o - pil2 + f(7fJd7f + g(7fJd7f. 

In a series of papers, Ray, Reid, and Lutzky9-16 have ex­
tended further the class of nonlinear equations which pos­
sess an exact invariant. They have shown how the same re­
sults can be reached using Noether's theorem and 
demonstrated that there exists a general, nonlinear superpo­
sition law for the systems they studied. 

A particularly simple analysis, which provides an in­
sight into the results of Ray, Reid, and Lutzky, has been 
given by Sarlet 17 who has related the existence of the invar­
iant to the integrability of a certain differential one-form. In 
a more recent paper, Sarlet and Ray l8 have provided a classi­
fication scheme for Ermakov-type differential systems, thus 
establishing some unity into the multitude of examples of 
time-dependent systems with an exact invariant treated in 
the literature. 

In the Ermakov methodology, one derives the invariant 
starting from a set of given equations, i.e., the auxiliary equa­
tion must be known in advance. However, when one starts 
from an explicitly time-dependent equation of motion, there 
is no simple way to guess even the existence of such an auxil­
iary equation, let alone its form. Because of this and the fact 
that the method of symmetry transformations, based for ex­
ample on Noether's theorem, can be roundabout, Lewis and 
Leach l9 have presented a direct approach for the determina­
tion of the invariant of the system with a Hamiltonian of the 
form H = !p2 + V(x,t). 

The extension of the above results to several spatial di­
mensions presents, of course, a great interest. Some results 
exist in this direction, although not as ample as in the case of 
one dimension due to complexity of the problem. Giinther 
and Leach20 have derived a tensor invariant for an N-dimen­
sional time-dependent isotropic harmonic oscillator. Ray 
and Reid21 as well as Lutzky9 have given a brief discussion 
concerning the extension of their method to several spatial 
dimensions. In a more recent work, Sarlet and Cantrijn22 

have presented a generalization of this method which, in 
principle, deals with systems of n + 1 second-order differen­
tial equations with n first integrals quadratic in the veloc­
ities. As in the case of the Ermakov systems, one of the equa­
tions plays the role of the auxiliary equation. 

In the present work, we will present a study of two­
dimensional time-dependent Hamiltonian systems from the 
point of view of the existence of an exact invariant. The 
method used is a natural extension of our previous work on 
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completely integrable (time-independent) Hamiltonian sys­
tems in two dimensions. 23 However, the explicit time depen­
dence of the potential will modify the calculations apprecia­
bly. We will use a direct approach for the construction of an 
invariant polynomial in the velocities of degree I or 2. From 
this respect, our work constitutes an extension in two dimen­
sions of the work of Lewis and Leach on one-dimensional 
time-dependent Hamiltonians. 

In the second and third sections of this paper, we pre­
sent the construction of linear and quadratic invariants, re­
spectively. In the fourth section, a comparison with previous 
results is presented, together with our conclusion. 

II. CONSTANTS LINEAR IN THE VELOCITIES 

We will consider a Hamiltonian ofthe form 

H = ! (x2 + y2) + V (x,y,t ). ( 1) 

The equations of motion associated to this system are 
simply 

X= - Vx , ji= - Vy , (2) 

and we can notice that, as the potential V depends explicitly 
on the time t, H is not a constant of the motion. We will first 
concentrate on the search of an invariant linear in the veloc­
ities. It has the general form 

C=gOx +gly + h, (3) 

where gO, gl, and h are functions of x, y, and t. 
The condition dC I dt = ° leads to the following polyno­

mial identity in terms of x and y: 
g~x2 + g~y2 + (g~ + g! )xy + (g~ + hx )x + (g: + hy)y 

+ h, + gOx + glji = 0. (4) 

This is equivalent to equating to zero the coefficient of 
each distinct monomial in x and y and leads to 

g~ = 0, g~ + g! = 0, g~ = 0, 

g? + hx = 0, g: + hy = 0, 

h, + gOx + glji = 0. 

(5) 

(6) 

(7) 

The integration of the system (5) is straightforward and 
reads 

gO = a(t )y + P (t ), gl = - a(t )x + y(t ). (8) 

The system (6) leads to a compatibility condition (9) 
which ensures the existence of the function h: 

g~y =g:.x· 

In terms of a, p, y we get: 

2a'(t) =0. 

(9) 

Thus, since a is time-independent, we can easily inte­
grate Eqs. (6) and obtain for h: 

h = - xp '(t ) - yy'(t ) + E(t ). (10) 

The last relation (7) reads, in terms of a, p, y, E, 

xp "(t) + yy"(t) - E'(t) + (ay + P)Vx - (ax - y)Vy = 0. 
(ll) 

Equation (11) is the linear PDE that the potential V 
must satisfy for the system to possess an invariant linear in 
the velocities. 
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We will distinguish two cases. 
(a) a = 0. Equation (11) reduces to 

PVx + yVy +P"x + y"y - E' = 0, 

or, equivalently, 

Vs + V,/ + P "PS + y" y1] - E' = 0, 

with S = xlP, 1] = yly. 

The integration of the homogeneous equation Vs 
+ V,/ = ° is straightforward and reads 

(12) 

V = F(S -1],t). (13) 

We need now a particular solution ofEq. (12). For this, 
we introduce the variables 

u = S - 1], v = 1] + S, 
which lead to the following form ofEq. (12): 

2 Vv - Bv - ru - E' = 0, 

with 

r = - ! (f3 "P - y" y), B = - ! (f3 "P + y" y). 

It is immediate to check that 

(14) 

V = ! (ruv + ! Bv2 + E'V) is a solution of(14), and thus the 
general solution ofEq. (12) reads 

V=F(S-1],t)+ HlF+ !B)s2-(r- !B)1]2 

+ BS1] + E'S + E'1]]. (15) 

Let us now examine the second case. 
(b) a;60. In terms of the variables 

s=x-yla, 1]=y+Pla, 

Eq. (11) becomes 
pIt y" 

1] Vs -SV,/ + -S+ -1] 
a a 

P"y Py" E' 
+-----=0. 

a 2 a 2 a 

Transforming into polar coordinates, S = p cos rp, 
1] = p sin rp, it takes the simpler form 

Vcp = £p cos rp + Lp sin rp + P"y -py" 
a a a 2 a 

Its general solution is thus 

(16) 

V = F( p,t) + (f3" la) p sin rp - (y" la) p cos rp + Arp, 

or, in terms of sand 1], 

V = £ 1] - L s + A arctan ( !L ) + F (s 2 + 1]2,t ), 
a a S 

(17) 

with 
A = (f3"y - py")la2 - E'la. 

Formulas (15) and (17) exhaust all the possible forms of 
potential for which a constant linear in the velocities exists. 

III. CONSTANTS QUADRATIC IN THE VELOCITIES 

The general form of such a constant is 

C=JOX2+JlXY+J2y2+g0X+glY+h. (18) 

Following the method of Sec. II, we write dC Idt as a 
polynomial of degree 3 in x and y: 
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~~ = f~X3 + (/7, + f! )X2y + (/! + Fx )#2 + f~y3 
+ (g~ + f?)x2 + (g~ + f: + g! )xy 

+ (/; + g! )y2 + (g? + hx + 2fOx + fly)X 

+ (g: + hy + fIX + 2f2y )y + (h t + gOx + gly). 
(19) 

We are thus led to systems of partial differential equa-
tions for the!, go and h. 

The first set of equations for the! 's can be easily inte­
grated: 

fo = ay2 + {3y + y, 

fl = - 2axy - {3x - oy - E, (20) 

f2 = ax2 + ox + ;. 
The functions! have the same quadratic dependence in 

x and y as in the case of a time-independent Hamiltonian. 2 
I 

The main difference, here, stems from the fact that the coeffi­
cients depend explicitly on time. The constant C (18) can also 
be written in terms of the angular momentum L = xy - yx: 

C = aL 2 - {3xL + oyL + yx2 - EXY 

+ ;y2 + gOx + gly + h. (21) 

The remaining equations have the form 

g~ + f? = 0, g~ + f: + g! = 0, g! + f; = 0; (22) 

g? + 2fox + fly + hx = 0, g: + fIX + 2f2y + hy = 0;(23) 

ht + gOx + gly = O. (24) 

From the knowledge of the functions!, system (22) al­
lows the calculation of the function go providing the follow­
ing compatibility condition is satisfied: 

(f7,y - f!y + f~x ) t = O. 

Due to the special form (20) of the functions!, this 
condition reduces to a'(t ) = o. Once the gj'S are known, a 
second compatibility condition, which allows the calcula­
tion of h, results from the system (23) 

; (g? + 2fox + fly) = ! (g: + fIX + 2f2y ). (25) 

That is 

fl(Vyy - Vxx ) + 2((0 - f2)Vxy + (2/7, - f!) Vx 

(26) 

This last relation is quite similar to the one obtained in 
the search of a time-independent potential V that admits a 
constant of motion quadratic in the velocities.21 The differ­
ence is only in the existence of a nonhomogeneous part in 
this linear POE. This remark will lead us to the same classifi­
cation as in the autonomous case. Before proceeding further, 
let us point out that, once V is determined satisfying (26), 
there remains a last relation (24) to check for the system to 
possess a quadratic invariant. This was not the case for time­
independent potentials and, as we will see further, this rela­
tion strongly reduces the admissible forms of potentials. 

We will distinguish three distinct cases, according to 
the value of the highest power of the angular momentum L 
that appears in the constant (21). In each case, we will reduce 
the form of the invariant by translations and rotations of 
coordinates. One can note that a rotation does not change L, 
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while a translation keeps x and y invariant. 
Case (a): a = {3 = 0 = O. This is the separable case. 

There is no dependence on L in the constant C. 
By an adequate rotation, the coefficient of xy can be set 

to zero unless (y - ; )2 + E2 = O. 
Case(b ):a = O,{3(oro )nonvanishing. Translationsofx 

and y allow us to eliminate y - ; and E and an adequate 
rotation of coordinates allows the choice 0 = 0, unless 
{32 + 0 2 = 0 as can be easily seen from the form (21) of the 
constant C. 

Case (e): a =1= o. Translation of x andy allow the elimina­
tion of all the linear in L terms in (21). (f3 = 0 = 0.) Then, by a 
rotation,; can be set equal to zero unless ~ + (y -; f = o. 

We will now proceed with the integration ofEqs. (22)­
(24) in each of the distinct reduced cases (a), (b), and (c). 

Case (a):fo = y'/I = 0'/2 =;. The integration ofEq. 
(22) leads to 

go = - y'x + Oy + /t, gl = -;'y - Ox + K. (27) 

In the following, we will choose /t = K = 0; it corre­
sponds to an adequate translation of coordinates. However, 
with 0 =1= 0, there exists no solution to the system other than 
trivial harmonic oscillator: V = ! 4> (t)x2 + ! l[I(t ll. 
Apparently, the condition 0 =1=0 imposes severe constraints 
on the potential. For this reason, we will look for solutions 
with 0 = O. 

The condition (25) writes 

2(y-;)Vxy =0, 

or 

V=F(x,t) + G(y,t). (28) 

Integration ofEq. (23) for h is straightforward and. leads 
to 

h = 2yF + 2;G + ! y"x2 + !; ''y2. (29) 

And finally, Eq. (24) takes the following form: 

2y'F + 2; 'G + 2yFt + 2;G, + ! y'''X2 + !;'y 
= - y'xFx - ;'yGy. 

This equation separates (up to a function oftime, to be 
included in For G ) into the system 

2y'F + 2yFt + y'xFx = - ! y'''X2, 
(30) 

2;'G+2;Gt +;'yGy = _ !;"'y2. 

In order to solve the equation for F, we look for a parti­
cular solution ofthe form F(x) = x 21[1(t). It leads to 

1[1' + 2(y'ly) 1[1 = - ! (y'''ly), 

whose solution writes 

1 [ y" 1 ( y' )2] 
l[I(t) = - 4' r - 2 r = 

(7" 

2 (7 

with y= rr. 
The general solution of (30) is now easy to obtain; it 

writes 

F(x,t) = (lIY)X(xlJ}/) + x 21[1(t). (31) 

The expression of G is similar in terms of; and y, instead of y 
andx. 
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We will now investigate the particular case 
C + (r - t )2 = 0, where the rotation is not possible. 

One obtains for J: and gj 

10 = r, II = i(r - t ), 12 = t, 
gO = _ r'z, gl = it'z 

[with the integration constants taken equal to zero as in the 
case (a) aboveJ, with z = x + iy. 

The partial differential equation for V (26) has the form 

E(Vyy - Vxx ) - 2iEVxy = - ia", 

with a = t + r,E = i(r - t),orintermsofzandz = x - iy, 

- 4iEVz:z = a". 

The integration for V is thus trivial; 
V = i(a" 18E)r + zFz (z,t ) + G (z,t ). (32) 

The system of PDE for h, in terms of z and Z, reads 

hz = ! [ - g? + ig: + Vz (2/0 + 21z) 

+ Vz(2fo - 2/2 - 2ifd] , 

hz = ! [ - g? - ig: 

+ Vz (2/0 - 212 + 2ift! + Vz (2/0 + 2/2)] . 

(33) 

In this precise case, due to the values of g andJ, it re­
duces to 

hz = - iE"(z/2) + aVz - 2iEVz, hz = a"(z/2) - aVz' 

leading thus to 

h = aV + (zZl2)a" - iE"(r/4) - 2iEF. (34) 

The last relation is now the following: 

ht = - a'z(ZFz + Gz) - tt'z[ (a" 14ttJZ + F]. 

Separating the different terms according to their depen-
dence on z in this last relation, we obtain 

(aa" IE)' = 0 (terms in z2), 

hence aa" IE = 4v (const); 

a'Fz + aFzt + a'zFzz 

(35) 

= - ~ (2a''' + E';") (terms in Zl); (36) 

a'G + aGt + a'zGz 

= - E"'(r/4) - 2E'F- 2EFt - E'zFz 

(terms in ZO). (37) 

One recognizes readily in (36) and (37) the same left­
hand side as in Eq. (30). Integrating, we obtain for F: 

F= f/>(zla) - ! mr, (38) 
where m = ! a" la - ! (a'la)2 + vdif. 

Once Fis known, it is easy to check that the right-hand 
side of (37) is of the form nr - 2E'f/> + (l/a)(2Ea'lif 
- E')zf/>', where n = - ttm 14 - 2p,'m - ttm'. 

The solution of (37) is thus the following: 

G = J..- w( ~) + pr - 2E f/> (qz), 
a a a 

(39) 

where, 

-3J -2d 1 JE p = - a T/CT t, q = - In - . 
a a 
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(The case of power-like f/> should in principle be treated 
apart). 

Relations (32), (38), and (39) determine the precise form 
of a potential V for which a constant of that kind exists. 

Let us proceed now with the search of a constant linear 
inL. 

Case (b ): In this case, we obtain for J: and gj: 

r = fly + r, II = -flx, j2 = r; (40) 

gO = _ (/3'y + y)x + Oy +A, 

gl = - YY + fl'X2 - ax + K. (41) 

The analysis of the corresponding case for time-inde­
pendent Hamiltonians has shown that the adequate varia­
bles were 

u = P + T/, v = P - T/, 

where 

P = ~x2 + y2, 1] = y. 

Moreover, a detailed analysis has shown that there is no 
solution with nonvanishing A and K and we will thus put 
them to zero in order to alleviate the presentation. In terms 
of u and v, Eqs. (23) take the following form: 

1 
hu = ( - flv + 2r)Vu + 4 ( - fl "v + r")(u + v) 

+ J..- O'v(u + v) 
4 .,fUV 

hu = (flu + 2r)Vu + J..- (fl flU + r")(u + v) 
4 

_ 1.- O'u(u + v) 

4 .,fUV 

(42) 

The compatibility equation resulting from (42) leads to 
a PDE for Vin terms of the independent variables u and v. Its 
solution is straightforward: 

V= F(u)+G(v) _ 3 fl" uv+ 2 O'.,fUV, (43) 
u+v 8fl 3fl 

as is the integration of (42): 

h=fluG(v)-vF(u) +2r F (U)+G{v) + 1.- fl 'uv(v-U) 
u+v u+v 8 

+ 1.- r"(u + V)2 _ ~ rfl "uv + 4rO' .,fUV 
8 4 fl 3fl 

+ 1.- a '(u - v).,fUV. (44) 
6 

There remains now Eq. (24) to be checked. This relation 
will impose constraints on the form of the potential Vand on 
the time-dependent functionsfl, r, O. Three different kinds of 
terms, functions of u alone and valone, as well as terms 
where u and v are mixed together, are involved. These three 
families off unctions will give three distinct relations. After 
some lengthy manipulations, it results, from the mixed term 
relation, that a and fl " must vanish. In this case, this last 
relation reduces to 

G + (/3lfl')G, + vGv = 0, F + (/3lfl')Ft + uFu = O. 
(45) 
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On the other hand, the terms that depend only on u in 
the relation (24) lead to the following constraint: 

F + (2yly')F, + uFu = 0. 

Similarly, we have for G: 

G + (2yly')G, + vGv = 0. 

All these equations are compatible only if y = /3 2. 

We recognize in (45), Eq. (30) up to the right-hand side 
and we thus obtain the solution of (45): 

F(u,t) = (lI/3)tP(ul/3), G(v,t) = (lI/3)'l'(vl/3). 

In conclusion, the potential 

V = tP [(y + ~)I/3] + fJI [(~ - y)//3 ] 

/3~x2 + y2 

(46) 

is the general form of potential for which a constant ofmo­
tion linear in the angular momentum exists. The particular 
case where 8 = i/3 must be treated apart. 

One obtains, in this case, for/; and gi: 

10 = /3y + y, II = - /3x - i/3y = - /3z, 

12 = i/3x + y; 

go = - /3'yz - y'x, gl = /3'xz - y'y; 

withz =X + iy, z =X - iy. 

The partial differential equation for V [(26)] in terms of z 
and z reduces to 

2zVzz +3Vz = - ~(/3"I/3)z. (47) 

Integrating (47), one finds 

V = Z-1/2F(z,t) + Gz(Z,t) - !(/3"I/3)zz. (48) 

It is now easy to obtain from (33) the equations for h: 

hz = ! (y" + i/3 "z)Z + (i/3Z + 2y)Vz, 

hz = ~ (y" - i/3"Z)z - 2i/3zVz + (i/3Z + 2y)Vz· 

From these we deduce the value of h: 

h = (i/3Z + 2y) V + ~ (y" + i/3 "z)zz - i/3G (z,t ). (49) 

As before, there remains a last relation (24) to be veri­
fied. It involves three distinct and independent families of 
terms; namely functions ofz that multiply either Z-I12, z, or 
1. We thus obtain the following three equations: 

2y' /3;' + y( /3;' )' - + y''' = 0, 

~ (i/3 'Z + y')F + (i/3Z + 2y)F, + (y' + i/3' z)ZFz = 0, 
2 

Gz,(i/3Z + 2y) + Gz(i/3'z + 2y') + (i/3'z + y')ZGzz 

= if3'G + if3G,. 

By analogy to the general case (b), we will look for solu­
tions with y = 0. Indeed in that case, equations reduce to 

~/3'F +/3F, +f3'ZFz = 0, 
2 

z( f3G,z + f3 'Gz + f3 'zGzz ) = f3 'G + f3G" 

and we recognize the form of the Eq. (45) for Eq. (50). 
The general solution for F thus reads 
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(50) 

(51) 

F = (11/3 3/2)X(zl/3 ). (52) 

Concerning the equation for G, the change of the depen­
dent variable 

H=zGz - G 

leads to the expression 

/3 'H + /3H, + /3 'zHz = 0, 

the solution of which reads 

H = (lI/3)fl (zl/3), 

or, equivalently, 

H= ~ ![ ~tP(;)], 
and, finally, 

G = (lI/3)tP (zl/3) + zfJI(t). 

(53) 

In conclusion, provided Vis given in terms of z and z by 
formulas (48), (52), and (53), a constant of the motion, linear 
in L exists with the condition f3 = i8. 

Case (e): The last case to examine is the case where the 
constant C has a quadratic dependence in L, namely, after 
the necessary reductions, the constant (21) assumes the form 

C = aL 2 + yx2 + ;y2 + go.i + gJ! + h. 

As we have seen before, [(9)], a must be time-indepen-
dent and will be taken equal to 1. 

We first examine the case y = ;. 

The corresponding values ofthe/;'s andg;'s are 

10 = y2 + y, II = - 2xy, 12 = x 2 + y; 

go = - y'x +AY, gl = - y'y -AX. 

The PDE for V is easily solved using polar coordinates 
and leads to the following form for V: 

V = F(O,t )/p2 + G (p,t) - OA '(t )12, (54) 

0= arctan(ylx), p2 = x 2 + y2. 
We write has 

h = 2y(F Ip2) + 2F + 2yG - YA '0 + Y"p2/2. (55) 

The last compatibility relation, in terms of p, 0, and t 
reads 

h, = - y; Vp -AVe' 

Again, three different kinds of terms appear which 
must vanish separately; this leads to the following relations: 

2F, - OY'A ' - yOA " = AA '/2, 

(y'''/2)p2 + 2y'G + 2yG, = - y'pGp' 

2yF, = -AFe. 

The equation for G has been encountered previously. Its 
solutions is 

1 (p2 ) p2 [ y" 1 (Y' )2] G(p,t)= ytP Y - 4 r - 2 Y .(56) 

Now, the two distinct equations for Fput constraints on 
yandA. 

A solution 

(57) 

exists whenever k = YA 'is time independent. 
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The general solution V is thus the following: 

V = ~ 4> ( X2; y2 ) _ X2; y2 [r; - ~ ( ~ y] 
(58) 

1 (,.1,2 k y) k y + - - -arctan- - -arctan-, 
x2 + y2 8 2 x 2r x 

with 

A =ki' dr . 
o r 

When A = 0, the solution is slightly different, because F 
can be any time-independent function of O. If r = 0, one has 

V= F(~) + G(p,t). (59) 
P 

If r#O, one has 

V= F(O) + "!"4>(p2)_ p2[L _ ..!..(r')2].(60) 
p2 r r 4 r 2 r 

We have also examined in detail the case r#;, but it 
failed to yield any solution. Thus we will not exhibit any 
calculations here. This completes the study of the time-de­
pendent Hamiltonian with an exact invariant quadratic in 
the velocities. 

IV. COMPARISON WITH OTHER RESULTS 

As was stated in the Introduction, there exist numerous 
studies on one-dimensional time-dependent systems but sig­
nificantly fewer on two- (or more-) dimensional ones. More­
over, as the Ermakov approach is most often employed, the 
equations of motion are usually not Hamiltonian. Still some 
comparisons with existing results can be made. 

To start with, our separable case should encompass the 
results for the one-dimensional systems of Lewis and 
Leach. 19 They dealt with time-dependent Hamiltonian sys­
temsin onedimensionH = !p2 + V(x,t ),andgave, inparti­
cular, conditions for which a potential V (x,t ) possesses a con­
stant quadratic in the velocity p. These conditions determine 
the precise form of V in terms of arbitrary functions of time, 
namely, 

V(x,t) = - F(t)x + ..!.. n 2(t)x2 + ~ u( x - v). 
2 P P 

(61) 

Here, U is an arbitrary function of its argument and F, n 2, p, 
and v are arbitrary functions submitted to the following con­
straints: 

p + n 2(t)p - k /p3 = 0, ii + n 2(t)V = F(t). 

In Sec. II, we examined separable potentials 
V = F(x,t) + G (v,t). Thus, the two directions x andy decou­
pIe and we have in fact two one-dimensional Hamiltonians. 
The following form was found for F(x,t) [and similarly for 
G (v,t )]: 

1 (X) x
2 [ r" 1 (r' )2] F(x,t) = r 4> rr -"4 r -"2 r . 

This form is identical to (61) up to a translation of x, 
which would correspond to a choice of A #0 in go. 

We tum now to genuine two-dimensional systems. In a 
recent publication, Lutzky9 proved that the quantity 
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C= -(xy-xy)2+ qI"(A)-1 fX

/
Y dA 

2 0 A 
is conserved by the motion described by the equations 

x + ul(t)x = !I(x,y), ji + (()2(t tv = !2(X,y) (62) 

provided that!1 and!2 satisfy the relation 

X!2 - y!1 = (l/xy)qI"(x/y). (63) 

This constant C is quadratic in L and corresponds to the 
case (c) we introduced in Sec. III. Moreover we have 
r = ; = o. We have found that the only form of the potential 
Vin that case was given by (59). In order to compare our 
results to Lutzky's, we must examine under which condi­
tions his equations derive from a Hamiltonian. This happens 
if there exists a function W such that!1 = Wx'/2 = Wy. Re­
lation (62) is thus equivalent to 

x Wy - Y Wx = qI" (x/y)/xy, 
which in polar coordinates reads 

aw F'(O) 
ao = fl' 

F determined in terms of qI". That is, W = F (0 )/ p2 + G (p,t ). 
This result coincides with (59). 
So we conclude that Lutzky's result is identical to ours 

whenever the equations of motion (62) are Hamiltonian. 

V. CONCLUSION 
In this paper, we have presented an investigation of 

time-dependent Hamiltonians in two space dimensions from 
the point of view of the existence of an exact invariant. The 
method we have used was the direct computation of the in­
variant, which was employed in our previous work on 2-D 
time-independent Hamiltonians, as well as in the work of 
Lewis and Leach on I-D systems. We were able to identify 
the forms of the time-dependent potential for which an in­
variant linear or quadratic in the velocities exists. Thus our 
results extend the results obtained previously by various 
groups to the case of Hamiltonian systems. In particular, 
they contain as a special case the Hamiltonians of Lewis and 
Leach and have a nonzero overlap with Lutzky's results. 
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Integrals of motion for Toda systems with unequal masses 
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We present new integrals of motion for the Toda lattice (chain of particles in one dimension with 
exponential interaction) for two special cases of boundary conditions: the free-end lattice with 
three non-equal-mass particles and the fixed-end lattice for two particles. In both cases, we use 
two distinct approaches in order to identify the integrable cases: direct search of the integral of 
motion and group theoretical methods. Our results are in agreement with the predictions of 
Painleve analysis. 

PACS numbers: 03.20. + i, 02.30. + g, 02.20. + b 

I. INTRODUCTION 

The Toda lattice I is a one-dimensional system of equal 
mass particles interacting via nonlinear forces: the interac­
tions occur only between nearest neighbors and are of expo­
nential type. With this lattice, we are in presence of a "small 
miracle": The system is integrable for any number of part i­
cles in the chain. (Integrability, in the case of Hamiltonian 
systems of N degrees offreedom, is synonymous to existence 
of N analytical, single-valued integrals of the motion, time 
independent and in involution.) The integrability for period­
ic boundary conditions has been shown independently by 
Henon,2 Flaschka,3 and Manakov.4 The first has explicitly 
calculated the integrals of the motion, while the two others 
deduced the integrability from group theoretical methods. 

Moreover, this system is also integrable for other 
boundary conditions. The integrals in the case of the fixed­
end lattice (two ends of the chain are set permanently equal 
to zero) can be easily deduced from the periodic case as 
shown by Henon.2 The free-end lattice (the beginning of the 
chain is set to - 00, the end is set to + 00) has been dis­
cussed by Moser.s He has shown that the system admits the 
Lax-pair representation and has used the latter to calculate 
the N integrals of the motion. 

The aim of this work is to use this twofold approach, 
i.e., direct computation of the constant of motion and group 
theoretical methods (i.e., search for Lax representations), in 
order to study other cases of integrability in low-dimensional 
and unequal-mass systems. Indeed, the great number of inte­
grability conditions to be satisfied in the general Nbody case 
compels us to deal with particles of equal masses and equal 
ranges of interaction. However, one can reasonably hope 
that for systems of two or three particles, the constraints of 
equal masses can be relaxed. A very useful tool for the identi­
fication of integrability candidates is the Painleve criterion 
as introduced by the work of Ablowitz, Ramani, and Segur.6 

They have conjectured that integrability is intimately related 
to the analytic properties of the solutions of the equations of 
motion. Namely, whenever the solutions possess the Painle­
ve property, i.e., their only movable singularities on the com­
plex-time plane are poles, the system is integrable. The reci­
procal is also true and has been verified for the known 
integrable systems. However recent results of Ramani, Dor­
izzi, and Grammaticos 7 have shown that for two-dimension­
al Hamiltonian systems, integrability can sometimes be asso-

ciated to some weakened Painleve property. In the case of 
the Toda system at hand, such a generalization is unneces­
sary, and the known integrable cases possess the full Painle­
ve property. 

In this paper, we will concentrate on two particular 
forms of the Toda system. 

(1) The free-end lattice with three masses: 

pi pi p~ _ _ 
H=--+--+-+eE(q, q')+eq, q,. 

2ml 2m2 2 
The integrability of this system cannot be verified nu­

merically by the surfaces of section method since the above 
Hamiltonian describes a scattering problem. 

In a recent publication,8 Bounds, Segur, and Vivaldi 
have found that the Painleve property is satisfied for three 
values of the parameters: 

(a) 
E(2E - 1) 

m2 =2E-I, 
1 

m l = 
2-E 

, - <E<2, 
2 

(b) 
E(E- I) 

m2 = E -1, 1 <E<2, m l = 
2-E 

, 

(c) 
3E(2E - 1) 

m2 = 2E- 1, 
1 2 

m l = , - <E<-. 
2 - 3E 2 3 

The integrability of case (a) has been proved rigorously by 
Mose~ and Bogoyavlenski.9 Cases (b) and (c) can be deduced 
from the theorem ofBogoyavlenske and are explicitely stud­
ied in Ref. 10. 

In Sec. II, we will present a direct computation of the 
constants of motion for all the three cases (a), (b), and (c) 
above. 

(2) The fixed-end lattice with two masses: 
2 2 

H = ~ + J!2- + e-{jq, + eE(q,-q,) + eq,. 
2ml 2m2 

Casati and Ford predicted integrability for E = 8 = 1, 
m l /m 2 = 1, based on a numerical study. 

The Painleve analysis of Bountis et al. suggests three 
cases of integrability: 

(a) m l /m 2 = 1, 8 = E = 1, 
(b) m)/m2 = 1, 8 = 1, E = !, 
(c) m)/m2 = j, 8 = 1, E = !. 
On the other hand, the Lie algebra study of Bogoyav­

lensky yields two integrability candidates: case (b) above and 
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(d) m l/m2=!' c5=!, E=!. 

In fact, we find five integrable combinations of masses 
and ranges: cases (a), (b), (c), (d) listed above and 

(e) ml/m2 = 1, c5 =!, E = !. 
Actually all five integrable cases can be predicted by the 

Painleve analysis, as was shown by Ramani. II 
Sec. IV deals exclusively with group theoretical meth­

ods. This approach leads to the identification of the integra­
ble cases listed above as can be shown in several recent 
works.9

•
10

•
12 However their approaches are general and rath­

er abstract. Our aim in this section is to explicit these results 
in the various cases of integrability. In particular we exhibit 
the Cartan matrix for the three different cases for which the 
free-end Toda lattice admits the Lax-pair representation. 
This allows the calculation of the integrals in each case. The 
same procedure is applied to the fixed-end case. 

II. FREE-END LATTICE 

Let us consider a free-end lattice with three, non-equal­
mass, particles. In that case, the Hamiltonian governing the 
system reads 

222 

H = J2... +...!!.::..- +...!2..-. + eE(q, - q,) + e q, - q,. (2.1) 
2ml 2m2 2m3 

In order to explicit the motion of the center of mass z of the 
system, we introduce the following change of variable: 

x = E(ql - q2), y = q2 - q3 Z = mlql + m 2q2 + m 3q3' 
(2.2) 

The equations of motion associated to the system are 
derived from the Lagrange equations: 

~ (mlqI! = - EX, ~ (m2q2) = EX - Y, at at 
~(m3q3)= Y, at 

(2.3) 

with 

X = eE(q, - q,) = e>', Y = e q, - q, = eY. 

From Eqs. (2.2), it is obvious that 

z = mlql + m 2q2 + m 3q3 = O. (2.4) 

One can also obtain, from (2.2), the equations of the 
motion of x and y: 

" _ ,d" " ) _ E (Y m l + m2 X) X-IO\QI-q2 -- -E , 
m2 m l 

" _ " "_ E (X m 2 + m3 Y) y - Q2 - Q3 - - - , 
m 2 Em3 

which, after a scaling in time, read 

x= Y-aX, Y=X-py, 

with 

a = E(ml + m 2)1m l, P = (m2 + m 3)1Em3. 

(2.5) 

(2.6) 

The equations for (x, y) and z are separated. So, for the 
system (2.3) to be completely integrable it is sufficient that 
the system (2.6) itself be integrable. It already possesses a 
first integral of motion, namely the energy, obtained by sub­
traction of the center of mass energy from the Hamiltonian 
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H (written in terms ofx andy) 

E= m 3(m l + m 2) (px2 + 2Xy + ay2) +X + Y. 
2a(ml + m2 + m3 ) 

(2.7) 

We will then look for a second integral polynomial in x and y, 
i.e., ofthe form 

N n 

C = I I f~ xn - k y\ (2.8) 
n=Ok=O 

wheref~ are general functions ofx,y. (Only powers of the 
same parity in the velocities will appear in the sum due to the 
time reversal invariance ofthe Hamiltonian.) We will ex­
haust all the possible constants of the form (2.8) up to order 
N=6. 

This method has already proved to be a valuable tool in 
the study of integrable dynamical systems with polynomial 
potentials. In particular, in the case of polynomial potentials 
of degree 3, it allows the calculation of the integrals of mo­
tion in all the Painleve cases. 13 This will be the case for the 
Toda lattice as well. 

The complete details for the search of a constant of or­
ders 2, 3, and 4 with a general potential are exposed in Ref. 
13. In this paper, we will just present the calculation in the 
particular case of the Toda potentials. 

A calculation at order 2 does not give any result. 
At order 3, the form of the integral is 

C=/OX3 + f lx
2y + f~y2 + f 3y3 +goi +gIY' (2.9) 

A direct computation shows that the,.t;'s must be constant. 
The condition dC / dt = 0 leads to a system of partial 

differential equations for the gj's: 

3 I' " 1''' + ago - 0 JoX+JiY ax - , 

2 I' X + 2/ y" + ago + ag I = 0 
JI 2 ay ax ' 

/ .. 3/" + agl - 0 ~+ 3Y --. 
ay 

The compatibility condition, necessary for the integra­
tion of the equations for the gj'S, 

~(f~+3hY)- _a_(2flx+2f2Y) 
ax2 axay 

+ :y: (3foi + flY) = 0, (2.10) 

is here considerably simplified thanks to the form of the Eqs. 
(2.6) for x and y. Indeed, as the functions X and Y depend 
only on x andy, respectively, we are led to the conditions 

(2.11) 

One can then easily integrate the equations for the gj 's: 

go = (ap - l)flX + 2(Pf2 - fl)Y' 

gl = 2(afl - f2)X + (a P - l).t;Y. 

It remains just to satisfy the condition 

goi +glY = O. 

(2.12) 

This expression is an identity in terms of the indepen­
dent functions ofx andy:X 2,XY, y2. Thus thecoefficientsfl 
and}; must satisfy three linear equations: 
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aiJ(3 - af3) + 2/2 = 0, - 2/1 +1312(3 - af3) = 0, 

II (2a - a 13 - 1) + 12(213 - a 13 - 1) = O. 
(2.13) 

This system has a nontrivial solution (/1'/2) whenever a and 
13 satisfy the two equations 

a(3 - a 13 )(2 13 - a 13 - 1) + 2(2a - af3 - 1) = 0, 

13(3 - af3)(2a - af3 - 1) + 2(213 - af3 - 1) = 0, 
(2.14) 

or equivalently 

(a-f3)(af3-1f=0. 

The condition a 13 = 1 is to be discarded because, in this 
case, the change of variable (2.2) is not defined. 

Thus a = 13 (i= 1), the first equation (2.14) then reads 

(a- W(a+ W(a-2)=0. 

When a = 13 = 2 (/2 = -II) or, in terms of E, 

E(2E - 1) 
m l = , m2 = 2E - 1, m3 = 1, 

2-E 
1 

- <E<2, 
2 

the system (2.5) is integrable and admits apart from the ener­
gy a second constant of motion cubic in the velocities 

CI = 2X3 + 3.:ey - 3xy2 _ 2y 3 

+ 9(eX 
- 2e)i + 9(2eX 

- elY. (2.15) 

The associated free-end Toda lattice is then also inte­
grable. We recover thus the first case quoted by Bountis et al. 
and treated independently by Moser and Bogoyavlenski. 

Let us consider now an integral of order 4 in the veloc­
ities 

C = 1~4 + I Ix3y + lzi2y2 + J;xy3 + hy4 

+g~2 +glxy +g7Y2 + h (x,y). (2.16) 

As in the preceding case, we can restrict ourselves to 
constant/; 's and/4 can be taken equal to zero by adding to C 
the suitable multiple of the square of the Hamiltonian. 

We recall the form of the compatibility condition for 
the integrability of the g;'s: 

~ (4 I' " + I' ") - ~ (3 I' " 2/ ") ay 3 JfYC J\ Y ay2 ax J IX + 2Y 

+ a a;x2 (2/z.i + 3/3'y) - :3 (/3X + 4/4'y) = 0. 
y (2.17) 

In the particular case where x and,Y are given by Eq. (2.5), 
this last equation reduces to 

a3 a3 

a
y

3 (4/oY - f3/lY) + ax3 (f3aX) = 0; 

thus 

(2.18) 

Using (2.17), the equations for the g .. 's can be integrated to 
give 

go =iJ(af3 - 1)X + (21312 - 3/1)Y' 

gl = (3aft - 21z)X - 2/2 Y' 

g2 = 2alzX· 
(2.19) 

The second compatibility condition for the integrability of h, 

; (2goi + g I ji) = ~ (g IX + 2g2 ji), (2.20) 
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is an identity in terms of the independent functions X 2, XY, 
y2, as in the preceeding case. We obtain thus a system in 
terms ofll,h, a, 13: 

a II - 212 = 0, II - 13 Iz = 0, 

iJ(3a -af3- 2) + 2/2(13- a) = 0. (2.21) 

If the conditions 

af3=2, (l-a)(a-2)=0 

hold, the system (2.21) will have a nontrivial solution (ft,Iz). 
We have thus obtained that whenever 

(a) a = 1,13= 2 or (b) a = 2,13 = 1, (2.22) 

the system (2.6) is integrable and possesses a second integral 
quartic in the velocities. 

The two cases (a) and (b) are related by changing E in 2E, 
i.e., a scaling on x (x in x/2). The case (b) writes, in terms of 
m l, m2, m 3, and E, 

E(E- 1) 
m t = ,m2 = E - 1, m3 = 1, 1 < E < 2. 

2-E 
(2.23) 

In that case, the constant C2 is given by 

C2 = X4 + 4x 3y + 4x2y2 + 4(eX 
- eW 

+ 8(2~ - e)iy + l~y2 + 4e2y
• (2.24) 

So the Toda lattice related to that case is integrable. The 
values of the parameters m .. and E correspond to the second 
case provided by the Painleve analysis (cf. Ref. 8). 

The case of a constant of motion quintic in the velocities 
has been examined but does not yield any positive result. 

Let us now consider the case of a constant of order 6 in 
the velocities. The computations are similar but more com­
plicated. 

The form of a sixth-order constant is 

C = e~6 + etxSy + ezi4y 2 + e3x
3y 3 + e4x2y4 

+ esxys + e6y6 + 1~4 + IIx3y + lzi2y 2 + 13xy 3 

+ 14y4 + g~2 + glXY + g2y2 + h. (2.25) 

As in the preceding cases, the choice of constant ei's 
emerges naturally in the computation (e6 can be taken equal 
to zero by adding to C a multiple of the cube of the Hamilton­
ian). Now, in order to equate to zero the coefficients of order 
5 in dC / dt = 0, we obtain a system of partial differential 
equations for the/; , which leads to the new compatibility 
condition (2.26). As soon as this last condition is satisfied, 
one can calculate the functions/;. The problem is then re­
duced to the search ofthegi 's and h from relations that read 
exactly the same as in the previous case of constants of order 
4 in the velocities. 

The new compatibility condition gives 

as (6e " ") as (5" 2 .. ) -s fYC + elY - --- elx + e2y 
ay ay4 ax 

a S (4" 3 ") as (3 .. 4e .. ) + -2--3 e2x + e3 Y - -3--2 e3x + 4 Y 
ax ay ax ay 

as (2'. 5 .. ) as ( ") ° +--4- e4x+ esy - -S esx = , 
ax ay ax 

(2.26) 

which immediately gives 
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6eo = eJ3, es = O. (2.27) 

The integration for the/; is straightforward: 

to = el(a {3 - 1)X + (2ej3 - 5et!Y ~oX + BoY, 

II = (5e la - 2e2)X + (3ell - 4e2)Y~IX + BIY, 
12 = (4e2a - 3e3)X + (4eJ3 - 3e3)Y~~ + B2Y, (2.28) 
13 = (3e3a - 4e4)X - 2e4Y ~7 + B3Y, 

14 = 2e4aX ~~. 

The next compatibility condition (2.17) reduces to 

{3B I - 4Bo = 0, 

aA 3 - 4A4 =0, 

2(B2a - A2) + 3(A3a - B3) + 4(Boa - Ao) + (A la - B I) 

= 2(Aj3 -B2) + 3(Bla -At! + 4(AJ3 -B4) 

(2.29) 

If a, {3, and the constants e j satisfy Eqs. (2.29), it is then 
possible to calculate the functions gj: 

go = !(4Aoa - A I)X 2 + [4(Boa - Ao) + (A J3 - BI)]XY 
+ H2(Bj3 - B I)]y2=CoX 2 + DoXY + Eoy2, 

gl = !(3A la - 2A2)X2 + [3(Bla - At! + 2(Aj3 - B2) 

- 4(Boa -Ao) - (AJ3 -BI)]XY + !(3BIl - 2B2)y2 

=CIX
2 + DIXY + E Iy 2, 

g2 = !(2A2a - 3A3)X2 + [(B3a - A3) + 4(AJ3 - B4)]XY 
+ !(4B~ - B3)y2=C~2 + D~Y + E2y2. (2.30) 

Here C j , D j , E j ; i = 0, 1,2 are complicated expressions in 
terms of a, {3 and Aj' Bj,j = 0, 1, 2, 3,4. 

The last compatibility relation (2.20) will give four other 
constraints: 

aCI - 2C2 =0, 

2(Doa - Co) + ({3CI - D I) - 2(aDI - C I ) 

- 4(Cj3 - D2) = 0, 

2(D" - E2) + (aEI - DI) - 2( {3DI - E I) 

- 4(aEo - Do) = 0, 

{3EI - 2Eo = O. (2.31) 

The nine equations (2.27), (2.29), (2.31) summarize in 
terms of a, {3, and the e j 's the conditions for which the system 
possesses an integral of order 6 in the velocities. They form a 
linear, homogeneous system of nine equations for the six 
unknown e j • It is possible to show that, in order to get a 
nontrivial solution to this system, a and {3 have to take the 
foll<X!:ing values (up to permutations of a and {3). 

(a) a = 2, {3 = 2: The integral is the square of the con­
stant C I of degree 3 found previously (2.15). 

(b) a = 2, {3 = 1: The integral is the product of the con­
stant C2 (2.24) of degree 4, found previously, with the Hamil­
tonian. 

(c) a = ~,{3 = 2: This is a new case which corresponds to 

m _ 3€{2E-l) 
1- 2-3E' 

1 2 
-<E<-. 
2 3 

2203 

(2.32) 

For these values of the parameters, Bountis et al. 
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found the system to be Painleve. It is, in fact, integrable 
with a nondegenerate constant of the form 

C = 4x6 + 12xSy + 13x4y2 + 6X3y3 + X2y4 

+ 4(eX 
- 2e"W + (1~ - 16e")X3y 

+ lO(1ex 
- e"Wy2 + 2(4eX 

- e")Xy3 

+ 4~y4 + ( - -j-e2x + .1fex + Y + 4e2YJY2 

+ ( - -te2x + 6eX + Y + 4e2Y)Xy + ( - -te2x 

+ 4ex + y + e2YJY2 + -.f.re3x + ~e2x+Y. (2.33) 

So, every case of integrability predicted by the Painleve 
analysis8 was indeed recovered by the direct approach for 
the calculation of the integrals of motion. 

III. THE FIXED-END LATTICE FOR TWO PARTICLES 

Let us consider a fixed-end lattice with two nonequal 
masses and nonequal interactions. The form ofthe Hamil­
tonian governing the system is then 

2 2 

H = ~ +..!.::....- + e-{;x + eE(x-y) + e". (3.1) 
2ml 2m2 

In order to alleviate the notations, we put 

(3.2) 

The equations of motion read (up to a scaling in time) 

x = 8X - ED, ji = a(ED - Y), a = m llm2. (3.3) 

At this point, we remark that a change 

a' = 1/a, 8' = 1/8, E' = EI8 

leads to the same form of the equations of motion for 
5 = - 8y, 7J = - 8x. These cases are then equivalent up to 
an x, y permutation and a scaling. 

As in the preceeding section, we will systematically 
look for a second constant of motion polynomial in the ve­
locities. We will not burden the presentation by exposing 
the computations at orders 2 and 3; they did not yield any 
positive result. 

Let us then begin with a quartic constant [form (2.16)]. 
As previously, it is sufficient to deal with constant coeffi­
cients/;(f4 = 0). 

The first compatibility condition (2.17) reduces to 

II =/3 = 0, (3.4a) 

12(1 - a) + 2/0 = O. (3.4b) 

To obtain this result we use again explicitly the fact that the 
functions X and Y depend only, respectively, on x andy. 

We integrate and find the functions gj: 

go = - 4/0(X + D ) - 2a 12 Y =Fo(X + D ) + F2 Y, 

gl= -4IoD+2aJ;D==.(Fo-F2)D, (3.5) 

g2 = - 2/~=(F2Ia)X. 

Once the relations (3.4a) and (3.4b) are fulfilled, it suf­
fices to satisfy the second compatibility condition (2.20) for 
the system to possess an integral quartic in velocities. In 
this relation appear the independent functions of (x, y) XD, 
XY, DY, D2. Thus (Po, F2) must be a nontrivial solution of 
the system 

(1 - a)F2 + aFo = 0 [transcription of (3.4b)], 
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and 

(1 - €)(aFo - F2)(a - 2€) = 0, 

(3 - a)Fo + (a - 1)F2 = 0, 

W + 2~ - 3&)(Fo - F2) = ° 
(the coefficient of XY is always zero). 

It is obvious that the solutions are 

Fo = 0, F2=1=O; 

a = 1, €= 1 or € = 1· , 2 ' 

and 

o / € = 2 or 0 / € = 1. 

(3.6) 

We finally find three distinct cases for which a quartic 
integral exists: 

(a) ~=1 , o =€= 1, (3.7) 
m2 

(b) ~=1, 0= 1, 
1 

€=-, 
m2 2 

(3.8) 

(e) ~=1, 1 1 
0=- €=-

m2 2 ' 2 

(equivalent to 0 = 2, € = 1). (3.9) 

[The classifications (a), (b), and (e) are those ofthe Introduc­
tion.] 

The explicit values of the constants are 

(a) C = x2p /2 + e"x2 _ eX - Yxy + e - xp 
+ e2(x-YI/2 + eX + 2e"-X + r Y, (3.10) 

(b) C = x 2y2/2 + e"x2 _ e(x - YI/2xy + e - xy2 

- eX- Y/2 + 2e"-x, (3.11) 
(e) C = x 2y2/2 + e"x2 _ e(x - Yll2xy + e - X12y2 

+ ~-Y/2 + 2e"-xI2 + e- yI2. (3.12) 

In order to find the integrals for the other candidates of inte­
grability [cases (c) and (d) of the Introduction], it is neces­
sary, as in the preceding section, to perform the calculations 
at order 6. (Recall e6 = 0.) 

The first compatibility condition (2.25) easily gives a 
first relation between the e;'s: 

e l =e5 =0, 

Eo + (2 - a)E2 + (1 - a)E3 + (1 - 2a)E4 = ° (3.13) 

(Eo = 6eo, E2 = 2e2, E3 = 3e3,E4 = 2e4). 
The integration of the equations for the/;'s is then 

straightforward: 

10 = EoX + aE2Y + EcP, II = aE3Y + (Eo - aE2)D, 

12 = 2EzX + [Eo + (2 - a)E2 - aE3]D + 2aE4Y, (3.14) 

h =E~ -E4D, 14 =E4X. 

The second compatibility condition (2.17) gives relations on 
the coefficients E j : 

3Eo(a - 3) + E2(9a - 4 - 3a2) + E4(1 - 3a) = 0, (3.15) 

(€ - 1)[Eo(1- €)(1 - 3€) + E2(1- €)(3a€ - a -~) 

+ ~E4(4a -4a€- 3 + 4€] =0, 

and 

(Eo€(5€O - 2{)2 - ~) + a€E2[ - 5€oa + ~a + 2ao2 

- 4(0 - €)2] + a(€ - 0 )2E4(4€a - o)}(€ - 0) = 0. 
(3.16) 

This system [(3.13), (3.15), (3.16)] is satisfied for 

a = 1, €= 1, 0= 1, 
a = 1, €= ~, 0= ~, 
a = 1, €= 1, 0=2, 

which corresponds to the preceding cases (3.7)-(3.9). 
For a = 1, € = !, Eqs. (3.13) and (3.15) are satisfied and 

yield 

E2 = - 6Eo, E4 = 27Eo· 

In order to satisfy Eq. (3.16) for these values of a and €, 0 
must take one of the following values: 

0= l,jd.!. 
Now, once the system [(3.13), (3.15), (3.16)] is satisfied, 

the explicit calculation of the gj'S reads 

go = 2EoX 2 + 4EoXD + 4aEzXY + (YD /€)(4aE2€ - a2E2 + aEo) + (D2/2)(4Eo - aEo + a2E2) + 2a2E4y 2, (3.17) 

D2 3 2 ) 30-4€ ( gl =-(7Eo - 3aEo -7aE2 + a E2 + XD aE2 -Eo) 
2 €-O 

YD( 2 3 3 2E E aEo a
2
E2) + - - 4€a E4 + aEo - a 2 + 4a€ 2 - -- + -- , 

€ € € 

g2 = E4 D2 _ XD (E4o - 4a€E4) + 4aE,.%Y + 2EzX2. 
2 € 

At this point, there remains a last relation (2.20) to ensure the existence of the function h of(2.25) and thus the existence of 
the integral at this order. We can now explicit the values of gj in (3.17) for particular cases of values of a, €, and 0 solutions of 
(3.13), (3.15), and (3.16) and check whether relation (2.20) holds or not. 

(1) a =!, € =!, 0 = 1 [case (c) in the Introduction]. Thegj are 

2X2 4XD 8XD D2 2 
go=--+-- - -- -2YD+-+2Y, 

3 3 3 2 

gl = 3D 2 + 2XD - 6YD, (3.18) 

g2=9D 2/2-6XD+ 12XY-4X2 (with3Eo= 1). 
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Relation (2.20) is verified and leads to the following value of the constant: 

C = i 6/ 18 _ 2X4y2 + 9i2y4 + (e - x _ 2eY + elx - Y)/2)X4/3 + elx - Y)/2i3y + (6e" _ 3elx - y)l2 - 4e - x)X2y2 

_ gelx - y)/2i y3 + ge -)14 + (2e - 2x + 4e - Ix + y)/2 _ 8eY - x _ 6e1X+ y)/2 + ~ e-" - y + 6e2y) (iZ /3) + (3e-" - y 

+ 2e - Ix + y)/2 _ 6elx + Y)/2)Xy + (~ e-" - y _ 6e - Ix + y)lZ + 12eY - x _ 4e - 2xty2 _ 12el y - x)/2 

+ 4e- Iy+ 3.<)lZ _ 8eY- 2x _ ~e- 3x + 12e2y - x. (3.19) 

(2) a = -t, € =!, ~ = -t [case (d)). Theg i are 

g = 2X
z + 4XD _ 8XY -2YD+ D

Z 
+2Yz 

o 3 3 3 2' 

gl = 3D z + 6XD - 6YD, (3.20) 

gz = 9D z/2 + 6XD + 12YX - 4Xz. 

In this case also, one can easily check that relation (2.20) is verified and then compute the constant 

C = i 6/18 - 2X4yZ + 9i2y4 + (e- XI3 _ 2eY + elx - y)l2)X4/3 + eIX - Y)/2i3y + (6e" _ 3elx - y)/2 _ 4e- xI3)X2yz 
_ gelx - Y)/2iy3 + ge - x13y4 + (2e - 2x/3 + 4e-"16 - yl2 _ 8eY - xl3 _ 6e1x + y)/2 + ~e-" - y + 6e2Y)X2/3 

+ {3e-" - y + 6e-"16 - yl2 _ 6e1x + YJ/2)Xy + (~eX - y + 6e-"/6 - yl2 + 12eY - xl3 _ 4e - 2x13ty2 + e-" _ ~e - x _ 4e2y - xl3 

- 4e-"16+yI2 + (8e- 2x/3 +Y)/3 _ ~e-XI6-Y/2. (3.21) 

and 

(3) A precise analysis of the values 

a -I -~, 

a -I -~, 

shows that they do not yield any integrable case. 
Exactly as in the cases of the free-end lattice, we have 

been able to calculate the constants of motion for the five 
distinct cases for which the fixed-end Toda lattice was 
found to possess the Painleve property. At this point, we 
can remark that the leading power of the velocities of each 
constant of motion can be predicted from group theoretical 
considerations (see Sec. III). It goes without saying that 
such a knowledge is most helpful for the direct calculation 
of the integrals of motion. 

IV. INTEGRABILITY OF THE TODA CHAIN BY LIE 
ALGEBRA TECHNIQUES 

A. The free-end case 

We consider the Hamiltonian system in the six-dimen­
sional phase space Pi> qi: 

. aH. aH 
Pi= - -a ' qi=-a ' 

qi 'Pi 

pi p~ p~ 
H = -- + -- + - + exp[E(ql - qz)] + exp(q2 - q3)' 

2ml 2m2 2 

After an appropriate canonical transformation we cast 
it in a form suitable for the search ofintegrable cases by Lie 
algebra theory.9 The cases predicted by the Painleve analy­
sis and already found by direct calculation of the integrals 
will appear as the ones corresponding to simple Lie alge­
bras of rank 2: A 2, B 2 , G2• 

We consider the transformation, as in Sec. II, 

qi = E(ql - q2)' q2 = q2 - q3' qi = mlql + m2qz + q3' 

[which we complete to a canonical one by introducing the 
momenta pi, pi, pi satisfying f q;, P;J = ~ij ({ ... j denotes 
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the Poisson bracket relative to qi' Pi coordinates), i.e., 

pi = (lIEM)(MpI - mIP), P2 = (lIM)(P-Mp3)' 

pi = (P//M), 

where 

P=PI+P2+P3' M=m l +m2+1. 

Then the reduced Hamiltonian system in the four-di­
mensional phase space reads 

aH' aH' 
P; = - -a " q; = -a " 

qi Pi 

H'=~( I aijp;p;)+expqi+eXpq2' 
2 i= 1,2 

j= 1.2 

where 

e(M - 1) E 1 + m2 all = , a l2 =a21 = - -, a22 = --~ 
m l m2 m2 m2 

From now on, we will drop the primes in order to alleviate 
the notations. 

The above Hamiltonian system has a Lax form repre­
sentation furnishing the integrals and providing complete 
integrability, once the matrix A = (aij) is a positive scalar 
multiple of the matrix ((hi> hj))' where hI' h2 constitute a 
root system base of a simple Lie algebra of rank 2 and (.,.) 
denotes the scalar product determined by the Killing form. 
In other words, the matrix C = (cij = 2aij/ajj ) must be a 
rank 2 Cartan matrix.9 

So, one has to test the values of m I' mz for C to become 
a rank 2 Cartan matrix, i.e., one of the following matrices or 
their transpose14

: 

- 1] 
2 . 

In each case E disappears with time scaling. The cases 
corresponding to transpose matrices are equivalent within 
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TABLE!. 

Lie 
algebra Cartan matrix m}Jm2 

[-~ - ~] 
f"(2f"-1) 

A2 
m,= 

2-f" 

m2=2f"-1 

[-~ - ~] 
f"(2f"-1) 

B2 
m,= 

I-f" 

m2=2f"-1 

[-~ - ~] 
3f"(2f"- I) 

G2 
m,= 

2 - 3f" 

m2=2f"-1 

scaling of E and interchanging PI withp2 and ql with q2' In 
fact, three distinct integrable cases appear (see Table I). 

The Lax-pair form representation is obtained through 
an exact representation of minimal dimension of the corre­
sponding Lie algebra, i.e., the Hamiltonian system is pre­
sentedin theformL = [L,P], where [L,P] = LP - PL,L, 
P belong to the representation, and they are functions of P j' 
qj. 

It follows that the Hamiltonian system has integrals: 
I k = Tr(L k), k = I, 2, .... 

However we have to perform a subtle search in order 
to find the algebraically independent ones. In fact, the the­
ory of polynomial invariants l5 gives the values of k: In the 
case of the Lie algebra A2 the algebraically independent 
integrals are 12 and 13 , for B2 , 12, and 14 and for G2, 12, and 
16 , In every case 12 is the Hamiltonian (up to a multiplica­
tive constant). 

For each algebra A 2, B2, G2, a suitable representation 
can be obtained through their correspondence to sl(3, C}, 
so(5), and so(7) (see Ref. 14). 

The only problem that remains is to exhibit the specific 
form of the Lax pair (L, P) in these different cases. We will 
follow for this the method exposed in Ref. 9. 

Case A2 (the classical Toda chain). After changing the 
variables ql' q2 to 

II = exp !ql' 12 = exp ~q2' 

the equations of motion read 

i 1= 11(2PI -P2}' PI = - n, 
i 2 = 12(2p2 - pIl, P2 = -/~, 

which is a suitable form for the search of the Lax pair. 
Following Ref. 9 we know that the vectors 

l(t)=/I(t)(ea , +e_ a ,} 

+ 12(t )(ea, + e _ a,) + Plh l + P2h2' 

A (I (t)) = II(t )(ea, - e _ a,) + 12(t )(ea, - e - a,l 

satisfy the following relation in the algebraA2: i = [I, A (I)] 
where the vectors (ea ;, h k ) are chosen from the basis of the 
algebraA 2. Ifwe now use the usual matrix representation of 
A 2 , namely sl(3, C), we find the form of the Lax pair: 
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Squared time-
Hamiltonian (f"-free) scaling factor 

2 P~ - 2PIP2 + 2p; + exp q, + exp q2 

p~ - 2PIP2 + 2p~ + exp q, + exp q2 

2p~ - 6PIP2 + 6p~ + exp q, + exp q2 

[

PI 

L= ~ ~/2 l' P= [- ~ 
-P2 0 

The algebraically independent integrals are 
12 = Tr(L 2} = Hand 

f" 
2(2f"-1) 

f" 
2(2f"-1) 

f" 
6(2f"-1) 

13 = Tr(L 3) = 3PIP2(PI - P2} + i(pzli - PI/~). 

Case B2 : With the same transformation, as in case A 2, 

the equations of motion are 

and 

12 
-I 

i2 = 12(2p2 - PI)' P2 = - n· 
Using a 5 X 5 matrix representation of B2 we write the Lax 
pair: 

P2 !/2 0 0 0 

12 PI-P2 !/I 0 0 

L= 0 II 0 VI 0 

0 0 -II P2 -PI - !/2 
0 0 0 -/2 -P2 

0 ~/2 0 0 0 

-/2 0 VI 0 0 

P= 0 -II 0 - !/I 0 

0 0 II 0 - !/2 
0 0 0 12 0 

The algebraically independent integrals are 

12 = Tr(L 2) = 2H, 

and 

14 = Tr(L 4) = 2(pl -P2)4 + 2pi + 2/i(PI -P2)2 

+ 2 p~ n + 2 Pi! ~ + 2/i I ~ + 11· 
Note that 13 = Tr(L 3) = o. 

Case G2 : The Hamiltonian system under the transfor­
mation II = exp(qI/2), 12 = exp(q2/2) reads 

i l = 11(2PI - 3P2)' PI = - n, 
i2 = 12(6p2 - 3PI)' P2 = - n, 

and using the 7 X 7 matrix representation of the exceptional 
Lie algebra G2 we obtain the Lax pair 
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0 (v1/2)/1 0 0 -11V1 0 0 

v1/1 3PI-2P2 0 3/2 0 0 0 

0 0 PI 0 0 0 -//2 

L= 0 12/2 0 PI - 3p2 0 //2 0 

- (v1/2)/1 0 0 0 2PI - 3p2 0 -/2/2 

0 0 0 II 0 -PI 0 

0 0 -II 0 - 3/2 0 3P2 -PI 

0 (v1/2)/1 0 0 0 v1/1 0 

-V1/1 0 0 0 312 0 0 

0 0 0 0 0 o -/1/2 

p= 0 -/2/2 0 0 0 11/2 0 

- (V1/2)/1 0 0 0 0 o -/2/2 

0 0 0 -II 0 o 0 

0 0 II 0 - 312 o 0 

The algebraically independent integrals are 
/2 = Tr(L 2) = 6H and /6 = Tr(L 6). 

B. The fixed-end case 

We consider the Hamiltonian system in the four-di-
mensional phase space Pi> qi: 

. aH. aH 
Pi = - aql' qi = a Pi ' 

H = -.!.(.& + p~ ) 
2 m l m 2 

+ exp( - 8qd + exp E(ql - q2) + exp q2' 

After the canonical transformation q; = q;{mi,p; 
= p;I.Jmi and dropping the primes for convenience of no­
tation, the system is written 

. aH. aH 
Pi = - aqi' qi = api' 

H = -.!. (pi + p~) + exp( - _8_ ql) 
2 .Jml 

+ exp E(3..L - ...!l.L) + exp ...!l.L . 
.Jm1.Jm2 .Jm2 

Considering more recent works, 12 in order to find 
completely integrable cases via a Lax-pair form, we have to 
keep in mind an extension of Bogoyavlenski's theorem pre­
sented in Ref. 9, within the framework of Kac-Moody alge­
bras. 

We will give a brief description of the concept of these 
algebras based on Ref. 16 so as to provide the necessary 
tools in order to obtain the Lax-pair forms. 

So, consider a complex simple Lie algebra g and an 
automorphism (7 of g of finite order d (i.e., the least positive 
integer d such that 0" = identity) induced by a symmetry of 
the root system of g. The order d can take the following 
values: 

2207 

d = 1, (7 = identity, case of all simple Lie algebras, 

d=2, case of An' n>2, Dn, n>4,E6 , 

d = 3, case of D4 • 
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I 
Then one has the following decomposition of g into a direct 
sum of subspaces: g = go + g I + ... + gd _ I indexed over 
the integers modulo d [gk is the eigenspace of (7 corre­
sponding to the eigenvalue E\ E = exp(21Ti/d)] with the 
property [gi> gj] Cgi +j; i,j, i + j are integers modulo d. 
Especially, go is a simple complex Lie algebra (see Table II), 
and because of the relation fgO,gi ] kgi> we have a represen­
tation of go on each gi which is irreducible. Then, the gener­
alization of Bogoyavlenski's result consists in considering 
- e, the opposite of the highest weight e of the representa­

tionofgoongl relative to a basisa l, ... , an of roots of go with 
respect to a Cartan subalgebra bo of go (n is the rank of go) 
and the analog of Bogoyavlenski's important "admissible" 
set of roots is the set a I' ... , an' an + 1 = - e (e being the 
highest weight of the representation of go ongl, when Ii are 
nonnegative integers with at least one of them nonvanish­
ing, e + /Ia l + /2a2 + ... + Inan is no more a weight of this 
representation). This is indeed a generalization, since, in 
case d = 1, g = go = gl' the representation is the adjoint 
one and the highest weight is the highest root. 

Consider now, as in Ref. 9, ea ;, e _ a;; i = 1, ... , n vec­
tors in go' e _ () ing_ l, e() ingl, (there is a duality between the 
representations of go ongl andg -I) and a basis hi' ... , hn of 
bo' that satisfy, among other relations 

where the scalar product (x, y) = Tr(adx ady), 
adx(z) = [x, z], zeg, and 

[ea;,e_ aj ] =0, ii=j, i,j=I,2, ... ,n+1. 

TABLE II. 

g 

2 2 2 2 3 
g B. C. B. F4 G2 
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Then Theorem 1 in Ref. 9 holds, i.e., if 
n 

a i = I dikhk' i = 1, ... , n + 1, 
k~1 

the Hamiltonian system 

. -aH . aH 
Pi =-a--' qi =-a ' 

qi 'Pi 

H = ~ (hk' hm)PkPm + n*1 exp(t djk qk) 

has a Lax-pair form. 
We present the equation of the Lax pair into a different 

form due to Manakov l7: 

i = [I, A (I)], 

A (I) = n*1 Ijeaj , Ij = exp(t djk qk), 

and any linear representation T of g determines the matrix 
pair T(I), T(A (I)). 

Applying this theorem in the fixed-end case of the 
Toda lattice with two movable particles, we obtain com­
pletely integrable cases for those values of the parameters 
m l , m2 , 0, € for which the vectors 

PI = - ::: hi' P2 = _1_ h2' P3 = €(...!!..L - ~) 
vm I /iii2 /iii I /iii2 

form the "admissible" set of roots and weights of a rank 2 
simple Lie algebra go which is the IT-invariant subalgebra of 
a simple Lie algebrag with respect to an automorphism IT of 
g (h I' h2' constitute an orthonormal basis of the Euclidean 
two-dimensional space). 

Instead of using directly generalized Cartan matrices 
or extended Dynkin diagrams, we will find the values of the 
parameters m l , m 2 , 0, € that provide integrable cases by 
visualizing the "admissible" sets of roots and weights. To 
begin with, we exclude the A hi) system because it contains 

Id) {e) 

FIG. I. Identification of a basis of roots (heavy lined arrows) and the 
opposite of the highest weight (dashed arrow) of the go subalgebra of the 
simple Lie algebra: (a) B 2 , (b) G2 , (c) A., (d) D 3 , and (e) D •. 

2208 J. Math. Phys., Vol. 25, No.7, July 1984 

TABLE III. 

Conditions on 13" 132 , 133 Hamiltonian 
Values of the parameters E, l), m,/m2 

I. 113,1 = 11321, 13, + 132 + 2{33 = 0 
!, I, 1 

2. 3113d2 
= 11321 2

, 313, + 132 + 133 = 0 
~, j, j 

2bis. 311321 2 
= 113,1 2

, 13, + 3132 + 133 = 0 
,,3,3 

3. 2113d 2 = 11321 2
, 2{3, + 132 + 133 = 0 

!,1, I 

3 bis. 211321 2 = 113,1 2
, 13, + 2{32 + 133 = 0 

1,2, I 

4·113,1 = 11321, 13, +132 +133 =0 
I, I, I 

5.3113,1 2 = 11321 2, 13, +132 + 2{33 =0 
1, 1,3 

5 bis. 311321 2 = 113,1 2, 13, + 132 + 2{33 = 0 
!, 1, ~ 

!(pi + p~) + r q
, 

+ e(q, - q2)/2 + e q2 

!( pi + pL) + r q,/3 

+ e(q, - q:1)12 + eq~ 

!( pi /3 + p~) + e - 3q, 

+ e3(q, - q21/2 + eq] 

!( pi + p~ ) + e - q,/2 

+ e(q, - 911/2 + e q1 

!( pi + p~ ) + e - 2q, 

+ eq, - q, + eq, 

1( pi + p~) + e - q, 

+ eq, - ql + eq1 

!( pi /3 + p~) + e - q, 

+ e(q, - 92)12 + e q1 

!(pi + p~/2) + e- q
, 

+ e1q, - q,)12 + eQ, 

no pairs of orthogonal vectors as required by the orthogon­
ality of PI' P2' We consider the systems B hi), G hi), A ~), D~) 
(notation of Ref. 16) (Fig. 1). We, then, find the cases listed 
in Table III. Case 2 is equivalent to 2 bis by the transforma­
tion ql_ - 3q2' q2- - 3ql' plus a scaling in time. Case 3 is 
equivalent to 3 bis by ql- - q2/2, q2- - ql/2 plus a scal­
ing in time, and 5 to 5 bis by ql- - q2' q2- - ql' 

Lets now give the Lax-pair form representations for 
each of the nonequivalent above cases and the indication of 
the algebraically independent integrals. 

Case B hi); We consider the Hamiltonian 

H = !(Pi + p~) + exp( - 2ql) + exp(ql - q2) + exp(2q2) 

(after a scaling). The equations of motion after the transfor­
mation, 

11 = exp( - 2ql)' 12 = exp(2q2)' 13 = exp(ql - q2)' 

are written 

i l = - 21tPI' 

i2 = 211P2' 

i3 = 13(PI - P2)' 

PI = 211 -13' 
P2 = 13 - 212, 

Using the standard representation so(5) of B2 and, identify­
ing the matrices corresponding to a basis of the roots and 
the opposite of the highest root, we obtain the Lax pair 

- (PI + P2) II 2 

2 PI - P2 13 -2 

L= 2 -13 

12 -2 P2 -PI -II 

-12 -2 PI +P2 

II 
13 

p= -13 

12 
-/2 
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The algebraically independent integrals are 
12 = Tr(L 2) = 8H and 14 = Tr(L 4). 

Case G ~I): The Hamiltonian is 

H = !(pi/3 + p~) + exp( - 6ql) + exp 3(ql - q2) 

+ exp 2q2 

(after a scaling) and with the transformation 

11 = exp( - 6qd. 12 = exp(2q2)' 13 = exp 3(ql - q2)' 

(PI -P2)/2 13 :, 

3 P2 12vL. 

II - (PI + P2)12 

L= vL. 

The equations of motion are 

i l = -IIPI' PI = 6/1 - 3/3, 

i2 = 17P2' P2 = 3/3 - 2/2, 

i3 = ~ 13( PI - 3P2)' 

and the Lax pair, provided by the 7 X 7 matrix representa­
tion of G2 , is 

-1 

-/2vL. 

12 (PI + P2)/2 -3 

-/2 

13 
12vL. 

p= 

The algebraically independent integrals are 
12 = Tr(L 2) = 1:H and 16 = Tr(L 6). 

Case A ~): The Hamiltonian is 

-vL. 

H = !(pi + p~) + exp( - 2ql) + exp(ql - q2) + exp q2' 

with the transformation: II = exp( - 2qtl. 12 = exp q2' 
13 = exp(ql - q2) the equations of motion are 

i l = 2IIPI' PI = 211 - 13, i2 = 12P2' P2 = 13 - 12, 
i3 = 13(PI - P2)' 

We will use the standard 5 X 5 matrix representation sl(5) of 
A 4 • An automorphism of order 2 (involution) induced by a 
symmetry of the root system of A4 is given by 

all a l2 a 13 a l4 a l5 
a21 a22 a23 a24 a25 
a31 a32 a33 a34 a35 
a41 a42 a43 a44 a45 
a51 a52 a53 a54 a55 

- a55 a45 -a35 a25 -a15 

cr 
a54 -a44 a34 - a24 a l4 

-+ -a33 a43 -a33 a23 -a13 , 
a52 -a42 a32 - a22 a 12 

-a51 a41 -a31 a21 - all 

and the matrices belonging to the B2 (u-invariant) subalge-
bra are easily identified as the ones of the form 
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-P2 -/3 

-II (P2 - pd/2 

bll b12 b13 b l4 
b21 b22 b23 b l4 

M= b31 b32 b23 - b!3 , 
b41 b32 - b22 b12 

b41 -b31 b2J - bl! 

and the one-dimensional subspace of the matrices corre­
sponding to the opposite of the highest weight of the repre­
sentation of go ongl are the matrices (aij) 1 <i,j<.6 with all 
entries 0 except a51 . 

So a Lax-pair for the considered Hamiltonian system 
IS 

PI 13 2 
1 P2 12 

L= 1 12 

-P2 13 

II 1 -PI 

The algebraically independent integrals are 
12 = Tr(L 2) = 4H and 14 = Tr(L 4). 
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Case D ~): The Hamiltonian is 

H = pi + p~ + exp( - ql) + exp(ql - q2) + exp q2' 

with 

II = exp( - q.), 12 = exp q2' 13 = exp(ql - q2)' 

The equations of motion are 

i l = - 2/IPI' PI = II -/3' 

i2 = 21'lfJ2' P2 = 13 - 12, 

i3 = 2/3(PI - P2). 

We use the 4 X 4 standard representation sl(4) of the D3:::::::A 3 

with the automorphism of order 2, 

all a 12 a 13 a l4 
a21 a22 a23 a24 
a31 a32 a33 a34 
a41 a42 a43 a44 

- a44 a34 - a24 a l4 
a43 - a33 

-+ 
a23 - a 13 

-a42 a32 - a22 a 12 

a41 - a31 a21 - all 

to identify the matrices-elements of the (7-invariant subal­
gebra of type B2 • These matrices have the following form: 

bJl bl2 bl3 b l4 
b21 b22 b23 - bl3 
b31 b32 - b22 bl2 

, 

b41 - b31 b23 - bJl 

all a 12 a 13 14 - bJl - bl2 - bl3 
a21 a22 a23 a24 -b21 - b22 
a31 a32 a33 a34 - h31 b22 

a41 a42 a43 a44 b31 h21 

and the one-dimensional space of matrices corresponding 
to the opposite of the highest weight are the matrices (aij); 
1 <i,j<A with the entries vanishing except a31 = a 42. 
The Lax pair for the Hamiltonian system is 

-PI -P2 II 
1 PI-P2 13 L= 
12 2 P2 -PI 

12 1 

II 

12 

The algebraically independent integrals are 
12 = Tr(L 2) = 4H and 14 = Tr(L 4). 

Case D~): The Hamiltonian is 

and the equations of motion are 

i l = 3/IPI' PI = 2/1 - 13, 

i2 = 1'lfJ2' P2 = 13 - 2/2, 

i3 = !l3(3 PI - P2)' 

II 

PI +P2 

We consider the 8 X 8 standard representation so(8) of D4 
with the automorphism (7 of order 3: 

bl3 

hl2 

hll 

- CIJ -C 12 -C13 - a44 - a34 -a24 -a 14 
- C21 - C22 CJ3 -a43 - a33 -a23 - a 13 

- C31 C22 C12 -a42 - a32 -a22 - a 12 
C31 C21 CJI -a41 -a31 -a21 -all 

a;1 b31 - h21 hll - b22 - hl2 - bl3 

C 13 a;2 a23 -an -a24 -a14 bl3 
-C 12 a32 a33 aJ2 -a34 a l4 bJ2 

CF CJI -a31 a21 a~ a34 a24 b22 
-+ 

- C22 -a42 -a43 -a~ -a12 a 13 - bJl 
- C2I -a41 a43 -a21 - a33 -a23 b21 

- C31 a41 a 12 a 31 - a32 - a;2 -b31 
C31 C21 C22 - CJI hl2 - bJ3 -ail 

where a;1 = !(a ll + a22 + a33 - a44 ), a;2 = ~(all + a22 - a33 + a44 ), a33 = !(a ll - a22 + a33 + a44 ), and a~ 
= - ~( - all + a22 + a33 + a44 ). Following Ref. 16 we exhibit corresponding to the four basic roots of D4, i.e., matrix XI' 

X 2, X 3, andX4, with non vanishing elements of the matrix a 12, a23 , a34, and b31 , respectively. Then, the matrices correspond­
ing to basic roots in the (7-invariant subalgebra of type G2 are X2 and XI + X3 + X4, and the one-dimensional subspace 
corresponding to the highest weight is spanned by [XI,[X2,x3]] + €[X3,[X2,x4]] + €2[X4,[X2,x1]] (so the space correspond-
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ing to the opposite ofthe highest weight is spanned by the transpose of this matrix) where E = exp(2 if3). Finally the Lax 
pair for the Hamiltonian system is 

-P2 12 
1 ( - P2 - 3pIl12 II 

3 (3PI -P2)12 

13 1 
L= 

-e13 -1 

- EI3 

EI3 

12 

II 
Iz -/2 

p= 
13 

-e13 
- EI3 

- EI3 

el3 -/3 

The algebraically independent integrals are 

12 = Tr(L 2) = 12 Hand 16 = Tr(L 6). 

v. CONCLUSION 

12 

elz 

12 
-12 

In this work, we have presented some new integrable 
cases for systems which are restrictions of the Toda lattice to 
chains of two or three particles, interacting exponentially 
with their nearest neighbors. This restriction of dimensiona­
lity leads to new integrable cases as it allows the choice of 
unequal masses and unequal ranges ofinteraction. The Pain­
leve analysis of Bountis et al. and of Ramani has identified 
the different values of parameters for which the above sys­
tems could possess a second integral of motion apart from 
the energy. The integrability of all these cases has been dem­
onstrated in this work through two distinct approaches: di­
rect computation of the integrals of motion and group theo­
retical methods. The first method, whenever practicable, 
allows at the same time the identification of the integrable 
cases and the exact calculation of the integrals of motion. 
The Lie algebra approach can be used independently from 
the direct search. It allows easily the identification of inte­
grable cases and can, in principle, be used for the computa­
tion of the constant of motion although the latter calculation 
becomes sometimes pretty involved. 

What emerges from our work is the use of different, 
independent approaches, such as Painleve analysis, direct 
search for the constant of motion, and group theoretical 
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-E 

-e 
-/2 e 

12 E 

-12 -1 
-1 (P2 - 3pIl/2 -II 

(P2 + 3PI)l2 -/2 

-/3 -1 pz 

-/\ 

-/2 

methods, can be a most powerful tool for the investigation 
of integrability of dynamical systems. 
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The Liouville-Backlund transformation for the two-dimensional 
SU(N) Toda lattice 
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We describe the Liouville-Backlund transformation for the two-dimensional SU(N) Toda lattice 
with free end points. Integration of this transformation gives us the general solution of this 
equation, which depends on the N arbitrary solutions of the two-dimensional Laplace equation. 

PACS numbers: 03.20. + i, 02.90. + p 

I. INTRODUCTION 

The last decade has shown the exciting prospect of tack­
ling the classical solutions for the Yang-Mills field theory 
for the different gauge groups. The well-known Belavin et 
al. instanton solution for the SU(2) gauge group I has been 
extended by WittenZ to the spherically symmetrical instan­
tons solutions for the same group. Next, Leznov and Save­
liev3 generalized the Witten construction to the arbitrary 
compact gauge group. Their construction, more precisely 
the self-dual equations for the SU(N) gauge group, is reduced 
to two-dimensional Toda lattice with free end points. 

On the other hand, the one-dimensional periodic Toda 
lattice has been extensively studied in the last decade4 by 
many authors. It was shown that this system describes a 
completely integrable Hamiltonian system and can be solved 
by the inverse scattering transformation5 or by Backlund 
transformations.6 The one-dimensional Toda lattice with 
free end points was considered by Kostane and by Olshan­
etsky and Perelomov.8 

Moreover, there were proposed several different kinds 
of generalizations9

-
11 of the Toda lattice. Here we will con­

sider those proposed by Leznov and Saveliev, which we call 
the SU(N) Toda lattice with the free end points in the two­
dimensional space-time, [hereafter referred to as the SU(N) 
Toda lattice]. We will use a slightly different terminology 
than that used in the Yang-Mills field theory. Our SU(N) 
Toda lattice corresponds to the SU(N + I) spherically sym­
metrical instanton solutions. 

The two-dimensional periodic Toda lattice has been 
solved by Mikhajlov lZ by the inverse scattering transforma­
tion and by Fordy and Gibbon13 by the Backlund transfor­
mation. For the SU(N) Toda lattice, Leznov and Saveliev 
proposed two different methods for the solutions. 14-16 One 
of them uses the representation theory of the compact group. 
The second is pure algebraic and uses the differential calcu­
lus only. In both cases they obtained the closed formulas on 
the solutions of the SU(N) Toda lattice as a functional of N 
arbitrary solutions of the two-dimensional Laplace equa­
tions. 

On the other hand the SU(N) Toda lattice for N = 1 
reduces to the Liouville equation for which there is known a 
Backlund transformation which relates this equation to the 
two-dimensional Laplace equation. In this paper we genera­
lize the Backlund transformation to arbitrary N. This trans-

aJ Permanent address: Institute of Theoretical Physics, University of Wro­
claw, ul. Cybulskiego 36, 50-205 Wroclaw, Poland. 

formation we will call the Liouville-Backlund transforma­
tion in order to distinguish it from the Backlund trans­
formation for the periodic Toda lattice found by Fordy and 
Gibbon. 13 Our transformation joins N arbitrary solutions of 
the two-dimensional Laplace equations with the SU(N) Toda 
lattice. Moreover, this transformation contains one arbi­
trary constant. Integrating transformation, we obtain the so­
lutions of the SU(N) Toda lattice which can be reduced to 
those proposed by Leznov. 14 Therefore, we establish the cor­
respondence between the Liouville-Backlund transforma­
tion method and with Leznov's method. 

The paper is organized as follows. In the second section 
we describe a method of finding the Liouville-Backlund 
transformation for the Liouville equation which is different 
from that proposed by Lamb. 17 From this we find the Liou­
ville-Backlund transformation first for the SU(2) case, 
which is described in the third section and then for arbitrary 
N which is described in the fourth section. The last section 
contains concluding remarks. 

II. THE LIOUVILLE-BACKLUND TRANSFORMATION 
FOR THE LIOUVILLE EQUATION 

In the last century, Liouvillel7 found the solution of the 
nonlinear partial differential equation 

JZ 
h- = __ h=e2h 

zz Jzoz ' (1) 

where z = x + it and z = x - it, depending on two arbitrary 
functions 

(2) 

where! = !(z) andg = (z) are arbitrary functions of their ar­
guments. In order to check formula (2), let us assume that 

hz=Aeh-Fz' 

hz =Beh - Gz, 

(3) 

(4) 

whereF = F(z) and G = G (z) are arbitrary functions of their 
arguments and A and B are unknown functions which we 
want to find. We can determine these functions from the 
integrability conditions and from the assumption that h sat­
isfies Liouville equation. These two assumptions give us 

Az -AGz =Bz -BF" 

AB= 1-(Az -AGz)e- h. 

(5) 

(6) 

In order to find the Backlund transformation, let us assume 

(7) 
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Solving Eqs. (7) and (5), and introducing the solution to (3) 
and (4), we obtain 

hz =aeh +G- F -Fz' 

hz =(l/a)eh+F-G-Gz· 

(8) 

(9) 

This is our Backlund transformation. Here a is an arbitrary 
parameter different from zero. Now we can integrate Eqs. (8) 
and (9), and we obtain formula (2) in which 

a I e- 2F dz'=-J, 

1 Ii: -2G J:' - e uZ = -g. 
a 00 

(10) 

(11 ) 

III. THE LIOUVILLE-BACKLUND TRANSFORMATION 
FOR THE SU(2) TODA LATTICE 

Let us consider the following generalization of the 
Liouville equation which we call the SU(2) Toda lattice: 

h,z"i = exp(2h, - h2 ), (12) 

(13) 

Let us assume similarly as in the previous case that we have 
the following form for the derivative of h,: 

az(h,+t,6')=Ae\ (14) 

(15) 

where t,6 , = t,6 'iz) and r' = r'(Z) are arbitrary functions of 
their arguments and A and B are unknown functions which 
we determine from the integrability conditions and from the 
assumption thath, satisfies Eq. (12). The integrability condi­
tion with (12) gives us 

x=azA -AYi =azB-Bt,6;, 

AB = e- h
, _Xe- hl • 

(16) 

(17) 

On the other hand, the formula (17) can be computed direct­

ly from (12) and (14), (15). Indeed introducing e - hI = H, we 
obtain 

(18) 

then, computing Hz, Hz, and Hz"i with the help of(14) and 
(15), we obtain (17). Now with the help of(17) or(18) and (14), 
(15), we can compute the derivatives az h2 and azhz: 

az(hz + In(X) + t,6') = - (azA·B -ABaz In(X)) l>, (19) 

az(h 2 + In(X) + Y') = - (A.azB - ABaz In(X)) l'. (20) 

Let us assume that 

az"i InX = O. (21) 

This assumption is a purely heuristic assumption, which can 
be motivated, that we would like to consider the symmetric 
form of (19) and (20) to the formula (14) and (15). As we show 
this assumption does not contradict either the integrability 
of(19) and (20) or the assumption that hz satisfies (13). 
Indeed introducing exp( - h2) = G we have 

(22) 

Next differentiating Eqs. (19) and (20) with respect to z and z, 
respectively, and computingGz , Gz, and Gz"i with the help of 
(19) and (20), we easily check the integrability oft 19) and (20), 
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and next we easily recognize that h2 indeed satisfies Eq. (13). 
Now we can easily solve Eq. (21) which gives us, with 

the help of (16), 

A = {r eY--r' dZ' + X(Z)} e4>'+r', 

B = {r e4>'-4>' dz' + X(Z)} eY-H', 

X= e4>'+Y- =F(z)K(z), 

(23) 

(24) 

(25) 

wheret,6 z = t,6 2(Z) and r = r(z) are the arbitrary functions of 
the arguments. Here we use the special notation on the func­
tion X which we will use in the next sections. The functions 
X(z) and X (z) are unknown functions which we determine in 
the following manner. Substituting the formula (18) into (22), 
we obtain 

(

H' 
1 = - det Hz, Hzz , 

HH' H zzz ' 
Using Eqs. (14) and (15), Eq. (26) reduces to 

( 

0, 

- 1 = det ~B, 

B", 

-A, 

X, -A) ;., 
X zz 

(26) 

(27) 

Introducing (23), (24), (25)-(27) after algebraic manipula­
tions, we obtain 

azX(z) azX (z) = exp( - 2t,6 2 - 2r - t,6 , - y'). (28) 

Equation (28) we solve by separation of variables, which 
gives us 

X(z) =p. r e-4>'-2¢' dz', (29) 

1 II x(Z) = -; e-r'-2Y- dZ'. (30) 

Here p. is the arbitrary nonzero separation constant. By in­
troducing (23) and (24) with (29) and (30) to (12), (13) and (19), 
(20) these equations become the Liouville-Backlund trans­
formation. Carrying out the integration of this transforma­
tion, we obtain the general form of the solutions of the SU(2) 
Toda lattice. These are 

e - hI = _ er' + 4>' (IZ 

e4>' - 4>' dz' p. IZ

' e - 4>' - 2¢' dz" 

I
z 

1 IZ
' + eY- - r' d z' -; e - r' - 2Y- d Z" 

+ r eY- - r' d z' r e¢ 2 - ¢' d z') . (31) 

e - h, can be computed by formula (18). 
In this way our solutions depends on the two arbitrary 

solutions of the two-dimensional Laplace's equations and on 
one arbitrary constant different from zero. These solutions 
can be reduced to those proposed by Leznov.'4 

IV. THE LIOUVILLE-BACKLUND TRANSFORMATION 
FOR THE SU(N) TODA LATTICE 

Let us consider a more complicated generalization of 
the Liouville equation, which we call the SU(N) Toda lattice, 
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proposed by Leznov and Saveliev,3 

h\:u = exp(2hl - h2 ), 

hUi = exp( - hi + 2h2 - h3), 

hazz = exp( - ha_ 1 + 2ha - ha+ I)' 

hNzz = exp( - hN_ I + 2hN)' 

(32) 

(33) 

(34) 

(35) 

In order to see the connection ofEqs. (32)-(35) with the 
Toda lattice, let us write down the equation of motion for the 
two-dimensional Toda lattice in the following form6

•
16

: 

J2 N 
--ga = L KafJ expgfJ' (36) 
Jz az fJ= I 

Here K = I KafJ } is the Cartan matrix for the SU(N + 1) 
group and has the following form: 

( 

2, 

-1 
K= ' 

0, 

- 1, 

2, 

-1, 

0, 

-1, 
2, 

0, 

0, 

-1, )- (37) 

Assuming that go = gN + I = - 00 and transforming ga to 
ga = ~; = I KafJ hfJ Eqs. (36) reduce to Eqs. (32)-(35). 

Now let us introduce the following notation, e - h, = H. 
Then, as one can easily find, we have 

exp( - h2) = HzHz - HHzz = - det2(H). 

Using Eq. (33), we find 

(

H' Hz, 

- exp( - h3) = det Hz, Hzz ' 

H zz ' H zzz ' 

= det3(H), 

and in the general case 

(38) 

(39) 

exp(-ha )=(-I)a(a-1)I2 deta (H), l.;;;;a.;;;;N, (40) 

exp( - hN+ I) = (- It(N+ 1)12 detN+ I (H) = 1. (41) 

Now let us assume, as in the previous sections, that 

(42) 

(43) 

where ep I = ep I(Z) and yl = yl(Z) are arbitrary functions of 
their arguments and A and B are unknown functions which 
we want to determine. 

Due to the formulas (38)-(41) and the assumptions (42) 
and (43), we can write down exp( - ha ) as a functional of H, 
A, B, ep I, y', namely, we have 

( 
0, -A) 

exp( - h2 ) = HX - det _ B, -Az ' 
(44) 

exp( - h3) = - H det (
X, 

Xz' 
X z

) 

Xzz 

( 

0, -A, 

-det -B, X, 

-Bz' Xz' 

- H det2(X) - det3(A,B,x). (45) 

For arbitrary a, 1 <a.;;;;N, we have 

2214 J. Math. Phys., Vol. 25, No.7, July 1984 

exp( - ha) = ( - 1 )a(a - 1)12 H deta _ I (X) - deta (A,B,x), 
(46) 

where we use the following notation: 

X=Az-y;A. (47) 

We can expand exp( - h2 ) in the slightly different form also 
using the following formula: 

exp( - h2 ) = H det ( 1, 0) 
- B, - Bz - Bep ; 

( 
0, 

- det -B, -A) 
-B

z 
• 

(48) 

Here we use Eq. (43) instead of(42). Then comparison of (44) 
with (48) gives us 

X=Bz -Bep;. (49) 

Equations (44) and (47) guarantee us the integrability of (42) 
and (43). To obtain the explicit form for the derivatives of the 
ha' a> 1, let us differentiate (46) with respect to z and Z, 
respectively, and use (42), (43), and (46) again, obtaining 

(h a + In deta _ 1 (X) + ep ')Z 

= (- 1)a(a-II12 XA deta _
1 
(X) eha 

- (ep I + In deta _ 1 (x))z deta(A,B,x) 

Xeha + Jz det(A,B,x) /a, 
(ha + In deta _ I (X) + y'lz 

= ( - It(a - 11/2XB deta _ I (X) eha 

- (y' + In deta _ I (X)lz deta (A,B,x) eha 

+ Jz det(A,B,x) eha. 

(50) 

(51) 

It will be very useful for us to introduce the special notation 
for the derivative of h N 

(hN + In detN_ I (X) + ep ')Z = CN e
hN

, 

(hN + In detN_ I (X) + y'lz = DN /N, 
(52) 

(53) 

where CN and DN can be computed from (50) and (51), re­
spectively. 

We are now prepared to find the equation from which 
we determine the functions A and B. First, as one can easily 
notice, it is possible to define exp( - ha ) successively as a 
functional of exp( - hN) also, in the reverse order to (38)­
(41). Indeed, introducing exp( - hN) = G, we obtain 

exp(-hN_I)=GzGz -GGzz = -det2(G), (54) 

(55) 

As in Sec. III, we would like to have the derivative of h N 

a symmetrical form to the derivative of hi' Therefore, we 
assume it and that it can be denoted by 

(hN + ep + ep ')z = C;' ehN
, (56) 

(hN + y + ep 'lz = D;' ehN
, (57) 

where ep = ep (z) and y = y(z) are the arbitrary functions of 
their arguments. Moreover, we assume that 

epz = Jz In detN _ I (X) 

yz = Jz In detN+I (X) 
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Civ = CN' Div =DN, 
N N 

¢J = I ¢J i(Z), r = I y(Z). 
i=2 i=2 

(60) 

(61) 

We can assume that ¢J and r have the form (61) because ¢J and 
r are arbitrary functions. As we show, the assumptions (5S)­
(61) do not contradict the integrability of (56) and (57). In­
deed differentiating (56) with respect toz and using (57), (59), 
and (54), one can check that hN satisfies (35). Now we can do 
the same with Eq. (57) and obtain that hN satisfies (35) again. 
Therefore, we prove the integrability of (52) and (53). Be­
cause hN _ a is the function of hN or hi' we immediately con­
clude that the integrability of (50) and (51) is the direct conse­
quence ofthe integrability of hN and hi' Equations (50) and 
(51) define for us the Liouville-Backlund transformation for 
the arbitrary N in the SU(N) Toda lattice. To obtain the ex­
plicit formulas on this transformation, we should find the 
functions A andB. Equations (59), (60), (47), (49), and (41) are 
our basic equations from which we find these functions. 

Preparing the first integrations of the (5S) and (59), we 
find 

detN _ I (X) = eXPCt2 ¢J i + it2 y) . (62) 

In this way we obtain the similar but not identical equation 
[Eq. (62)] to that found by Leznov. 14 We solve it in a similar 
manner to Leznov. Namely, we assume that 

N-I 

X = I Fa(z)·K a(Z); 
a=l 

then (62) becomes 

detN _ I (F).detN _ I (K) = e¢> + Y, 

where 

Fij = F~.z ..... z' Kij = Kh .... ;z • 
j-I i-I 

(63) 

(64) 

Let us now assume by induction that the functions F N _ 2 and 
KN _ 2 , l<a<N - 2, satisfy Eq. (64) for the SU(N - 1) Toda 
lattice. The first step in this construction corresponds to the 
SU(2) Toda lattice considered in the previous section. For 
this first step we have 

(65) 

Due to (65) we immediately obtain one particular solution 
for the functions Fa and Ka in the SU(3) case. 

FI = (_ 1) e¢>'12 fZ e¢>2 dz', 

K 1= (- 1) er'12 Fer' dz, 

F2 = e¢>'12, K2 = er'12. 

(66) 

(67) 

Therefore, the continuations of this procedure give us that, 
for arbitrary N in the SU(N) Toda lattice, we have 

Fa = (_ l)a e¢>N/(N-I) JZ e¢>N-'/(N-2) dz 

(6S) 
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(69) 

K N- 1 = (_ I)N-I eyN/(N-I), 

Ka = ( _ It eyN I(N-I) fZ eyN-'/(N- 2) dz 

xf .. · Fa e~+'/aOza+I' (70) 

Substituting these formulas into (63) and next substituting 
into (47) and (49), we obtain 

A = (N~I Fa F e- Y' KadS + X(Z)) eY', (71) 

(72) 

Here the functions X(z) and X (Z) are unknown functions 
which play the role of the constants of the integrations. We 
determine them in the following manner. Preparing the inte­
grations of our Backlund transformation for h I' we obtain 

N+I 
e- h

, = I ya%a, (73) 
a=l 

where 

, , 
ya = e¢> e - ¢> Fa ds, f

z 

(74) 

(75) 

for 1 <.a<.N - 1 and 

(76) 

(77) 

%N+ 1= eY' fZ e- Y' X(z) Oz. 

Now we determine the functions X(z) and x(Z) in such a way 
to satisfy the condition (41). Substituting (73) into (41), we 
easily recognize that this formula reduces to 

(- l)N(N+ 1)/2 detN+ I Y detN+ I % = 1, (7S) 

where 

Yij =Y~.z ..... z' %ij =%h, .... z. 
j-I i-I 

By introducing the explicit form of ya and %a to (7S), this 
formula reduces to 

( - It(N+ 1)/2 e¢>' + y' det
N 

F.detN K = 1, (79) 

where Fij and Kij for 1 < i,j <N - 1 are the same functions 
as in Eq. (64) and 

F Ni = X(z)Z.Z ..... Z 
;-1 

KiN = x(zlz.z ..... Z· 
i-I 

(SO) 

(SI) 

Equation (79) is similar to Eq. (64), and, using this equa­
tion, we obtain 
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- i' -, 

x(Z) = ( - l)N + I e-l'/(N - I) r ... f e-l dZ" r eYo U', 

where 

_t/JO=t/J1 + i ~+A 
i=2 (i - 1) , 

N 'r 
_YO=yl + L -.-'- -A, 

i=2 (,- 1) 

(82) 

(83) 

(84) 

(85) 

where A is an arbitrary constant. This constant can be ab­
sorbed by the redefinition of t/J 2 and y2. Then this constant 
will not appear in the solutions of the SU(N) Toda lattice, and 
therefore these solutions are reduced to those found by Lez­
nov. 

V. CONCLUDING REMARKS 

Here we have found the Liouville-Backlund transfor­
mation for the SU(N) Toda lattice. This transformation re­
lates the N arbitrary solutions of the two-dimensional La­
place equation with our equation. Moreover, let us notice 
that this transformation is invariant under the Weyl group. 
Indeed notice that the arbitrary permutation of ya together 
with arbitrary permutation of .)Va in (73) is also the solution 
ofEq. (78) and hence is the solution of our equation. But this 
invariance, as was pointed by Leznov, corresponds to the 
invariance under Weyl group in the SU(N + 1) gauge theory. 

Finally let us notice that it will be very interesting to 
extend this transformation to an arbitrary compact gauge 
group for the self-dual equations. In this case we have slight­
ly different Toda lattice in the two-dimensional space-time. 
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For the classical compact gauge group Leznov solved this 
equations by the same method as for the SU(N) case,14 and 
hence probably the Liouville-Backlund method can be ex­
tended too. 
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General equations are formulated to determine all potentials for two-dimensional systems of the 
typeL = 1(P~ + p~) - V(ql,q2,t), which.admits invariants of the form I = aD + a;s; + 1aij5iSj' 
i,j = 1,2, where 51 = Z = ib + Uh, 52 = Z = ib - iQ2' aD, au aij are arbitrary functions of t, 
z = ql + iq2' and z = ql - iq2' Simplifying restrictions reduce the general equation to a tractable 
form. The resulting equations are solved for a special class of time-separable potentials and derive 
(i)thevanderWaals-typelong-rangepotential, V(r,t) = /3 (t )(b Ir4 + d ) and (ii) the quark-confining 
logarithmic potential, V(r,t) = /3 (t)A. (In r + bllr

4 + d l). InvariantsI for the resulting dynamical 
systems are found. Some observations on the present method in the context of Katzin and Levine 
and of Lewis and Leach analyses have also been made. 

PACS numbers: 03.20. + i, 03.40. - t, 11.30. - j 

I. INTRODUCTION 

Recently, considerable activities in constructing exact 
invariants for time-dependent classical dynamical systems 
described by the Hamiltonian H = !fJ2 + V(q,t) or the La­
grangianL =!p2 - V(q,t) have been initiated. 1-6 Such stud­
ies have a lot of bearing in plasma physics, time-dependent 
Kepler and harmonic oscillator motions,4-6 a-decay, time­
dependent gravitational constants, time-varying mass for ac­
celerating dynamical systems, and time-dependent magnetic 
monopole problems.7 So far, the analysis is mainly directed 
towards one-dimensional dynamical systems.4 Katzin and 
Levine have, however, discussed this problem for the re­
stricted class of Kepler, harmonic oscillator, and their lin­
early combined potentials in two dimensions.5•6 Following 
the recipe of Ref. 5, we reexamine the classical Lagrangian 
system, 

L = 11W - V(z,z,t), z = ql + iq2' Z = PI + ip2 

and restrict ourselves to the determination of the constants 
of the motion of the form 

where the coefficients aD, ai' aij explicitly depend on time t, z, 
and z and aij = aj;' Our material is arranged as follows. 

In Sec. II, we consider the Lagrangian, 
L = WI 2 

- V(z,z,t ),and,requiringthatdI Idt = o and using 
the ansatz (2.35), we obtain a second-order differential equa­
tion for the potential (2.36). The potentials satisfying such 
equations are derived, and the corresponding invariants are 
constructed. In Sec. III, we restrict our analysis to the poten­
tialoftheform V (z,z,t ) = V(lzl,t) = /3(t )v(lz/) and derive two 
important class of potentials, namely, case (1), 
V(lzl,t) =f3(t)(blr4 + d), and case (2), 

oj Department of Physics, Ramjas College, University of Delhi, Delhi-itO 
007, India. 

V(lzl,t) = f3(t)A. (In r + btfr4 + d l ). Thecorrespondinginvar­
iants for these two cases are constructed. In Sec. IV, we re­
write the invariant I in the form 

"" 
1= L fmn(Z,z,t)5'{'5~' 51 = Z, 52 ="i, 

m.If=O 

and the corresponding Hamiltonian H = !5152 + V (z,z,t ). 
OndemandingdIldt = aIlat + [I,HJl = 0, we obtain a re­
cursion relation for the coefficientsfmn' On restriction of 
m,n, i.e., O<;;;m + n<;;;2, and properly identifyingfmn with aD, 
ai' !a,j of Sec. II, we establish the correspondence with the 
Lewis and Leach approach4 and our analysis. In Sec. V, we 
examinethepotential V(z,z,t) = lj3 (t l/zI2andfromthepoten­
tial equation fix 0'1 and 0'2' On substituting 0'1' 0'2 and by 
suitably fixing other parameters, aD, aj> aij can be determined 
which in tum yield the invariant I. 

We summarize our discussions in Sec. VI. 

II. CONSTRUCTION OF THE POTENTIALS AND 
CORRESPONDING INVARIANTS 

A. The method 

We consider a dynamical system described by the La­
grangian 

L = !\Z\2 - V (z,z,t ) (2.1) 

with the concomitant equations of motion, 

Z"= -2 av!.:. av 
- Z= -2-. 

iJi ' az (2.2) 

Let us consider the constants of the motion of the form 

(2.3) 

The coefficients ao, aj> aij explicitly depend on t, z, and Z. 
Using dlldt = 0, we find from (2.3), 

(aD + a;§;) + (aO•f + al + avtj)5; 

+ (ai,j + !Oij)5i5j + !aij,k5i5j5k = O. (2.4) 
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Taking into account the proper symmetrization of the coeffi­
ciants ao, a;. aij we obtain from (2.4) 

aij,k + ajk,i + aki,j = 0, 

ai,j + aj,i = - aij' 

(2.5) 

(2.6) 

C. Determination of ai 

Substituting for all' a22 from (2.20) and (2.21) in (2.13) 
and (2.14), we get 

a l = -HCro(t)rz + Cr2(t)Zz + Cr3(t)z] +!TI(Z,t) (2.23) 

aO,i = - ai - aijtj , (2.7) and 

and a2 = - HCro(t)z2z + Crdt)zz + Cr4(t)Z] + !T2(Z,t); (2.24) 

Since a12 = aw Eq. (2.5) yields 

aa ll = 0, 

(2.8) using (2.23), (2.24), and (2.22) in (2.15), we have 

3Cro(t)zz + Cr2(t)z + CrI(t)Z - yi(t) 

and 

az 

aa22 _ 0 
az - , 

2 aa 12 + aa ll = 0, 
az az 

2 aa 12 aa22 = 0 
az + az ' 

whereas Eqs. (2.6)-(2.8) and (2.2) yield 

2 aa l = _ aa ll , 
az at 

2 aaz = _ aazz , 
az at 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

aa l + aa2 = _ aa 12 , (2.15) 
az az at 

aao = _ aa l + 2a ll av + 2a IZ av , (2.16) 
az at az az 

aao = _ aa2 + 2a
12 

av + 2a
22 

av, (2.17) 
az at az az 

aao = 2a av + 2a
2 

av. (2.18) 
at I az az 

Now, we solve Eqs. (2.9)-(2.18) for determining ao, a;. and 

B. Determination of aij 

From Eqs. (2.9) and (2.10), all = all(Z,t) and 
azz = adz,t ). Since a za 12/ azaz = a2a 12/ azaz, Eqs. (2.11) and 
(2.12) yield 

a
2
all = a

2
a22 = 2l7

0
(t) (say). azz a~ 

Solving for a 11> a2Z' we have 

and 

Substituting for a II' a22 in (2.11) and (2.12), we obtain 

a21(z,z,t) = adz,z,t) 

(2.19) 

(2.20) 

= - l7o(t)Zz - !l72(t)z - !l7I(t)Z + -¥t(t), 
(2.22) 

ji(t) being the integration constant. 
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1 aTI 1 aT2 _ 0 
-'2 az -'2&- . 

Differentiating (2.25) w.r.t. z, then Z, we get 

Cro(t) = 0, i.e., 

l7o(t) = CI (some constant independent of time). 

Substituting for l70 in (2.25) yields 

. . - 1. () 1 aTI 1 aT2 0 l7zZ+ l7IZ --ji t - -----= . 
2 2az 2az 

Differentiating (2.27) w.r.t. z, we have 

Cr _ ~ a2
T 2 = O. 

2 2 az2 

Solving for T 2, we obtain, from (2.28), 

Tz = Tz(Z,t) = Cr2(t)zz + l75(t)z + l76(t); 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

similarly, differentiating (2.27) w.r.t. Z, and solving for TI> we 
find 

TI = TI(Z,t) = CrI(t)Zz - it(t)Z - l75(t)Z + l77(t). (2.30) 

Substituting for T I , Tz from (2.29) and (2.30) andl70 = C I from 
(2.26) in (2.23) and (2.24), we obtain 

al = - HCrz(t)Z + Cr3(t )]z + !Crl(t)r 

- Hit(t) + l75(t)]z + !l77(t) (2.31) 

and 

az = - HCrdt)z + Cr4 (t )]z + !Crz(t)zz 

+ 1[l75(t )]z + !l76(t). 

D. Determination of ao 

(2.32) 

Differentiating (2.16) and (2.17) w.r.t. Z and z, respec-
tively, and using 

azv azv 
--=--, 
azaz azaz 

we obtain 

_!... (aa l ) + 2 aa ll . av + 2a
1l 

azv + 2 aa 12 • av 
az at az az azz az az 

= _!... ( aa2 ) + 2 aa22 • av 
az at az az 

2a azv 2 aa 12 • av 
+ zz azz + az az' (2.33) 

Substituting for aI' az, all' azz, alz from (2.31), (2.32), (2.20), 
(2.21), and (2.22), we have from (2.33) 
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tJ2v av 
2!cI~ + O"I(t)z + 0"4(t))----:.=2 + 312c 1z + O"I(t))-

az- az 

+ !-~U2(t)z-iTS(t)-Yl(t)) 

= 2!c1r + 0"2(tlZ + 0"3(t)) a; 
+ 312c1z + 0"2(t)) av 

iJi 

+!-~uI(tlZ)· 

Let us make the ansatz 

and 

0"3 = u4 = 0"4· 

Then, 

O"s = C2 (say). 

Using (2.35) in (2.34), we find 

Aa2v+Bav C=A a2v Jjav c 
a~ az + iJi2 + iJi + 

(2.34) 

(2.35) 

= qJ (t ) (say), (2.36) 

where 

A = 2!cI~ + O"I(t)z + 0"3(t)), 

B = 3!2c1z + O"I(t)), 

C = - ~U2(t)z. 

(2.37) 

Equations (2.36) are called "potential equations," and solu­
tions of (2.36) give a class of potentials. Before we consider 
some special cases for solving (2.36), certain remarks are in 
order. Katzin and Levine,s in order to solve the time-depen­
dent Kepler problem, had assumed,u = 0, u1 = u2 = 0, 
0"3 = 0"4' O"s = const, 0"6 = 0"7 = 0, 0"0 = const. In our case, 
we resorted to the ansatz (2.35), so that we can reduce (2.34) 
into a pair of conjugate equations for the potential equation 
(2.36). Secondly, our Eq. (2.34) in its general form when sup­
plemented with Eqs. (2. 16)-(2. IS) provides an explicit form 
for the invariants for the time-dependent Kepler,8 harmonic 
oscillator,9 and their linearly combined potentials. 10 

Solving for the potential V from (2.36), we fix the coeffi­
cient ao, which in tum together with ai' aij determine the 
invariant I (z,z,t ). 

III. SOME SPECIAL CASES 

a2v av 
A -2 +B-+ C=qJ(t), 

az az 

-a2v -av -
A-2 +B-+ C=qJ(t), 

iJi iJi 

(2.36') 

we have 

(3.3a) 

and 

{ 
0"1 0"3 } P I I { dv I I d 2V } c1 +-+- -z ---+z--
Z Z2 2 d Izl d Izl2 

3{2 O"I} P I I dv 3 .. - () + C1 + -=- - z -- - - O"tZ = qJ t . 
z 2 d Izl 2 

(3.3b) 

In order that (3.3a) and (3.3b) be simultaneously satisfied by 
v(izl), we must have 

O"t = 0"3 = 0 and ul = o. 
Thus, (3.3) reduces to 

I 12 d 2V 51 I dv IL 
z d Izl2 + z d Izl = , 

where 

IL = 2qJ (t) . 
PIt) 

Note IL is a constant independent of time. 

(3.4) 

(3.5) 

We consider the following two interesting cases. 
Case (a): IL = 0: Eq. (3.5) reduces to the form (izi = r) 

r d 2V + 5r dv = O. 
dr dr 

Thus, we have the nontrivial solution for v: 

v = vIr) = (b /r4) + d, (3.6) 

where b, d are some arbitrary constants. (3.6) is the well­
known van der Waals-type potential. Now, using the ansatz 
(2.35) and (3.4) in the expressions for ao, at, a2, all' a12, and 
a22, we obtain 

a l = - ~c~, a2 = ~c~, 
all = C IZ

2
, a l2 = a21 = - ClZZ, a22 = ctz

2, (3.7) 

ao = - 2c2bB (t )/r4, 

where B (t) = SP (t') dt' and 0"6 = 0"7 = 0 is assumed. 
Finally, the invariant (2.3) can be written in the form 

1= a(t )/r4 + at(t)L + a 2L 2, (3.S) 

where Here, we consider the potential 

V(z,z,t) = V(lzl,t) P(t)v(lzl) (say). (3.1) a(t)= -2c2bB(t), a l = -2ic2, a 2= -SCI' 
Thus, 

av =P(t) Izl~, 
az 2z d Izi 

tJ2v = P(t)lzl {_ ~ + Izl d
2
v }. 

a~ 4Z2 d Izl d Izl2 

Substituting (3.2) in the potential equations (2.36), 

2219 J. Math. Phys., Vol. 25, No.7, July 1984 

L = QtP2 - Q2PI = (1!4ij(Slz - S~). 

Case (b): IL = ILo#O: Eq. (3.5) yields 

(3.9) 

_2 d 2v 5 dv _ 1 
r d-2 + rdr -/\'0· (3.10) 

(3.2) r 

Solving for v in (3.10), we obtain 

vIr) = !ILo(ln r + bl/r
4 + dd. (3.11) 
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The invariant for this case turns out to be 

1= {jo(t) + {jl(t )lr4 + {j2L + {j3L 2, 

where 

{jo(t) = !C~ (t), {jl(t) = - 2c2B (t )hl' 

{j2 = - 2ic2, {j3 = - 8c l · 

IV. CORRESPONDENCE WITH LEWIS AND LEACH 
METHO[)4 

(3.12) 

In this section, we extend the method of Lewis and 
Leach4 to two dimensions and show that up to quadratic 
terms in momentum, the recursion formula method yields 
the same set of equations for the coefficients and determines 
correspondingly the same invariant 1. 

Consider the Hamiltonian of the classical dynamical 
system (2.1), 

H =!(pi +p~)+ V(ql,Q2,t) 

=!5152 + V(z,z,t). (4.1) 

Let the invariant I for (4.1) be expressed as a double power 
series in 51' 52' i.e., 

"" 
1= L Imn(z,z,t)5,(,5~· 

m.n=O 

Using the equation for the invariant I, 

dI = aI + L ( aI . aH _ ~ aH) 
dt at i aqi api api aqi 

(4.2) 

= aI + 2 ( aI aH + aI aH _ aI aH _ aI . aH ) 
at az a52 az a51 a51 az a52 az 

=0, 

and demanding the coefficients of 5 '('5 ~ to vanish, we obtain 
the following recursion relation for Imn : 

j,. + aim - l,n + alm •n - I _ 2(m + 1lf, av 
mn az az m+ I.n az 

dV 
- 2(n + llfm.n + I dz = 0. (4.3) 

If we restrict our analysis to the case O.;;;m + n.;;;2, then 

1=100 + /0152 + /1051 +/115152 + 10zS~ + 12oSi· (4.4) 

Equation (4.3) then yields 

. av av 
100- 2/10-- 2/01-=0, az az 

iOI + a/oo _ 2/11 av _ 4/02 av = 0, 
az az az 

. a/oo av av 
110 + -- - 2/11 - - 4/20 - = 0, 

az az az 
r + ajOI = ° f.' + allO = ° 

J02 az ,20 az ' 

ill + alol + ajlO = 0, 
az az 

a/20 = ° al02 
= ° 

az ' az ' 
all1 + aho = 0, alo2 + all1 = 0. 
az az az az 

2220 J. Math. Phys., Vol. 25, No.7, July 1984 

(4.5) 

We note that (4.5) coincides with Eqs. (2.9)-(2.18). In the 
method of Lewis and Leach, the symmetry is built in and this 
gives a general method of constructing invariants involving 
higher powers of momenta. 

V. TIME-DEPENDENT, UNCOUPLED HARMONIC 
OSCILLATOR (TWO-DIMENSIONAL) MOTION 

Let us consider V (z,z,t ) = PIt )v(lzll=~(t )lzI2. Then. 

av = 1- PIt) Iz12, av = 1- P~t) Iz 12, 
az 2z az 2z 

(5.1) 
a2 v a2 v 
-=-=0. 
az2 azz 

Thus, Eq. (2.34) reduces to 

H2clz + ul(t)} [PIt )/z] Izl2 - ~(72(t)z - as(t) - "u(t) 

= H 2c lz + u2(t) 1 [P (t )IZ] Izl2 - ~(7I(t}Z. (5.2) 

Using the ansatz Us = c2, a5 = 0, ii = 0, Eq. (5.2) reduces to 

P (t) ut(t) + (7t(t) = P ~) 0'2(t) + (7~t) = kl (say). 
z z z z 

Fork l =0, 

(71(t) + P (t )ul(t) = 0, 

(72(t) + P (t )u2(t) = 0. 

The solutions of (5.4a) or (5.4b) are given by4 

(5.3) 

(5.4a) 

(S.4b) 

[u=psinT, pcosT, T= Jp-2(t')dt'], (5.5) 

where p satisfies the auxiliary equation p + P (t 10 = p - 3. 

Substituting for U I , U2 in the expressions for a II' a 12' a22, a I' 
a2 , and ao, the invariants can be found out. 

VI. CONCLUSIONS 

Our analysis has the following features: 
(i) It establishes the correspondence with the Katzin­

Levine and Lewis-Leach methods when I has terms up to 
quadratic in momenta. 

(ii) Writing I = :I;;;,n = 0 Imn5 '('5 ~,51 = i, 52 = 'i, we 
have extended, in fact, Lewis-Leach analysis to double series 
expansion in 5" I' 5"2' The suitable convergence ofthe series is 
assumed. Our prescription, in principle, can be used to deter­
mine analytic potentials and the corresponding invariants. 

(iii) By restricting O';;;m + n.;;;2, i.e., considering I in the 
form: 1= ao + ai5i + !aij5i5j' and using the ansatz (2.35), 
we have derived two interesting types of potentials, namely, 
(1) the van der Waals-type long-range potential and (2) the 
quark-confining logarithmic potential, which are both time­
dependent. The later potential can have a lot of applications 
in string models of quark confinement, II particularly when 
the coupling coefficient becomes time-dependent. 
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f.L = (a't + b 'f We have used here u, = U 2 = at + b. 
9For time-dependent harmonic oscillator motion, see Sec. V. 
'OSubstitutingV(r,t) = - ~(ir /U)r - !J.to!U).(l/r)[seeG.KatzinandJ.Le­

vine, J. Math. Phys. 24,1761 (1983)] or V(z,z,t) = - ~(ir /U)zz -!J.to! 
U)(zZ}-l/2in Eq. (2.34), and, usingEqs. (2.16H2.18), wefindu, = k, U(t), 
U2 = k2U(t ),u3 = U4 = O,U, = - uiJ /f.L2 + k 3,U6 = u7 = 0,f.L = U2/f.L~ 
and k" k2' k3 being some arbitrary constants. On substituting these values 
for ai' aij' the invariant I can be obtained. 
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Given an exterior differential system on a manifold M, we study general prolongations of the 
system on a locally trivial fiber bundle (M, iT, M) by a Cartan-Ehresmann connection. We 
characterize such prolongations for the system associated with the KdV equation without any 
assumption of "(x, t) independence." The partial Lie algebra discovered by Wahlquist-Estabrook 
[J. Math. Phys. 16, 1 (1975)] appears by this way as an intrinsic tool. Simple analytic 
pseudopotentials are classified up to diffeomorphism. 

PACS numbers: 03.40.Kf 

I. INTRODUCTION 

Differentiability is assumed to be C "" . 
Following Wahlquist-Estabrook, I we consider M = ]R5 

with coordinates (x, t, u, z,p) and the projection 1T: M_]R2 
defined by 1T(X, t, u, z, p) = (x, t ). 

On M, we consider the following exterior differential 
system (EDS): 

a-du 1\ dt - z dx 1\ dt = 0, 

13 =dz 1\ dt - p dx 1\ dt = 0, (1) 

r= - du I\dx + dp I\dt + 12uz dx I\dt = 0. 

A submanifold S of M is an integral manifold of (1) in 
the sense ofCartan2 iff the induced forms as'ps, Ys vanish. 
We denote by .f the ideal of differential forms on M which is 
generated by a,p, y. From the point of view of integral mani­
folds, the EDS (1) is completely determined by the associated 
ideal.f. Moreover, we will observe that .f is closed, that is 
to say, d.fc.f. 

Let s: ]R2 _M be a section of 1T. We denote s*u(x,t ) 
= u(x,t );s*z(x,t) = z(x,t );s*p(x,t) = p(x,t). Then the image 

S = S(]R2) is an integral manifold of (1) iff one has 

z(x, t) = u" (x, t) and pIx, t) = uxx(x, t), 

where u(x, t) is a solution of the KdV equation 

u, + Uxxx + 12u Ux = 0. 

II. PROLONGATIONS BY CARTAN-EHRESMANN 
CONNECTIONS 

(2) 

Let us consider a locally trivial fibration iT: M_M, with 
F as typical fiber. A Cartan-Ehresmann connection on (M, iT, 
M) is a field H of horizontal contact elements on M which is 
supplementary of the field Vof the iT-vertical contact ele­
ments. Moreover, one assumes that H is complete, that is to 
say, every complete vector field X on M has a complete hori­
zontallift X on M. 

Let K* be the set of I-forms on M which vanish on the 
field H. The ideal J of differential forms on M, which is 
generated by iT*.f uK*, determines on M an EDS. 

If, moreover, the ideal J is closed, that is to say 
dJ C J, then we will say that the connection H is adapted to 
(1). In this case, the EDS on M defined by J will be referred 
to as the prolongation of (1) on (M, iT, M) by the Cartan­
Ehresmann connection H. (See Ref. 5.) 

The geometrical interpretation is the following one: if 
the connection H is adapted to (1), then each integral mani­
fold S of (1) admits horizontal coverings in M which are 
integral manifolds of the prolonged system defined by J. 

Example: Let us consider the case where M is the trivial 
bundleM x]Rq with global coordinates (x, t, U, z,p,yl, ... ,yq). 
Moreover we assume that the connection H is defined by the 
system. 

o/=di - Ai dx - B i dt = 0, i = 1, ... , q, (3) 

where A i, B i are functions of (x, t, u, z, p, yl, ... ,yq). 
Then, if H is adapted to (1), it defines a multiple pseudo­

potential in the sense of Ref. 1. Wahlquist-Estabrook stud­
ied such particular prolongations, assuming moreover that 
A i, B i do not have explicit (x, t) dependence. 

Our purpose is to study general prolongations of (1) by 
Cartan-Ehresmann (CE) connections without any particu­
lar assumption. 

Besides, it is interesting to observe that the (x, t )-inde­
pendence assumption has not an intrinsic signification: it is 
essentially related to the choice of a particular trivialization 
M,.....,MX]Rq. 

III. FOLIATED STRUCTURE AND ADAPTED 
COORDINATES IN M 

From now on, (M, iT, M) is a locally trivial fiber bundle 
with F as typical fiber; H is a CE connection on (M, iT, M) 
which is assumed to be adapted to (1). 

Let us observe first that the submanifolds in M defined 
by 

x = const, t = const 

are integral manifolds of (1). Hence, the CE connection in­
duced by H over such a submanifold is integrable and defines 
a horizontal foliation. 

By this way, we define on M an H-horizontalfoliation 
Y, the leaves of which are sections of M over the submani­
folds defined by x = const, t = const. 

Now, let us consider local coordinates (x, t, u, z, p, yl, 
... ,yq) in M such that the foliation Y is locally defined by 

dx=O, dt=O, dyl =O, ... ,dyq=O. 

We will say that such local coordinates are adapted to the 
foliation Y. 
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With respect to such Y -adapted coordinates, the con­
nection H is defined by equations like (3): 

d/ =A idx +Bidt, i= 1, .... q. (4) 

Moreover, if we denote by A. B, U, i. P theH-horizon­
tal vector fields on M whose respective projections in Mare 
a lax, a lat,a I au, a I az, a lap, then. in Y -adapted local co­
ordinates. we have 

A=~+ fAi~. B=~+ fBi~, 
ax ;=1 ay at ;=1 ay 

U=~, i=~, P=~. 
au az ap 

(5) 

Of course, these vector fields define completely the con-
nectionH. 

IV. THE CLOSURE CONDITION dfCf 

If, in local Y-adapted coordinates, H is defined by (4), 
then the closure condition dJ C f gives 

A ~ = A ~ = 0, B ~ = - A ~, 
q 

I (AiB~j _BiA ~j) 
i= I 

+ B ~ - A : + zB ~ + pB ~ + 12uzA ~ = ° 
i= 1, ... ,q. 

In order to simplify conditions (6), we define 

[U,A] =A", [i,A] =Az , [P,A] =Ap , 

[U,B]=B", [i,B]=Bz , [P,B]=Bp ' 

Then (6) becomes 

Az =Ap =0, A" = -Bp, 
[A, B ] + zB" + pBz + 12uzA" = 0. 

Bya calculation which is essentially the same as in 
WE, I we obtain 

- - - 2-A = 2XI + 2uX2 + 3u X3, 

B = ( - 2p - 12u2)X2 + ( - 6up + 3r - 24u3)X3 
- 4&7 + 4U2X6 + SuXs + sX4 , 

(6) 

(7) 

(S) 

where coefficients in A are introduced in accordance with 
notations of WE, and where vector fields XI' ... ,X7 have to 
satisfy the following conditions: 

X2, X3, X7, Xs, X6 are -iT-vertical; (9a) 

XI' X4 are -iT-projectable, respectively, on 

.l~ and .l~. (9b) 
2ax Sat' 

XI' ... ,X7 commute with U, i, P; (9c) 

[XI' X3 ] = [X2, X3 ] = [X2, X6] = [Xl' X4 ] = 0, 

[XI,X2 ] = -X7' [XI>X7] =Xs, [X2,X7] =X6, (9d) 

[Xl' Xs] + [X2, X4 ] = X7 + [X3 , X4 ] + [Xl' X6] = 0. 

We observe that the vector fields X2 , X3 , Xs. X6, X7 are 
precisely the vector fields X 2, X3, Xs, X6, X 7 introduced in 
WE, whileXI , X 4 have horizontal components, the introduc­
tion ofwhich allows us to avoid the (unintrinsic) assumption 
of (x, t ) independence. 
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V. GENERAL PROLONGATIONS OF (1) AND 
GEOMETRIC REALIZATIONS OF THE WE PARTIAL LIE 
ALGEBRA 

Let us denote by L a seven-dimensional R-vector space 
with basis {51> ... ,57] and partial Lie algebra structure de­
fined by 

[51'53] = [52,53] = [52,56] = [51,54] = 0, 

[51'52] = - 57' [51.57] = 5s. [52.57] = 56. (10) 

[51' 5s] + [52,54] = 57 + [53,54] + [51,56] = 0. 
We will say thatL is the WE partial Lie algebra. We denote 
by A the subspace generated by {51' 54] and by B the sub­
space generated by f52,53,5s,56,57]' The subspace A hasthe 
structure of an abelian Lie algebra. 

If Mo is a Coo manifold, a pair (.2", tp) is a geometrical 
realization 0/ L in Mo if the following hold. 

(i) .2" = .flff ffi [!lJ is a transitive Lie algebra of vector 
fields in M o, where .flff, [!lJ are subalgebras whose values at 
each point of Mo define supplementary contact elements, 
with [.flff, [!lJ] C [!lJ . 

(ii) rp: L-+.2" is a R-linear homomorphism compatible 
with (partial) Lie algebra structures, and such that 

ker rpnA = {O], rp(A) = .flff, rp(B ) C [!lJ . 

(iii) Vector fields in .flff are complete and linearly inde­
pendent. 

Now, returning to the situation in Sec. III, let us denote 
by (Mo.-iTo, R2) the locally trivial fiber bundle on R2 induced 
from (M, -iT, M) by the section so: R2 -+M defined by 

so(x, t) = (x, t, 0, 0, 0). 

The projection of M onto Mo along the leaves of Y 
allows us to identify 

M=MoXR\ (11) 
where coordinates in R3 are (u, z, p). 

Moreover,Xl , .,. ,X7 induce vector fieldsXIO, ••• ,X70 0n 

Mo whose knowledge completely determines XI' ... , X7, thus 
H. 

If A is the Lie algebra of vector fields in M 0 generated by 
XIO' X40• fjJ the Lie algebra of -iTo-vertical vector fields, 
Y = d ffi fjJ, ip the R-linear homomorphism L-+Y deter­
mined by 

q'i(5;) = X.o. i = 1 •... ,7, 

then (Y, q'i) is a geometrical realization of L and we obtain 
the following theorem. 

Theorem I: Each prolongation of (1) by a Cartan­
Ehresmann connection determines a geometrical realization 
of the WE partial Lie algebraL. Conversely, every geometri­
cal realization of L corresponds to such a prolongation. 

In order to prove the second part of this result, let us 
consider a geometrical realization (.2" , rp) of L on a manifold 
Mo. If .2" = .flff ffi [!lJ, orbits of the subalgebra [!lJ define a 
codimension 2 foliation Y([!lJ) on Mo. Moreover condition 
[.flff, [!lJ] C [!lJ implies that .flff is a Lie algebra of commuting 
foliate vector fields. Hence Y([!lJ) is a R2-Lie foliation in the 
sense of Fedida.3 From Ref. 3 one knows that the pullback 
Y( [!lJ) of Y([!lJ) on a covering manifold Mo of Mo is a simple 
foliation which (in accordance with completeness of foliate 
vector fields in .flff) corresponds to a locally trivial fibration 

Pierre Molino 2223 



                                                                                                                                    

17-0: Mo ...... R
2 such that tp(5l) and tp(54) define 17-o-projectable 

vector fields on Mo whose respective projections are!a lax 
and lalat. 

From (2', tp) we obtain a covering geometrical realiza­
tion (2',~) ofL in Mo. Now, ifM = MoXJR3, where R3 has 
(u, z, p) as natural coordinates, we denote by 17-: M ...... Rs the 
projection 

17-= 17-oXIR,. 

If m = (mo, m )EMo X JR3, one has a natural identifica­
tion 

TmM = TmoMo ffi Tm JR3
, (12) 

and we will define vector fields fI, Z, P, 1\, ... , X7 in Mby 

flm =0+~1 ' z=o+~1 ' p=o+~1 ' 
aUm aZ m apm 

Xim = ~(5;)mo + 0, i = 1, ... , 7. 

Equations (5) and (8) define vector fields A, B in M. If H is the 
CE connection on (M, 17-, JRs) which admits A, B, fI, Z, Pas 
horizontal vector fields, then H is adapted to (1). Q.E.D. 

Remark 1: {Xl' X4, fI, Z, P j define on (M, 1T, M) on 
integrable connection. Thus they determine on (M, 17-, M) a 
global foliate trivialization. 

Remark 2: Results of Wahlquist-Estabrook in Ref. 1 
correspond to the following particular case: Let Xl' ... , X7 be 
vector fields on a manifold F such that 

[Xl' X3] = [X2' X3] = [X2' X6] = [Xl' X4 ] = 0, 

[Xl' X2] = - X7, [Xl' X7] = Xs, [X2' X7] = X6, 

[Xl' Xs] + [X2' X4] = X7 + [X3, X4] + [Xl' X6] = O. 

Now, let us considerMo = F X JR2with the naturaliden-
tification 

T(f,x,tIMO = TfFffi Tlx, t)JR2. 

We will define vector fields tp(s;), i = 1, ... , 7 on Mo by 

1 a I tp(5I)If,x,tl = Xlf + -2 -a ' 
:x Ix,ll 

tp(Si )If,x,t I = Xif + 0, i = 2,3,5,6,7. 

If 1To: M O ...... JR2 is the second projection and fl} is the Lie 
algebra of 1To-vertical vector fields, we will denote by .sf the 
abelian Lie algebra generated by {tp(5I)' tp(S4) j and by 2' the 
Lie algebra .sf ffi fl} . Then (2' , tp) is a geometrical realization 
of L in Mo. Moreover, we have 

(! ,tp(5i))=(:t,tp(Si)}=O, i=I, ... ,7. 

This fact corresponds to the assumption of "(x, t) indepen­
dence" of the prolongation with respect to the trivialization 
Mo=FXJR2

• 

From an intrinsic point of view, the existence of such a 
trivialization is equivalent to the existence of two-dimen­
sional Lie algebra .sf' of vector fields which commutes with 
2' and such that values of .sf' and fl} at every point define 
supplementary contact elements. 

Remark 3: Let us give an example of (x, t )-depending 
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prolongation: M = M X R with global coordinates (x, t, u, z, 
p, y) and we consider the vector fields 

- a - a - a 
U=-, Z=-, P::=-, 

au az ap 

- 1 a-I a 
XI=2' ax' X4==& at ' (13) 

- a - a - a 
X2= - 2x - , X 3=8t - , X7=- , XS:=X6=0. 

ay ay ay 
By this way, we obtain the (x, t )-depending potential 

dy = ( - xu + 6u2t )dx 
+ (px + 6u2x - 12upt + 6z2t - 48u3t - z)dt. (14) 

VI. CLASSIFICATION OF SIMPLE ANALYTIC 
PSEUDOPOTENTIALS 

In this section, differentiability will be assumed to be 
real analytic. We study the case F = JR (simple pseudopoten­
tials). 

In this case, by analycity, vector fields Xl' ... , X7 on M 
are real analytic. Classification will be done by the following 
arguments (see details in Ref. 4) 

(a)If~¢O, letfl= {mEMIX3m =lOj,whereflisan 
open dense set in M. 

If mEM, there exist, in a neighborhood of m, Y -adapt­
ed local coordinates (x, t, u, z, p. y) such that x3=a lay. 
Equation (9d) gives 

_ a {4a2 
- at = 0, 

X2=[a(t)x+p(t)]-, with (15) 
ay 4aP-Pt =0. 

Thus. either a = O. P = It or a = - 1I4(t - to). P = xol 
4(t - to). 

If a = 0, P = It, we obtain relations 

X2==AX3 • XS:=X6:=X7==O. 

which are true in fl. thus, by analyticity. in M. Now. using 
the integrable connection whose horizontal elements are 
generated by {Xl' X4, fI, Z, P j. we obtain global Y -adapted 
coordinates such that H is defined by 

dy = tp( y)[(Uu + 3u2)dx 
+ (- Up - 12u21t - 6up + 3z2 - 24u3)dt], (16) 

where itER and tp is an arbitrary analytic function. 
If a = - 1I4(t - to). P = xol4(t - to), we obtain rela-

tions 

4(1 - to)X2 + (x - XO)X3=O. Xs X6=O, 8(t - to)X7:=X3 

which are true in fl. thus in M. By the previous argument. we 
obtain global Y -adapted coordinates such that H is defined 
by 

dy = rp (y) [[ - u(x - xo) + 6u2(t - to)]dx 

+ [(p + 6u 2 )(x - xo) 
+ ( - 12up + 6z2 - 48u3 )(t - to) - z]dt J, (17) 

where ItEJR and tp is an arbitrary analytic function 
(b) IfX3==O. X2¥=O, let fl = {mEMIXzm =lO}. Here, fl 

is an open dense set in M. If mEfl. we use Y-adapted local 
coordinates in a neighborhood of m such that x2=a lay. 
Then, by (9d), we obtain 
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XI= 1 ~+ [a(x,tV+P(x,tlY+r(x,t)]~, (18) 
2 ax ay 

with either a=13 =0 or a=!. 

If a==/l ==0, we have XS=X6=X7=0 and by the pre­
vious argument we obtain global Y -adapted coordinates 
such that H is defined by 

dy = ffJ (y)[2u dx + ( - 2p - 12u2)dt]. (19) 

If a==!, by a change of local coordinates of the form 
/ = y + P (x, t), we obtain the local reduced expressions 

- 1 a (1 2 )a - - a - a 
XI=="2 ax + T Y +,1. ay' X2~6==iJy' X7 =y ay' 

X- 1 a ,2",2 a - ( 1 2 ,)a 4==--+(/l.y +~ )-, Xs= - -y +/1. -, 
8at ay 2 ay 

(20) 

and a slightly more sophisticated version of the previous ar­
gument (see Ref. 4) shows that there exist global F-adapted 
coordinates such that H is defined by 

dy = ffJl(y)[(U + 2u)dx + ( - 2p - 8u2 + 8uA + 1M 2)dt] 

+ ffJ2( y)[ - 4zdt] + ffJ3( y)[dx + ( - 4u + SA )dt], (21) 

whereAER and X; = ffJ;(y)alay are analytic vector fields on 
R such that 

[XI' X2] = XI' [XI' X3] = 2X2, [X2' X3] = X3· 

Finally, we obtain the following theorem. 
Theorem II: Let (M, iT, M) be an analytic locally trivial 

fiber bundle with R as a typical fiber. If H is an analytic CE 
connection on (M, iT, M) which is adapted to (I), then there 
exists a global analytic trivialization M = M X R such that, 
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in the corresponding coordinates (x, t, u, z, p, y), H is defined 
by one of the following equations. 

(i) dy = ffJ (y){ [AIU + A2u
2 + A3( - ux + 6uZt )]dx 

+ [A I( - p - 6u2) + A2( - 2up + z2 - 8u3) 

+ A3( px + 6u2x - 12upt 

+ 6z2t - 48u3t - z)]dt l, 
where A I' ,1.2' A3ER and ffJ is an arbitrary analytic function on 
R. 

(ii) dy = ffJl( y)[(U + 2u)dx + ( - 2p - 8u2 

+ 8uA + 1M 2)dt] + ffJ2( y)[ - 4zdt] 

+ ffJ3( y)[dx + ( - 4u + 8,1. )dt], 

whereAER and X; = ffJ;(y)aliJy, i = 1,2,3 are analytic vec­
tor fields on R such that 

[XI' X2] = XI' [XI' X3] = 2X2, [X2' X3] = X3· 

In the case (i), if ffJ( y)= 1, we obtain a potential with 
three independent parameters. 

In the case (ii), if ffJl(y)=l, ffJz(y) y, and ffJ3(y) y2, we 
obtain essentially the pseudopotential discovered by Wahl­
quist-Estabrook. I 

'H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 16, I (1975). 
2E. Cartan, Les systemes diffirentiels exterieurs et leurs applications geome· 
triques (Hennann, Paris, 1945). 

3E. Fedida, C. R. Acad. Sci., Paris, 272, 999 (1971). 
4p. Molino, "Simple pseudopotentiais for the KdV equation," in Lecture 
Notes in Mathematics (Springer, Berlin, 1982), Vol. 926. 

SR. Hennann, "Geometric theory of nonlinear differential equations, Back­
lund transfonnations and solitons," in Interdisciplinary Mathematics, 
(Math. Sci. Press, Brookline, MA, 1976), Vols. XII and XIV. 
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The sine-Gordon equations: Complete and partial integrability 
John Weiss 
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The sine-Gordon equation in one space-one time dimension is known to possess the Painleve 
property and to be completely integrable. It is shown how the method of "singular manifold" 
analysis obtains the Backlund transform and the Lax pair for this equation. A connection with the 
sequence of higher-order KdV equations is found. The "modified" sine-Gordon equations are 
defined in terms of the singular manifold. These equations are shown to be identically Painleve. 
Also, certain "rational" solutions are constructed iteratively. The double sine-Gordon equation 
is shown not to possess the Painleve property. However, if the singular manifold defines an "affine 
minimal surface," then the equation has integrable solutions. This restriction is termed "partial 
integrability." The sine-Gordon equation in (N + 1) variables (N space, 1 time) whereNis greater 
than one is shown not to possess the Painleve property. The condition of partial integrability 
requires the singular manifold to be an "Einstein space with null scalar curvature." The known 
integrable solutions satisfy this constraint in a trivial manner. Finally, the coupled KdV, or 
Hirota-Satsuma, equations possess the Painleve property. The associated "modified" equations 
are derived and from these the Lax pair is found. 

PACS numbers: 03.40.Kf, 02.30. + g 

I. INTRODUCTION 

In Ref. 1 the Painleve property for partial differential 
equations was defined. Briefly, we say that a partial differen­
tial equation has the Painleve property when the solutions of 
the pde are "single valued" about the movable singularity 
manifold. To be precise, if the singularity manifold is deter­
mined by 

(1.1) 

and u = u(zl,. .. ,zn) is a solution of the pde, then we require 
that 

00 

U = lP a L UjlP
j
, 

j~O 

( 1.2) 

where uo#O, lP = lP (ZI,···,zn)' uj = Uj(ZI"",Zn) are analytic 
functions of (Zj) in a neighborhood of the manifold (1.1) and a 
is a negative, rational number. Substitution of (1.2) into the 
pde determines the allowed values of a, and defines the re­
cursion relations for uj,j = 0,1,2, .... When the anzatz (1.2) 
is correct the pde is said to possess the Painleve property and 
is conjectured to be integrable. 

In Ref. 2 Backlund transformations were obtained by 
truncating the expansion (1.2) at the "constant" level term. 
That is, we set 

U = uolP -N + uIlP -N+ 1+ ... + UN' (1.3) 

and find, from the recursion relations for uj ' an overdeter­
mined system of equations for (lP,Uj,j = 0, 1, ... ,N), where UN 
will satisfy the (original) pde. Upon solving the overdeter­
mined system it was found, for those equations considered, 
that lP satisfied an equation formulated in terms of the 
Schwarzian derivative: 

!lP;XI = ~ (lPxx) _ ~ (~)2. 
ax lPx 2 lPx 

(1.4) 

The invariance of (1.4) under the Moebius group, 

lP = (a¢ + b )/(e¢ + d), ! lP;x I = ! ¢;x j, 
motivates the substitution 

lP = V/V2, 

(1.5) 

(1.6) 

where VI and V2 satisfy the same linear equation. From the 
resulting Wronskian relations the Lax pair may be found. 

In Ref. 3 it is shown how study of the Caudrey-Dodd­
Gibbon equation leads to the formulation of a class of equa­
tions, in terms of the Schwarzian derivative, that identically 
possess the Painleve property. This class of equations con­
tains the higher-order KdV, Caudrey-Dodd-Gibbon, and 
Kuperschmidt equations. 

In this paper various equations of sine-Gordon type are 
considered. These equations are somewhat different from 
those studied previously in that they have a symmetric de­
pendence on the independent variables (under Lorenz trans­
formation). Only the (1 + 1) sine-Gordon (one space-one 
time variable) equation is found to identically posssess the 
Painleve property. The method of "singular manifold" anal­
ysis, i.e., Backlund transform and formulation in terms of 
the Schwarzian derivative, obtains, for this equation, the 
Lax pair. In addition, a connection to the sequence of higher­
order KdV equations is found. That is, the (1 + I) sine-Gor­
don equation is formulated in terms of "minus one" func­
tional of the Lenard recursion relations, where positive 
functionals determine the sequence of higher-order KdV 
equations. For the sine-Gordon equation we define a system 
of "modified" equations that identically possess the Painleve 
property. These "modified" equations are related to the 
"characteristic" initial value problem. Furthermore, we 
find, using the discrete symmetries of the modified equa­
tions, certain rational solutions of the sine-Gordon equa­
tion. 

The double sine-Gordon and (N + I) sine-Gordon 
equations are found not to possess the Painleve property. 
This would seem to answer various questions concerning the 
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integrability of these equations.4-10 However, if the "singu­
lar manifold," C{J, in the Ansatz (1.2) is restricted (to satisfy a 
subsidiary constraint) a type of "partial" integrability can be 
defined for these equations. The known, exact solutions ap­
pear to satisfy the appropriate constraint in a more or less 
trivial manner. We conjecture that the class of exact solu­
tions (for these equations) is more general. Hopefully, study 
of the "constrained" dynamics willead to their discovery. 

In a recent paper, Oevel ll states that the coupled KdV, 
or Hirota-Satsuma, equations "do not seem to be 'complete­
ly integrable' in the usual sense." Analysis reveals that these 
equations identically possess the Painleve property. Thus, if 
these equations are "partially integrable" it is in a different 
sense from that defined above. The Painleve ("singular mani­
fold") analysis is presented in the Appendices. 

We note that "partial" integrability (of various types) 
for ordinary differential equations has been considered by 
several authors, i.e., Segurl2 and Tabor and Weiss.13 

II. THE (1 + 1)SINE-GORDON EQUATION 

An interesting discussion of the long history of the 
(1 + 1) sine-Gordon equation 

U xt = sin u (2.1) 
can be found in Chap. 1 of Ref. 14. Suffice it to say that the 
original Backlund transformation 15 was defined for this 
equation, while the Lax pair is contained in the inverse scat­
tering transforms of Zakharov and Shabat 16 and Ablowitz et 
al. 17 

In Ref. 1 the sine-Gordon equation was shown to pos­
sess the Painleve property. For reference, we present part of 
the analysis here. 

Since the nonlinearity of (2.1) is nonalgebraic it is con­
venient to transform Eq. (2.1) into a different form. That is, 
let 

V=eiu
, 

and find 
VVxt - Vx VI = !(V3 - V). 

(2.2) 

(2.3) 

By a leading order and resonance analysis this equation has 
an expansion 

00 

V=m -z ~ V .,.- £.. j'Pj' (2.4) 
j=O 

where the "resonances" occur at 

j= - 1,2, (2.5) 

and 

Vo = 4'/Jx'P" VI = - 4'/Jxt· (2.6) 

The compatibility condition atj = 2 is satisfied identically 
(U2 is arbitrary) and (2.3) and (2.1) possesses the Painleve 
property. I 

To proceed further, we now define the transform 

V = ({J - 2 Vo + ({J - I VI + V2, (2.7) 

or, using (2.6), 

(2.8) 

Substitution of (2.7) and (2.8) into Eq. (2.3) obtains an 
overdetermined system of equations for ('Po, Vz). This system 
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arises from the recursion relations for the V; and the require­
ment that 

V3 = V4 = Vs = V6 = 0, (2.9) 

where Vo and VI are defined by (2.6) and the condition 
V6 = 0 requires V2 to satisfy Eq. (2.2). There is no condition 
whenj = 2 since this is a resonance of the recursion rela­
tions. 

To effect the reduction of the system (2.9) offour equa­
tions in two unknowns to the Lax pair for Eq. (2.2) involves 
extensive calculation. To simplify the calculation it is con­
venient to let 

(2.10) 

The reason for this is as follows. Under the inversion, 

'P = 1/t/J, (2.11) 

(2.12) 

and the form 

W = Vz - ({J ;,I({JxC{Jt 

becomes 

(2.13) 

(2.14) 

This invariance of Wunder (2.11) is a useful check on the 
calculation. 

We then recast the overdetermined (2.9) in the variables 
(W,'P ) into a form that is, insofar as possible, invariant under 
the transformation (2.11). The resulting equations involve 
W, Wx , Wt , etc. and the expressions 

a a 
({Jx ax ill +({Jt at il2, (2.15) 

and 

(2.16) 

2 
ill = 'Pxtt _ ({J,,'Pxt _ ~ 'P:t. (2.17) 

'Px 'Px'Pt 2 ({J x 
2 

il2 = 'Pxxt _ C{JxxC{Jxt _ ~ ({J xt . (2.18) 
({Jt ({Jx({Jt 2 ({J ~ 

The forms il I and il2 are similar to the Schwarzian 
derivative (1.4) in that they are invariant under the Moebius 
group (1.5). 

Now, from the system (2.9) we find the "reduced" sys­
tem of equations 

and 

2 

W=o or V2=~' 
'Px'Pt 

a a 
'Px -ill + C{Jt -ilz = 0, ax at 

(2.19) 

(2.20) 

il lil2 =!. (2.21) 
The system of two equations [(2.20) and (2.21)] in one 

unknown (C{J) can be reduced further by using the identity 
a a 

({Jx-ill='Pt-il2' (2.22) ax at 
Thus, there results 
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ill = a, il2 ={3, 

where 

a{3= 1· 
We now let 

Z2 = q;x/(p" 

W 2 = q;,1q;x, 

and find 

ill = !q;;t) + 2ZI/IZ = a, 

il2= !q;;x) +2WxJW={3, 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

where a{3 = 1 and! q;;x ), ! q;;t ) are Schwarzian derivatives. 
To find the Lax pair we now assume that 

q; = Y IIY2, (2.29) 

where Y I and Y2 satisfy 

Yxx =aY, 

and 

Y, =bYx +cY. 
By the condition 

Yxx , = Y,xx' 

it is found that 

2cx +bxx =0, 

a, = - bxxx l2 + 2ab", + bax. 

By the Wronskian relation for (2.30), 

W 2 =Z-2 =b, 

and 

!q;;x) = - 20. 

Evaluating Eq. (2.28), we find 

a = J... (bxx _ J... b ~) _!!... 
2 b 2 b 2 2' 

and substitution into Eq. (2.33) obtains 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

a, = - {3bx . (2.37) 

On the other hand, evaluation of (2.27 obtains 

bx, + bbxx - b,bJb - !b ~ - 2b 2a = a. (2.38) 

Using Eq. (2.36), 

bx, - b,bJb = a - {3b 2. (2.39) 

We now let 

a= -A. -1/4, {3= -A., b=(A. -1/2)e, (2.40) 

and find that e satisfies the equation 

ex,le - e xe,le 2 = ~(e - e -I), (2.41) 

which is Eq. (2.2). 
Now substitution of(2.36) into (2.37) produces 

~(~ _ bxb,) + bx (~ -b ~) = -2/3b 
ax b b 2 b b x b 2 x , 

(2.42) 

or, by (2.39), 

~(~ - bxb, -ab- I +f3b) =0. 
ax b b 2 

(2.43) 

Thus, Eqs. (2.39) and (2.37) are consistent, and (2.30), (2.36), 
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and (2.40) define the Lax pair for Eq. (2.41) or (2.2). 
Having reduced (2.9) to the Lax pair for Eq. (2.2) and, 

thus, effectively defining the Backlund transform (2.8), we 
next consider some consequence for this reduction. 

Taking into account the various scalings, 

a=J...(exx _J...e~)+~. 2 e 2 e 2 2 (2.44) 

In the scattering problem (2.30) A. is the spectral param­
eter and 

(2.45) 

where limlxl~oo d = 0, is the (in general, complex) "poten­
tial." 

From (2.45), 

2eexx - e~ -4de 2 = 0, 

and differentiating with respect to x, 

(2.46) 

e xxx - 4 dex - 2 dxe = O. (2.47) 

Now formally, the Lenard recursion relations l8 are 

tPn+ I,x = - tPn,xxx + 4 dtPn,x + 2 dxtPn, (2.48) 

where 

tPo = 1, tPl = d, tP2 = - dxx + 3d 2 (2.49) 

are obtained from the generating function tP, where 

and 

2tPtPxx - ~ -4d~ + U~ - U =0, (2.50) 

From (2.48) and (2.47), 

e=tP_I' 

(2.51) 

(2.52) 

and the sine-Gordon equation is, with the scaling employed, 

a 
d, = -tP-l. (2.53) 

ax 
The sequence of higher-order KdV equations are 

a 
d, = ax tPn, (2.54) 

for n = 0,1,2, .... 
It seems appropriate that 

a 
d, = ax tP - n' (2.55) 

for n = 1,2,3,4, ... be termed the higher-order sine-Gordon 
equations. The results of Ref. 19 demonstrate that the flows 
of (2.54) and (2.55) "commute" in the sense of Hamiltonian 
systems. This result is essentially equivalent to that found in 
Ref. 20. 

Next, we note that Eqs. (2.27) and (2.28) are, in effect, 
the "classical" Backlund transformation for the sine-Gor­
don equation. Let 

H2 = q; ~,1q;xq;" 
then 
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With 

a = _ ~e-i(iJ(I, 

(2.58) 
H2 = eiU

, 

W 2 = q;,Iq;x = eiw
, 

the Eqs. (2.57) become 

(
U-OJ-OJo) _ -iwol2' (U+OJ+OJO) - e sm , 
2, 2 

(2.59) 

and 

(
u + OJ + OJo) _ iwol2 • (u - OJ - OJo) - e sm , 

2 x 2 
(2.60) 

where 

ux, = sin u, (OJ + OJo)x, = sin(OJ + OJo). (2.61) 

Now, Eqs.(2.57) may be reduced by the substitution 

Q= _ H = q;x, 
0' --, 

W q;, 
lP = _ H = _ q;x" (2.62) 

Z q;x 

to the form 

1 A e 
e + -elP+ -- =0, 
'2 2 lP 

(2.63) 
1 A-IlP 

lPx +-elP + -- =0, 
2 2 e 

where 

V = eiu = elP, a = A /2, /3 = A -1/2. (2.64) 

We term Eqs. (2.63), the "modified" sine-Gordon equations. 
(See Appendix B.) 

III. THE DOUBLE SINE-GORDON EQUATION 

An extensive discussion of the physics of the double 
sine-Gordon equation, 

ux, = 4a sin(uI2) + 4 sin u, (3.1) 

is contained in Chap. 3 of Ref. 14. 
To apply the Painleve analysis we set 

(3.2) 

and find 

VVx, - VxV, =a(V3- V)+ V4_1. (3.3) 

The expansion about the singular manifold takes the form 

'" 
V=q;-I L ~q;j, (3.4) 

j=O 

with resonances at 

j= - 1,2. (3.5) 

From the recursion relations 

V~ = q;xq;" (3.6) 

I q;x, a 
VI = - --- Vo - -. (3.7) 

2 q;xq;, 2 

The compatibility condition at the resonancej = 2 is 
not satisfied identically. Instead, there is found the following 
"constraint" on q;: 
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a - - +- - -0. [
a (q;x )112 a (q;, )112] _ 
at q;, ax q;x 

(3.8) 

Thus, unless a = 0, Eq. (3.3) does not possess the Pain­
leve property. However, if 

V=f(x +ct), (3.9) 

condition (3.8) is satisfied and the resulting ode forf(E), 

ffu - I; = aif3 - f) + 14 - 1, (3.10) 

is identically Painleve; and can be solved by quadrature. So 
far as we have been able to determine, this is the only known 
exact solution ofEq. (3.1). Concerning this problem, we note 
the following observations. 

(1) Ifq; is a solution of(3.8) then '" =/(q; )isasolutionof 
(3.8) for arbitrary (differentiable)! 

(2) Condition (3.8) is 

:t (~;:q;J + ~ (~:'q;J = 0, (3.11) 

which is the "Euler equation,,20 for the functional 

11(q;) = II ~q;xq;,dx dt. (3.12) 

However, the identity 

:t (~q;t~q;;) + ~ (~q;;:q;;) 
= :t (~;:q;J + ~ (~:'q;J = ° (3.13) 

demonstrates that conditions (3.11) or (3.13) are simulta­
neously the Euler equations of 

12(q; ) = Ii ~q;; + q;; dx dt. (3.14) 

Since the "minimal surfaces" I are the "minima" ofthe 
functional 

13 = iI ~ 1 + q;~ + q;; dx dt. (3.15) 

we term the solutions of (3.13) "affine minimal surfaces," 
i.e., affine in the sense that (3.13) is invariant under the scal-
ings 

q;_Aq;, X---+aX, y---+ay. 

(3) The similarity solution of (3.3), 

V=f(E), 

E=xt, 

(3.16) 

(3.17) 

Effu - Ef; + ffe = a(f3 - f) + f4 - 1 (3.18) 

is not Painleve (a#O) since q; = q;(xt) does not satisfy (3.11). 
(4) Letting 

b = q;,Iq;x, 

condition (3.11) becomes 

(3.19) 

b, = bbx ' (3.20) 

which is the in viscid Burgers equation. The well-known the­
ory of this equation21 demonstrates that general, analytic 
initial data becomes singular "multiple-valued" in a finite 
time (loss of regularity). Consequently, smooth, "global" so­
lutions of Eq. (3.11) do not exist. 
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The simple (Painleve), traveling wave solution (3.9) cor­
responds to the trivial, b = const, solution of(3.20). 

(5) Condition (3.8) can be linearized by a Legendre 
transformation and the complete solution found. That is, we 
write (3.8) as 

qJ ;qJ/I - 2qJxqJ,qJx, + qJ;qJxx = O. 

Then, the Legendre transformation22 

E = qJx' X = WE' 1J = qJ" t = Wn , 

qJ (X,y) + W(E,1J) = XE + t1J, 

obtains from (3.21) the linear equation 

~WEE + 2EnWEn + 1J2 Wnn = O. 

Letting 

d a a 
- =E- +1J-, 
ds aE a1J 

we find 

d 2 d 
-W= -W. 
ds2 ds 

The complete solution of (3.26) is 

W= Wo+ WI' 

where 
d 
- Wo=O, 
ds 

and 

d 
-WI=WI· 
ds 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Here, Wo and WI are "homogeneous" functions of de­
gree zero and one, respectively. Their general representa­
tions are22 

(3.29) 

where G (z) and H (z) are arbitrary (smooth) functions. Thus, 

W = G (E/1J) + 1JH (c/1J) (3.30) 

represents the general solution of (3.26). We find, from the 
above, that 

qJ (x,y) = - Wo(E,1J), (3.31) 

and 

(3.32) 

The Legendre transform is inverted by (3.22). We note 
that the above goes through when 

{1 = qJxxqJ" - qJ~, #0. 

If {1 = 0, (3.21) implies 

qJ = J(x + ct ); 

(3.33) 

(3.34) 

or, the Legendre transform is defined when qJ is not a travel­
ingwave. 

A few simple solutions can be easily found. For in­
stance, 

WI=O 

obtains 

xqJx + tqJ, = 0, 

or 
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(3.35) 

(3.36) 

qJ =J(X/t), (3.37) 

and 

b = qJ,IqJx = - x/t, (3.38) 

whereJ(z) is arbitrary and b is a solution of(3.20), the inviscid 
Burgers equation. From 

Wo = E/1J, WI = 1J2/E, (3.39) 

it is found that 

qJ (x,t) = 
1J 

_ b -I = t ± ~t 2 + 4x 
2x 

(3.40) 

Obviously, algebraic solutions of the inviscid Burgers 
eq uation can be constructed by the above method. In a sense, 
Eq. (3.26) is the linearization ofEq. (3.20). At this point, 
however, it is not clear how these specific functional forms of 
qJ, i.e., (3.37) or (3.40), relate to (possible) exact solutions of 
the double sine-Gordon equation (3.3). 

However, it is possible to define a Backlund transfor­
mation for Eq. (3.3) by letting 

V=qJ-IVO+V\, (3.41) 

where 

(3.42) 

v)= - ~~Vo-~. 
2 qJxqJ, 2 

There is obtained an overdetermined system of three 
equations in one unknown qJ: 

(i) a - - + - - -0, [
a (qJx )112 a (qJ, )112] _ 
at qJ, ax qJx 

(3.43) 

(3.44) 

(3.45) 

where {11 and {12 are defined in Sec. II. 
When a = 0 these equations reduce to (2.20) and (2.21). 

When a # 0, we conjecture that integrable solutions of the 
double sine-Gordon equation correspond to the solutions of 
the system (3.43)-(3.45). 

IV. THE (N + 1) SINE-GORDON EQUATION 

Herein, we consider the N space-one time (N + 1) di­
mension sine-Gordon equation (SGE). For the (2 + 1) SGE 
explicit soliton type solutions were obtained by Hirota,5 
while a Backlund transform was found by Leibbrandt. 7 Basi­
cally, the n-soliton solution found by these authors consists 

John Weiss 2230 



                                                                                                                                    

of a superposition of n plane, traveling waves. 8 The param­
eter (directions) of these waves (soliton) are required to sa­
tisfy a certain set of compatibility conditions for the solu­
tions to exist.5

•6•8•
9 For the (1 + 1) SGE these conditions are 

trivial. For the two-soliton solution of the (2 + 1) SGE, Gib­
bon and Zambotti6 have shown the compatability conditions 
to be trivial; while, for the three-soliton solution, the area of 
the triangle formed by the three plane waves is time invar­
iant. All the known exact solutions of the (N + 1) have an 
infinite energy since they are constructed from plane waves. 
It is not known if there exist exact solutions with finite ener­
gy. 

In what follows we apply the Painleve analysis to the 
(N + 1) SGE and find that (for N> 1) this equation is not 
identically Painleve. In addition, it can be shown that the 
directions of the n-plane waves must lie in the same plane if 
the compatibility conditions are to be satisfied for solutions 
of this type. Hence, these solutions can be obtained by a 
Lorenz transformation of the solutions of the (1 + 1) SGE. 

Without loss of generality and for notational conve­
nience, we consider the (N + 1) elliptic SGE 

- Du = sin u, 
where 

0= Cf;,j = V'V, 
and 

a 
V.=-

J ax.' 
J 

By the substitution 

V=eiu
, 

we find 

- VDV + VV'VV = !(V3 - V). 
The Painleve representation 

00 

V= ip -2 L fj ipj, 
j~O 

with resonances at 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

j = - 1,2, (4.6) 

will be valid if ip = ip(xl, ... ,xn + I ) satisfies a compatibility 
condition. Using the expressions 

Vo = - 4Vip'Vip, VI = 4Dip, 

the compatibility condition is found to be 

Vip'DVip = 0, 

where 

and 

N+IN+I 

Du = L L (ip Tm - ipllip",m)' 
l~ I m~ I 
l#i 

m#i 

N+I 

Dij = L (ipijipkk - ipikipjk)' 
k~1 

We note the following observations. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(1) The matrixD is symmetric (Dij = Dji ) and Eq. (4.8) is 
trivial when N = 1 [( 1 + 1) SGE]. 

(2) Equation (4.8) is invariant under the change of varia­
bles, xr~ixj (hyperbolic SGE). 
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(3) Equation (4.8) is translation invariant, i.e., Xr-+Xj 

+cj • 

(4) Equation (4.8) is invariant under orthogonal changes 
of independent variables, 

V = BV', 

where 

(4.11) 

B'=B- 1
• 

Observation (4) follows from the orthogonal invariance 
of (4.4) and (4.7). 

Therefore, consider the hypersurface M defined by 

M= !x:ip(x)=ipoJ, (4.12) 

By translation and rotation we may locate the origin of 
the coordinate system at a point Xo E M so that 

a a 
aX

2 
, ... , aXn + 1 

provide an orthogonal basis for the tangent space of Mat xo. 
Since M is a hypersurface there is a unique normal to Mat xo: 

A _ (ip~,) N_ .. 

o 

(4.13) 

By observations (3) and (4) and (4.13), Eq. (4.8) reduces 
to 

N+IN+I 

ip;, L L (ip 7m - ipllipmm) = 0, (4.14) 
1~2 m~2 

at the "arbitrary point" xO' 
In terms of the hypersurface M, Eq. (4.14) states23 that 

the elementary symmetric function of the principal curva­
tures of M vanishes. That is, 

(4.15) 

where Kj,j = 1, ... ,n are the principal curvatures of M. In 
effect, Eq. (4.14) is the sum of the principal minors of order 2 
ofthe second fundamental form of MY 

Now, let N = 2 [the (2 + 1) SGE] and find 

(4.16) 

or K = KIK2 (the Gaussian curvature) vanishes, defining a 
"developable surface ... 23 Condition (4.8) becomes, in the var­
iables (t,x,y), 

ip ~(ipxxipyy - ip ;y) + ip ; (ipttipyy - ip ;,) 

+ip;(ipttipxx -ip;,) 

+ 2ipxip,(ip,yipyX - ipx,ipyy) + 2<pyip,(ip,xipxy - ipy,ipxx) 

+ 2ipxipy(ipx,ipy, - ipxyiptt) = O. (4.17) 

As noted in observation (1), Eq. (4.17) is trivial when ip is 
a function of two variables, i.e., ip = ip(t,x). 

Now, let ip be a product of plane, traveling waves: 
", 

ip = II J;(al + bjx + cjY - dj ), 
j~ I 

where theJ;(z) are arbitrary. 

(4.18) 

If m = 2 (two waves), a rotation of the coordinates can 
be devised so that ip depends (effectively) on two variables, 
and condition (4.17) will be trivial. 6 
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For any m a similar argument demonstrates (4.17) will 
be satisfied identically if all of the wave directions, OJ 
= (aj ,bj ,cj ), lie in the same plane. Furthermore, the necessi­

ty of this condition can be proven by direct substitution of 
(4.18) into (4.17) and using the requirement that the.lj(z) be 
arbitrary. 

For three waves the co-planar condition may be written 

hI 

(4.19) 

This is the condition found in Ref. 6 for the existence of 
the three soliton solution. It indicates that the area of the 
triangle formed by the plane waves is time invariant. 

From the above it appears that the class of known, exact 
solutions for the (2 + 1) SGE is trivial in that they can be 
reduced to solutions of the (1 + 1) SGE. If nontrivial solu­
tions of (4.17) (developable surfaces) correspond to exact so­
lutions of (4.4) this class may contain solutions with nonre­
ducible behavior. 

As in Sec. III the compatibility condition (4.17) may be 
"linearized" and the complete solution found by a Legendre 
transformation. That is, 

EI = <PI' t= W£" 

Ez = <Px' X= W£" (4.20) 

E3 = <py, Y= W£." 

<P (t,x,y) + W(EI,Ez,E3 ) = tEl + XEz + YE3 (4.21) 

obtains from (4.17) the linear equation (with summation con­
vention) 

az 
E·E· -- W = 0. (4.22) 

, J aE
j 

aE
j 

Letting 

d a 
-=E·-, 
ds ' JE j 

we find 

~W= ~W. 
dsz ds 

The complete solution of (4.24) is 

W= Wo+ WI' 

where 
d 

- Wo=O, 
ds 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Here Wo and WI are "homogeneous" functions of degree 
zero and one, respectively. (See Sec. IlL) Again, we find 

(4.27) 

and 

tEl + XEz + yE3 = W 1{E I,Ez,E3 ). (4.28) 

We note that the Legendre transformation is defined when <P 
depends, effectively, on three independent variables. 
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APPENDIX A: THE COUPLED KdV, OR HIROTA­
SATSUMA EQUATIONS 

The Hirota-Satsuma, or coupled KdV, equationsz4 

(AI) 

W, + Wxxx + 3wx U = 0 (A2) 

have a Lax pairz5 and an infinite sequence of conserved 
quantities. II Although this strongly indicates their "com­
plete integrability," Oevel ll states that (AI) and (A2) are not 
"completely integrable" in the usual sense since the "sym­
metries" of these equations are not "dense" in the "space of 
vector fields." We note that the fourth-order scattering the­
ory associated with the Lax pair for the KdV equations has 
not been developed. (See Ref. 4.) 

In this Appendix we find the CKdV equations identi­
cally possess the Painleve property if and only if a = !; con­
sistent with the results of Refs. 24 and 25. Additionally, the 
"singular manifold" analysis is applied to obtain the Back­
lund transform/Lax-pair structure. 

(i) There are found to be two types of singularities. 
Branch 1: 

00 

U = <P -z I uj<pj, 
j~O 

00 

W = <p -I I Wj<pj, 
j~O 

with resonances 

j = - 1,0,1,4,5,6. 

(ii) Branch 2: 
00 

U = <p -z I uj<pj, 
j~O 

00 

W = <p -z I Wj<pj, 
j~O 

with resonances 

j = - 2, - 1, - 3,4,6,8. 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

(AS) 

Calculation obtains that both branches have the Painle­
ve property if and only if 

(A9) 

Branch 1 depends on six, and branch 2 on five, arbitrary 
functions. In what follows, we consider only branch 1, and 
define the Backlund transform 

U = uoI<p z + u1/<p + Uz, (AlO) 

W = wol <p + WI' 

where 

Uo = - 2<p;, 

Hence, 

az 
U = 2 -2 In <p + U2• ax 

(All) 

(AI2) 

(A13) 

The resulting overdetermined system consists of six equa­
tions for four unknowns (<p,u2,wo,wIl. The somewhat tedious 
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reduction of this system is facilitated by the substitution (see 
Sec. II) 

Uz = V-~lP~JlP~' (AI4) 

and reformulation of the system of equations in terms of 
Schwarzian derivatives. Eventually, we arrive at the follow­
ing consistent reduction: 

and 

lP, + lPXJCX + 31Px uz = 2q:Jx e , 

lP,IlPx - HlP;xJ - aH2 = e, 

Wo = lPxH, 

e~ =(,1,2+e z)H2, 
WI = - ~ woxllPx - j (A Z + ( 2)1IZ, 

(AlS) 

(A16) 

(A17) 

(AIS) 

(AI9) 

H, + - Hxx + - +eH + -llP;xJH =0. a (H 3 
3 ) 

ax 4 2 
(A20) 

From (AI6) and (AI7) 

aW~ = lPxlP, - (1P ~/2l1lP;X J -1P ~ e. (A2l) 

The relevant equations in the above system are (AI6), 
(AIS), and (A20). These equations define, implicitly, an 
equation for 1P, invariant under the Moebius group. From 
this, we can, as in Ref. 2, find the Lax pair for (AI) and (A2) 
from the Wronskian relations. However, here it is more con­
venient to proceed differently. That is, we let 

W = lPxJlPx' (A22) 

and find the "modified" Hirota-Satsuma equations 

H, + ~ [Hxx + !H3 + eH + ~(Wx - !W2)H] = 0, ax 
(A23) 

W = ~~[w _ W
3 

+3(H + WH) , 2 ax xx 2 x 2 

xH + 2(ex + we)], (A24) 

where 

ex = (A 2 + ( 2)1/2H. 

We intend to find the Lax pair by "linearizing" the 
Miura type transformation relating (A23) and (A24) to (AI) 
and (A2). From (AIS) to (A19) and (A22), the "Miura trans­
formations" are 

- 2u2 = wx + ! W Z + ! H2 - j e, (A2S) 

- 2tu1 = Hx + WH + j(,1, 2 + e Z)I/Z, (A26) 

were (U2,W1) satisfy (A I) and (A2) and (H, W) satisfy (A23) and 
(A24). 

and 

Now letting 

W+H=2¢x l ¢, 

W - H = 2f3xl/3, 

e=,1, sinh a, 

we find from the above that 

a = In(¢I/3), 
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(A27) 

(A2S) 

(A29) 

(A30) 

and 

¢xx + (u2 + WI)¢ = - (A 13)/3, 

/3xx + (u2 - WI)/3 = (A 13)¢. 

(A31) 

(A32) 

Equations (A32) are the spatial (scattering) part ofthe 
Lax pairS for (A I) and (A2). The time-dependent operator is 
found from (A23), (A24), (A27), and (A2S). That is, 

¢, + !(uz, - 2tu lx )¢ + (u2 - 2tu 1}¢x = - j ,1,/3x, (A33) 

/3, + !(U2, + 2tu lx )/3 + (u2 + 2tu 1)/3x = j ,1,¢x· (A34) 

We now consider the singularities of the modified Hir­
ota-Satsuma system, i.e., Eqs. (AI6), (AI8), and (A20). It is 
convenient to use the substitution (A29) with 

H=ax =hxlh, 

to obtain the system 

(A3S) 

~ = ~ 11P.xJ + ~ (~)2 + ~ (h _ ~) (A36) 
lPx 2' 4 h 2 h ' 

h, (hx ) 1 (hx )3 3 hx J - + - + - - + --llP;x 
h hxx 4 h 2h 

+ ~ (h - !)~ = 0. (A37) 

A leading-order analysis with 

lPxxllPx 'Zalc, hxlh'Zb Ie, (A38) 

discovers the following possibilities: 

(i) b = 0, a = - 2; (A39) 

(ii) b 2 = I, a = 1 or - 3; (A40) 

and, if A ;60, 

(iii) b = - 2, a = 0, - 2; (A41) 

(iv) b = 2, a = 0, - 2. (A42) 

We proceed to investigate in detail singularities of the 
form 

"" "" 
1P = L lPje j

, h = L hje j
-

I
, (A43) 

j=O j=O 

where we employ the "reduced" Ansiitze, I 

e = x - rfJ(t), lPj = lPj(t), hj = hj(t), (A44) 

and 

(A4S) 

is required by the condition lPx = 0. A calculation finds the 
resonances to occur at 

j = - 2, - 1,0,0,2,4, (A46) 

which corresponds to the "arbitrary" functions 
lPo,e,lPz,ho,1P4,h4, respectively. Nontrivial compatibility con­
ditions occur whenj = 2,4. 

A direct calculation determines that the compatibility 
conditions atj = 2 andj = 4 are satisfied identically. Thus 
Eqs. (A34) and (A3S) have the Painleve property about sin­
gularities of form (A42). Although we have not checked all 
the singularities of Eqs. (A36) and (A37), it is probably true 
that they identically possess the Painleve property. How-
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ever, it is interesting to observe that the modified equations 
for the Hirota-Satsuma system [(A23) and (A24)] do not 
seem to have any discrete symmetries (other than the trivial 
H- - H). A connection between the discrete symmetries 
(or modified equations) and the Painleve property of se­
quences of higher-order equations is examined in Ref. 3. (See 
also Appendix B.) In Ref. 26 it is shown how Miura-type 
transformations from modified (to original) equations allows 
the definition of, among other things, the recursion opera­
tors producing the sequences of higher order equations. It is 
possible that, when the modified equations (defined in terms 
of the "singular manifold" Backlund transformation) are 
"missing" discrete symmetries, the associated Hamiltonian 
structures are "degenerate" (e.g., Ref. 27). 

APPENDIX B: THE MODIFIED SINE-GORDON 
EQUATIONS 

In Sec. II we have defined the modified sine-Gordon 
equations to be 

e + ~e<p+ ~ e =0 
I 2 2 <P ' 

(BI) 
1 A -I <P 

<P + -e<p+ -- =0 
x 2 2 e ' 

where 

V = eiu = @<P, a = A /2, /3 = A-I 12. (B2) 

These equations have singularities of the form 

e-@o~, <P-<Poe'1, (B3) 
where 

(i) a=/3= -1, 00=2Ex, <Po=2E,; (B4) 

(ii)a=-I, /3=1, e o=-2Ex' <Po=A/2E,; 
(BS) 

(iii) a = 1, /3 = - 1, 0 0 = lIUEx, <Po = - 2E,. 
(B6) 

The resonances, in all cases, occur at 
j = - 1,1. (B7) 

Equations (BI) have the following discrete symmetries: 

(i) 0 = (lIA)0 -I, <P = -~; (BS) 

(B9) 

Thus, by composition of (BS) and (BS), the following four 
solutions of (B 1) are related: 

[0,<P ],[(lIA)0 -1, - <P], 
(BlO) 

[- e,A<p -1],[ - (lIA)e -1, -A<P -I]. 

Direct calculation obtains the Painleve property for singu­
larities of the form (B4), while the above symmetry implies 
that (BS) and (B6) are Painleve as welL Thus, (Bt) has the 
Painleve property. 

Now, let 

e = (A /2)V(b,lb), <P = (A -1/2)V(hxlh), (Bll) 

and, using (B2), find 

btl + (v,IV)b, + II. -Ib = 0, 
(B12) 
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where 

V(hx/h )(bJb) = 4, (B13) 

and V satisfies Eq. (2.3). 
The pair of linear equations (BI2) (essentially Schro­

dinger equations) would seem to be related to the "character­
istic" initial value problem for Eq. (2.3). The initial condi­
tions for a problem of this might be 

V(x,O), O<x< 00, 

(BI4) 
V (O,t ), 0 < t < 00, 

where it is required to find V(x,t). 
We recall that the modified sine-Gordon equations 

(B 1), are obtained from the equations 

n 1 = ! lP;t ) + 2(Z, JZ) = A /2, 

n2 = !lP;xJ + 2(WxxIW) = lIU, 

where 

Z2 = W- 2 = lPxllP .. 

by the substitution 

@= -lPxJlP .. <P= -lPx'/lPx' 

Equations (BIS) allow three types of singularities: 
00 

(i) lP = E- 1 I lPJ EJ, 
j=O 

(ii) lP = lPo(!) + lP3C + lP5~ + ... , 
(iii) lP = lPo(x) + lP3C + lP5~ + .. , . 

These are all of the Painleve type. 
Now,with 

0= - t/lx,It/l" ~ = - t/lxJt/lx, 

the symmetries (BS)-(BlO) become 

(i) tPx, lPXl =~, ./, 1 'l'xlPx = ; 
tP, lP, A 

(.') t/lx, lPx' 1 
11 -- =/1. 

t/lx lPx ' 

(BIS) 

(BI6) 

(BI7) 

(BIS) 

(BI9) 

(B20) 

(B21) 

(B22) 

(B23) 

(iii) t/lxt lPxt = _~, tPxt lPxt = _ A. (B24) 
tPt lPt A t/lx t/lx 

These, along with the in variance under the Moebius group, 

t/l = (alP + b )/(clP + d). (B2S) 

constitute Backlund transformations for Eqs. (BIS). For in­
stance, consider (B23), which is equivalent to 

t/l, =l{Jt- l
, t/lx = -(lIA)(lP~'/lP;lPx)' (B26) 

The consistency condition 

t/ltx = t/lx" 
requires lP to satisfy Eqs. (BIS). We note that (B23) is sym­
metric in (l{J,t/l). Thus, (B23) implies that both (lP,tP) satisfy 
(BiS). 

Following the method of Ref. 3 we iteratively construct 
the "rational" solutions of the sine-Gordon equation (using 
the symmetries ofthe "modified equations"). In this case, by 
rational, we mean rational in (x,t,~ ,et

). To proceed let the 
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"meromorphic" functions (t/!,<p) be expressed as the ratio of 
entire functions 

tP=PIQ, <p=RIS, (B27) 

and substitute into, say (B23). The resulting expressions may 
be reduced to the equations 

ST, - RS, = Q2, 

QP, - PQ, = S2, (B28) 

cr(QPx - PQx)(SRx - RSx ) = 4 [SQx - QSx J2, (B29) 

where A = - cr. Equations (B28), (B29), and (B27) define 
solutions of (B23), consistent with the assumption that 
(P,Q,R,S) are entire, if the terms (QPx - PQx) and (SR x 
- RSx) "divide" the term (SQx - QSx J2. For instance, let 

it be required to solve (B29) for (P,Q). Then we must have 

[SQx - QSx r = a(SRx - RSx )' (B30) 

where a is entire. Using (BIS), (B23), and (B26)-(B28) it is 
found that 

(B31) 

Since S is entire, singularities of a can only occur when [see 
(B20)] 

tP = tPo(x) + tP3~ + '" . 
By (B27), locally, with E = t + fix), 

P = tPo(x) + P3E
3 + ... , Q = 1 + Q3~ + ... , 

and, by (B28) 

S2 = QP, - PQ,. 

Thus, 

4a = o (EO) 

is entire. 

(B32) 

(B33) 

(B34) 

(B3S) 

We now compose (B23) iteratively with the transforma-
tion 

<p- - 1/<p, 

which is to, effectively, identify 

t/!=Pn+IIPn- l , (jJ= -Pn- 2 IPn, 

thereby obtaining the recursion relations 

Pn-IPn+ I" -Pn+IPn- I" =P~, 
and 

(B36) 

(B37) 

(B38) 

cr(Pn - I Pn + I,x - Pn + I Pn - I,x )(Pn - zPn,x - PnPn - 2,x) 

= 4!Pn_ IPn,x - PnPn _ I,x J2. (B39) 

From Eqs. (BlS), with A = - cr, the simplest nontrivial so­
lution seems to be 

(B40) 

By (B2S), the solution 

(jJ1 = tanh (~ t + ~) 2 20' (B41) 
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is found. From (B38) and (B39), we find 

(jJ2 = ~ [sinh (O't + ;) + O't - ;], 

(jJ3 = ~ [sinh (O't + ;) ( O't - ;) 

+ (O't- ;)\anh(~ t+ :0')]' (B42) 

which define "rational" solutions of the sine-Gordon (modi­
fied sine-Gordon) equations. 

We note that Eq. (B38) is identical to that found in Ref. 
3 for KdV equation [Eq. (B39) here determines certain con­
stants of integration]. However, unlike for the KdV equa­
tion, there are no solutions rational in (x,t) only, since in Eqs. 
(B IS) the limit when ,.1,-0 is not defined. Of course, the 
Backlund transformations (B22)-(B2S) may be iteratively 
applied to create different sequences of "rational" solutions. 
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An exact solution (up to quadratures) of the Einstein-Dirac system is presented for cosmological 
models that depend only on one temporal and one space coordinate. Four solutions to the Dirac 
equation, all with zero helicity, are given. 
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I. INTRODUCTION 

Plane symmetric cosmologies have been the subject of a 
number of studies. 1-8 These models have a particulary sim­
ple type of inhomogeneity that leads, in many cases, to field 
equations in which there is a "key" equation that is linear 
and easily soluble. The remaining nonlinear equations then 
can be solved by quadratures; their integrability is assured if 
the key equation is satisfied. A number of "folded" versions 
of these cosmologies are known, in which points a certain 
coordinate distance apart in certain directions are identified 
to give the manifold a cylindrical or toroidal topology. The 
cylindrical topology corresponds to the Einstein-Rosen6 so­
lution, and the toroidal topology to the Gowdy model. 7 Any 
results in anyone of the above models can be directly trans­
ferred to the plane-symmetric models and vice versa pro­
vided proper attention is paid to the effects of the different 
boundary conditions dictated by the different topologies. 
Taking into account all work on this subject regardless of the 
topology chosen, there exists a large body of results for var­
ious types of matter in the plane-symmetric case. For in­
stance, there exist a number of results valid for the Gowdy 
model8 which can with minor modification be transferred to 
the plane-symmetric case. 

One possibility that apparently has not been considered 
is that of a classical spinor field in these cosmologies. Classi­
cal spinor fields have a number of strange properties that 
make it worthwhile and interesting to consider models filled 
with this type of matter. Most interesting is the strong ten­
dency for simplified metrics to allow at most "ghost,,9 solu­
tions in which the spinor field is nonzero, but the stress­
energy tensor vanishes. This feature arises, for instance, 
when homogeneous spinor fields are introduced in the ho­
mogeneous-isotropic Robertson-Walker cosmologies. It 
seems in large part to be due to the existence of a spinor 
momentum flux To; which cannot in many cases be put equal 
to zero without forcing the rest of T!-'v to vanish. As a result, 
since the Robertson-Walker cosmologies require by symme­
try that Go; = 0, nonghost homogeneous neutrino fields are 

al Permanent address: Centro de Estudios Nucleares, Universidad Nacional 
Autonoma de Mexico, Apdo. Postal 70-543,04510, Mexico, D.F., Mexi­
co. 

excluded in them. (There do exist non-Robertson-Walker 
cases where To; is automatically zero as a result of the Dirac 
equation.) To avoid ghosts then, the major requirement for 
those cases in which To; does not automatically vanish by the 
Dirac equation is that the geometry admit nonzero Go;. This 
is exemplified in the Bianchi type IX cosmological models; 
in the diagonal and FRW cases the fact that Go; is zero forces 
the models to allow only ghost solutions, 10-11 while the sym­
metric case l2 in which Go; #0 allows nonghost solutions. 
Isham and Nelson II suggest that allowing inhomogeneity 
would help considerably in finding nonghost solutions. In 
this paper we show that even inhomogeneous models impose 
strong restrictions on the spinor fields that are allowed. In 
the plane-symmetric case there are nonghost solutions, but 
for which Go; is nonzero, so it is not clear that the inhomoge­
neity alone is sufficient to allow nonghost solutions. The ex­
istence of ghost solutions certainly adds interest to the study 
of spinor fields in cosmology. Realistically, one must admit 
that the existence of ghost solutions is almost certainly an­
other indication of the fact that Dirac theory is a quantum 
theory with no real classical limit, and the attempt to force it 
into a classical mold results in strange behavior. 13 

In this paper we will solve the Dirac equation in the 
metric of a plane-symmetric model subject to the constraints 
imposed by the fact that some of the G!-'v are zero while the 
corresponding T!-'v are not automatically zero. The equa­
tions for the metric components then reduce to the same key 
equation as found in the vacuum case, and a set of equations 
that, in principle, can be solved by quadratures. The integra­
bility conditions for this set of equations are one that is satis­
fied if the key equation is satisfied, and another that we show 
is satisfied given the solution of the Dirac equation. In this 
way we have an exact, nonghost solution to the problem up 
to quadratures. 

The paper is organized as follows: In Sec. II we give the 
equations of motion for the metric and the spinor field. In 
Sec. III we solve the equations up to quadratures, and in Sec. 
IV we give conclusions and discuss some of the properties of 
the solutions. 

II. EQUATION TO MOTION 

We write the metric of a plane-symmetric model in the 
form (see, for example, Ref. 5) 

2236 J. Math. Phys. 25 (7), July 1984 0022-2488/84/072236-04$02.50 @ 1984 American Institute of Physics 2236 



                                                                                                                                    

ds2 = e2(y- "'I( _ dT 2 + dZ 2) + e2'" dX 2 + T 2e - 2", dy2, 
(2.1) 

where y and t{l are functions of T and Z only. Matter in this 
model will be described by a Dirac spinor IJI which is also a 
function only of Z and T. The spinor IJI obeys the Dirac 
equation in curved space, 

(2.2) 

where the y" are the flat-space y matrices in the standard 
representation, that is, 

. [0 u
i
] [1 

y'= _u i 0' JIl= 0 (2.3) 

where the u i are the Pauli matrices. Note that y"yV + yV 
y" = - 2rfv since our metric has signature (- + + +). 
The use of the flat-space y matrices implies that Eq. (2.2) is 
written in an orthonormal frame, which we choose to be 
defined by the following one-forms: 

{J)0 = eY - ", dT, {J)x = e'" dX, 

{J)Y = Te -", dY, {J)z = eY -", dZ. (2.4) 

In the notation of Misner, Thome, and Wheeler,14 IJIII' is 
VI' IJI - rJ.l IJI, where V I' means ell'l al ax a with {e( I'd the 
basis vectors dual to the {{J)"J, where rl' is a spin connection 
defined by12 rJ.l = 1 rpvl' Y'yv, and where the rpvl' are the 
connection coefficients of the orthonormal basis (2.4), again 
in the notation of Misner, Thome, and Wheeler. In our case 

ro = - ! (y - t{ll' e - (y - ",IJIlr, r z = - ! (y - t{l)·JIlr, 

rx = ! (- ipe-(Y- "'IJIly - t{l'e-(Y-",Iry), 

r y = ! [ - (liT - ip)e -(Y- "'IJIlyY + t{l'e - (Y- ¢lryY], 
(2.5) 

where a dot means a I aTand a prime is a I az. For our signa­
ture of the metric the stress-energy tensor associated with IJI 
is 

(2.6) 
where the components are in the orthonormal frame defined 
by (2.4), iP=lJItJll, and the parentheses mean symmetriza­
tion on J.L and v. For the metric (2.1) TJ.lv becomes 

Too = Aoo, (2.7a) 

Tox =Aox - !(iPYYYs lJl)(y-2t{ll'e-(Y-",I, (2.Th) 

Toy=Aoy+ !(iPYYslJl)y'e-(Y-",I, (2.7c) 

Toz = Aoz, (2.7d) 

Tzz =Azz , (2.7e) 

Tzx =Azx - 1 (iPYYYs lJl)(y-2t{l)'e-(Y-",I, (2.7f) 

Tzy=Azy-l(iPYYslJl)(lIT-r)e-(Y-"'I, (2.7g) 

Txy = j e-(Y- ",1 [(liT - 2.p){ iPrys lJl) 

- 2t{l'(iPJIlyslJl)). (2.7h) 

Txx =0, 

Tyy =0, 

(2.7i) 

(2.7j) 
where A J.lV = - (iI4) [ iPy(V VI'I IJI - V (J.l iPy vi IJI ], and 
ys==iJllyyy r· For the metric (2.1) the Einstein equations 
are 
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if, + iplT - t{l" = lI2T(Yxx - yy y), 

y' = yzo + 2Tipt{l', 

r = -.roo + T(ip2 + t{l'2), 

y - y" = t{l,2 - ip2 - (lIT)YY y, 

0= Too- Tzz · 

[Here:/I' = Te2(y- ",ITI' and indices are raised and v v 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

(2.8e) 

lowered with 17l'v'] In addition there is a set of conditions 
that come from the fact that Gl'v = 0 for some values of J.L 
and v, namely 

Tox = Toy = Tzx = Tzy = Txy = O. (2.9) 

Equation (2.8e) is a result of our choice of Eq. (2.1) for the 
form of the metric. It restricts us to consider only neutrino 
fields. For, supposing we have satisfied Too - Tzz = 0, the 
final equations of motion for the Einstein-Dirac system will 
be (2.8), (2.9), and the Dirac equation and its conjugate. 
These latter are 

iJllVolJI + irV z IJI + (iI2)e - (Y- "'l[(y - t{ll'r 

+ (liT + r - ip)JIl] IJI - m IJI = 0, (2. lOa) 

and 

iVoiPJIl + iVziPr + (iI2)iP [(y - t{ll'r 

+ (liT + r - ip)JIl]e- (Y-",I + miP = O. (2. lOb) 

Calculating Tl'v and using Eqs. (2.10), we find that 

Too- Tzz = !imiPlJI. (2.11) 

So the condition Too - T zz = 0 means that m must be zero, 
which is consistent with the behavior of other massless fields 
that are plane symmetric with equal Too and Tzz . Hence­
forth we consider only massless neutrino fields. 

III. A PARTICULAR SOLUTION 

To find a particular nonghost solution to (2.8)-(2.10) 
with m = 0, we begin by imposing the conditions (2.9) on IJI. 
We use the Dirac equation or its conjugate to express Z de­
rivatives in terms of T derivatives and vice versa. For in­
stance, Tox = 0 and T zx = 0 give 

~ (iPyyysIJlTe"') = ~ (iPYYYsIJlTe"') = 0, (3.1) 
az aT 

or 

iPyYyslJl = (B IT)e - ¢, 

and the Toy = Tzy = 0 condition gives 

iPyyslJl = (A IT 2)e"', 

(3.2) 

(3.3) 

where A and B are constants independent of T and Z. In 
order to reduce these equations and the condition Txy = 0 
to conditions on the components of IJI we write 

(3.4) 

where ii and bare two-spinors, and (3.2) and (3.3) become 
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2a la2 COS(OI - O2) + 2b l b2 COS(tPI - tP2) = (A IT 2)e¢, 
(3.5a) 

2a l a2 sin(OI - O2) + 2b l b2 sin(tPI - tP2) = (BIT)e-"', 
(3.5b) 

while Txy = ° gives 

(l/T - 2¢)( ai - a~ + b i - b ~ ) 

= - 4t{/(a l b l + a2b2)coS(01 - tPI)' (3.6) 

The Dirac equation takes the form 

~ (TI/2eI1l2I1r- ¢Ia ) + c?-~ (TI/2eI1l2I1r- ¢Ib) = 0, 
aT az (3.7a) 

~ (TI/2eI1l21Ir- ¢Ib) + c?-~ (TI/2eI1l2I1r- ¢Ia) = 0. 
aT az (3.7b) 

Ifwe let 01 = O2 = tPI = tP2 = 0 and take 0 = 0 (Z ± T) and 
a -a T-1I2e-11I21Ir-¢1 b -b T-1/2e-11I2I1r-¢1 A-OA 'A-OA , 
where A = 1,2 and aOA and bOA are constants, Eqs. (3.7) re­
duce to 

(3.8) 

Inserting (3.8) and the fact that all the phases are equal into 
(3.5) we find that these solutions correspond to A = B = 0. 
Equation (3.6) becomes 

4( ± tP' + ¢ -l/2T)(ai - aD = 0. (3.9) 

The coefficient of (ai - a~ ) in this equation is the shear of 
thehypersurfacesO = constife = O(Z ± T). This quantity is 
not zero unless the metric is isotropic, so we can take the 
solution to (3.9) to be a l = ± a2 • We now have four possible 
solutions to the Dirac equations: (I) 0 = O(Z - T), 
a l = b l = a2 = - b2; (2) 0 = O(Z - T), 
al=bl = -a2=b2;(3)0=0(Z+T), 
a l = - b l =a2 = b2; and (4) 0= O(Z + T), 
a l = - b l = - a2 = - b2• In Sec. IV we will discuss these 
solutions in more detail. 

We must now return to Eqs. (2.8) and show that the 
solution to the Einstein equations with the above spinor solu­
tions can be reduced to quadratures. We find yxx 
= yy y = 0. Thus Eq. (2.8a) for tP reduces to a linear equa­
tion that is the same as that of the vacuum metric. This equa­
tion is the key equation mentioned in the Introduction. Since 
yy y = 0, and since T'(;,v = ° by the Dirac equation, (2.8d) is 
automatically valid if the key equation is solved for tP. For 
Eqs. (2.8b) and (2.8c), we must check the integrability condi­
tion. They can be integrated if the partial derivative with 
respect to T (2.8b) equals the partial derivative of(2.8a) with 
respect to z. If the key equation is satisfied this condition 
reduces to (yzot - (yoo)' = 0. It is not difficult to show 
that this condition is satisfied for the four solutions given 
above. 

We now have the complete solution, at least up to qua­
dratures. The solutions for If! given above are complete ex­
cept for the functional values of tP and r which can be ob­
tained from (2.8). Since y-X

x = yy y = 0, there exist 
solutions for (2.8a),5 and these solutions can be inserted in 
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(2.8b) and (2.8c) to give rby quadratures. As we will show in 

the next section TOo and T Z 0 are proportional to (f=i) - I, 
so yo 0 and yz 0 have no explicit dependence on metric 
terms, so (2.8b) and (2.8c) are integrable directly, without the 
need of an integrating factor which would be necessary if 
YOo and yzo contained r explicitly. This solution is the 
solution mentioned in the Introduction. 

IV. DISCUSSION AND CONCLUSIONS 

We need first to show that our solution is not a ghost, 
that is, that Tftv is not identically zero. It is easy to show that 
for all four of the solutions given above 

Too = 2e - Ir - "'la2e, (4.la) 

Toz = 2e- 1r -"'la2e, (4.lb) 

where a = a I' so our solution is not a ghost. We can use these 
expressions to show that yo 0 and yz 0 do not depend expli­
citly on the metric components. Taking yo 0 as a paradigm, 
we find that 

YOo = Te2lr - ¢ITo
o 

= - 2Te21r - ¢Ie - Ir - ¢la~1 T -Ie - Ir - ¢Ie = - 2a~1 e, 
(4.2) 

where the constant aOI is defined in Sec. III. 
We conclude our discussion of 1/1 by classifying the four 

solutions given in Sec. III according to current and helicity. 
We calculatej = Wy"1/I for our four solutions, and find that 
for (I) and (2),j = (402

, 0, 0, 402
), while (3) and (4) givej 

= (402,0,0, - 402
). Since the momentum of these solutions 

is obviously in the ± Z direction, the helicity operator is 
proportional to ~3' where 

(4.3) 

and if we calculate W ~31/1, we find that it is zero for all four 
solutions. According to the notation ofSchweber, 15 the solu­
tions (I) and (3) are positive energy, and (2) and (4) are nega­
tive energy, and all of the solutions are the appropriate sums 
of states of helicity + I and helicity - I to give zero heli­
city. The final classification is (I) positive energy, current in 
the + Z direction, zero helicity; (2) negative energy, current 
in the + Z direction, zero helicity; (3) positive energy, cur­
rent in the - Z direction, zero helicity; and (4) negative en­
ergy, current in the - Z direction, zero helicity. 

The solutions for If! and solutions of Eq. (2.8a) and the 
integration of (2.8b) and (2.8c) give us the exact nonghost 
solution to the Einstein-Dirac field equations promised in 
the Introduction. There should exist other solutions to the 
problem if the condition that all the phases in (3.4) be equal is 
relaxed. 
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The aim of this paper is to compare the members of Cohen's class of phase-plane distributions 
with respect to positivity properties. It is known that certain averages (which are in a sense 
compatible with Heisenberg's uncertainty principle) of the Wigner distribution over the phase­
plane yield non-negative values for all states. It is shown in this paper that the Wigner distribution 
is unique in this respect among the members of Cohen's class that have correct marginals or that 
satisfy Moyal's formula for all states. The subset of members of Cohen's class (not necessarily 
satisfying one of these two conditions) with positivity properties comparable with those for the 
Wigner distribution is shown to be rather small. 

PACS numbers: 03.65. - w, 02.30. + g 

I. INTRODUCTION 

In this Introduction we present in a rather informal way 
some known facts about Cohen's class of phase-plane distri­
bution functions, and we indicate what we are aiming at in 
this paper. Cohen's class is parametrized by means of a func­
tion <p of two variables 1: for any such <P we have the family of 
phase-plane distribution functions 

Cf)( q,p) = J J J exp[ - 21Ti((}q + 7p - Ou)] <P (0,7) 

Xf(u + ! 7)f(u - !7) dO d7 du [( q,p)ER2] , 
(Ll) 

wherefis an arbitrary state (all integrations are over the real 
line, unless indicated otherwise). Of course, in order for this 
definition to make sense certain assumptions on <P as well as 
onfshould be made. In Sec. II a convenient mathematical 
setting for dealing with rather general <P 's in (1.1) is present­
ed. Any family Cj<l» (farbitrary state) can be used to give a 
formulation of quantum mechanics in the phase plane of 
position q and momentump. In fact, it can be shown that any 
bilinear map f-Cr, mapping statesf onto functions Cr of the 
phase-plane variables (q,p), satisfying 

Crt q + a,p + b) = CT.,R,.f (q,p) [( q,p)ER2
] (1.2) 

for all statesfand all (a,b )ER2 can be brought into the form 
(Ll). Here Ta and Rb are the shift operators, defined, respec­
tively, by 

(T J)( q) = f( q + a), 

(RJ)( q) = e - 21rib'1( q) (qER), (1.3) 

for allfand all (a,b )ER2. It is easily verified that any 
Cr = Cj<l» as in (1.1) satisfies (1.2) for allfand all (a,b )ER2. 

The choice <P (0,7) = 1 in (Ll) yields the Wigner distri­
bution2 off, viz. 

Wr( q,p) = f e - 21riP'l'( q + ~ t) f( q - ~ t )dt 

[( q,p)ER2
]. (1.4) 

In a way one can consider the Wigner distribution as the 
basic distribution of Cohen's class from which all others can 
be derived3

: one has 

Cj<l»( q,p) = J J rp (q - a,p - b )Wr(a,b jda db 

[( q,p)ER2] , (1.5) 

where rp is the double Fourier transform of <P, given by 

rp( q,p) = J J e- 21ri
(8q+r

p)<p(0,7)dOd7 

[( q,p)ER2
]. (1.6) 

This rp must be treated as a generalized function, e.g., 
rp( q,p) = /j (q)/j (p)forthe Wigner distribution case, whereas 
<P is usually smooth. 

The class of all possible phase-plane distributions can 
be restricted considerably by imposing certain "natural" re­
quirements. We consider in this paper four additional condi­
tions. 

(a) C j<l» yields the "correct" marginal distributions for 
all statesf [see (1.7)]. 

(b) Cj<l» has finite support properties [see (1.11) and 
( 1.12)]. 

(c) C j<l» is such that Moyal's formula holds for all states 
fandg [see (1.15)]. 

(d) Cj<l» is a non-negative distribution for all states! 
Each of the requirements (a), (b), (c), and (d) has conse­
quences for <P (and rp); it is well known that not all four 
conditions are compatible. However, the Wigner distribu­
tion satisfies (a), (b), and (c), while also certain positivity 
properties hold. 

The condition (a) means that for all statesfwe should 
have 

f Cj<l»( q,p)dp = V( qW (qER), 

f q.<I»( q,p)dq = 1(.7f)(pW (pER). 

(1.7) 

Here.7 denotes the Fourier transform, given for allfby 

(.7 f)( p) = f e - 21riqpf( q)dq (pER). (1.8) 

It can be shown 1,3,4 that (1. 7) holds for all statesfif and only 
if 
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4> (O,r) = 4>(0,0) = 1 [(0,r)ER2], (1.9) 

or, equivalently, 

J qJ ( q,pjdp = 8( q) (qER), 

J qJ ( q,p)dq = 8( p) (pER). 
(1.10) 

For condition (b) it is required3 that for all statesfand 
all (Q,P )ER2 

and 

f(q)=O (lql>Q):::::>C}<1»(q,p)=O (lql>Q), (1.11) 

(Yf)(p) = 0 (Lol >P):::::>ct)( q,p) = 0 (Lol >P). 
(1.12) 

It can be shown3 that validity oft 1.11) for allfis equivalent to 

J e- 27Ti/Jq4> (O,rjdO = 0 (lql>lrI/2), (1.13) 

for all TER; similarly, validity of (1.12) for allfis equivalent 
to 

J e-27TiTP4> (O,r)dr = 0 (LoI> 101/2), (1.14) 

for all OER. That is, 4> (-,r), 4> (0,.) are functions of the Paley­
Wiener kinds with type..; Ir1/2, ..; 101/2, respectively, for 
(0,r)ER2 when the finite support properties are satisfied.' 

For property (c) to hold, we must have that Moyal's 
formula6-8 

J J C}<1»( q,p) C~a;)( q,p)dq dp = 1(f,gW (1.15) 

is valid for all statesfandg. It has been shown9 that validity 
of (1.15) for allf and g is equivalent to 

14> (O,r) I = 1 [(0,r)ER2], (1.16) 

or 

(qJ.q,)( q,p) = 8( q)8(p) [( q,p)ER2] , (1.17) 

where q,( q,p) = qJ ( - q, - p), and. denotes convolution 
over R2. A further result9 is that validity of (1.15) for allf and 
g, together with validity of (1. 7), (1.11), and (1.12) for all/, 
implies that 4> takes the special form 

4> (O,r) = 4>a(O,r) = exp(21TiaOr) [(0,r)ER2] (1.18) 

for some aER with lal ..;~. In that case qJ is given by 

qJ (q,p) = qJa( q,p) = a-I exp( - 21Tiqpla) or 8( q)8(p) 

[( q,p)ER2] (1.19) 

according as a =1= 0 or a = 0, and C}<1» takes the special form9 

C}<1»( q,p) = cj<1>a)( q,p) 

XI (q-t(~ +a))dt [(q,p)ER2]. (1.20) 

It is interesting to note that for any statefand any 
(a,b )eR2 the global spread 

J J [( q - a)2 + (p - b f] Icta
)( q,pW dq dp (1.21) 
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of C tal around (a,b ) is minimal for a = 0, the Wigner distri­

bution case. Choosing for (a,b ) the center of gravity8 of C t a
), 

which is independent of a and equals9 

(a,b) = (J qlf( q)1 2 dq, J pl(Yf)(pW dP). (1.22) 

we see that the Wigner distribution behaves, in some sense, 
best with respect to spread among the members of Cohen's 
class that satisfy conditions (a), (b), and (c). This is some indi­
cation that the Wigner distribution is to be preferred over the 
other members of Cohen's class. One may find this argument 
not entirely convincing yet, for one has to restrict oneself to 
distributions satisfying the strong condition that Moyal's 
formula is satisfied and this excludes, for example, the family 
of distributions (farbitrary state) 

Re[e27Tiqp f( q)(Yf)(p)] [( q,p)ER2], (1.23) 

which was considered by Margenau and Hill. 10 

We finally discuss condition (d). This condition says 
that for allfit should hold that ll 

C}<1»( q,p»O [( q,p)ER2]. (1.24) 

It has been shown 12 that validity of (1. 7) and (1.24) for all 
statesfis not possible. This does not contradict the result of 
Ref. 13 where to every state a non-negative function oft q,p) 
with correct marginal distributions is assigned in a nonbilin­
ear way. 

With respect to positivity properties only the Wigner 
distribution has been studied in some detail l

4-16 as far as we 
know. It is exactly the purpose of this paper to compare the 
general phase-plane distribution functions on this point with 
the Wigner distribution. The best known positivity property 
of the Wigner distribution 17-21 reads: for all states/, all y> 0, 
8> 0 with y8..; 1, and all (a,b )ER2 we have 

J f exp[ - 21Ty( q - a)2 - 21T8(p - b )2] W/ ( q,p)dq dp>O. 

(1.25) 

This paper concentrates on finding out for what 4> and what 
y, 8 inequality (1.25) still holds for all/, (a,b) when WI is 
replaced by the more general phase-plane distribution C}<1». 
In connection with (1.25) we note that the following has been 
proved for the Wigner distribution. Hudson 17 has shown 
that WI takes negative values unlessfis a Gaussian. The 
argument used by Hudson was augmented21 to show that, if 
y8> 1, anyf for which (1.25) is non-negative for all (a,b )ER2 
must be a (possibly degenerate) Gaussian (in Ref. 21 certain 
generalized functions are allowed; we tum to these in Sec. 
II). It is not clear how a result of similar strength can be 
shown to hold generally for the distributions of Cohen. We 
have, e.g., with 4> (O,r) = cos 1TOr [which yields (1.23)] that 
C}<1» (q,p»O forf( q) = cos 21Tq. Nevertheless the following 
results will be proved in this paper. Assume that 4> is such 
that (1.7) is satisfied for all! Under a mild smoothness and 
growth condition22 on 4> we have the following. 

(1) If y8 > 1, then there is no 4> such that (1.25) (with 
C}<1» instead of WI) holds for allfand all (a,b )ER2. 

(2) If y8 = 1, then the only 4> for which (1.25) (with C}<1» 
instead of WI) holds for allfand all (a,b )ER2 equals 
4> (O,r) = 1 (Wigner distribution case). 
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We shall prove that a similar result holds when validity of 
(1.7) is replaced by validity of(1.15) for allJandg. We shall in 
addition show that validity oft 1.25) (with Cj<1>.) instead of Wf) 
imposes severe restrictions on cP if r8 < 1 and (1.7) is satisfied 
for all!, or if r8'~ 1. 

The further plan of this paper is as follows. In Sec. II we 
give a mathematical setting that allows us to consider func­
tions cP with mild restrictions on growth. We furthermore 
recall in Sec. II the main results of Ref. 16, and we extend 
these results somewhat. In Ref. 16 conditions for a function 
K ( q,p) are given that ensure that 

f f K(q,P)Wf(q,p)dqdp (1.26) 

is non-negative for all! It is clear that these results will be 
useful, since (1.5) and (1.25) show that non-negativity of 
(1.25) [with ct) instead of Wf and (a,b) = (0,0)] for allJis 
equivalent to non-negativity of (1.26) for all!, where K is the 
convolution of tp( q,p) and exp( - 21Trq2 - 21T8p2). In Sec. 
III we consider the case that no other condition than non­
negativityof(1.25)[with Cyr') instead of Wf and (a,b ) = (0,0)] 
for alIfis imposed; in Sec. IV we require in addition correct 
marginals or validity of MoyaJ's formula. 

11. MATHEMATICAL SETTING AND RESULTS ON 
POSITIVITY FOR THE WIGNER DISTRIBUTION 

As we have to discuss rather general functions cP it is 
convenient to restrict the statesJ to a certain space of test 
functions. We consider the space S of smooth functions; this 
function space has been proposed in Ref. 8 as a setting suited 
for doing Wigner distribution analysis. It is the same space as 
the one used in Refs. 16,21, and 23. To describe it briefly we 
denote, for n = 0,1, ... , by ¢n the nth Hermite function, 

( _ I)n21/4e1Tq' (d /dq)ne ~ 21TQ' 
¢n ( q) = n!(41Tr!2 ( qElR); (2.1) 

the normalization has been chosen in such a way that 

e1TQ'~2-njQ~w)' = 2~1/4 f 
n=O 

(2.2) 

The space S consists of all functionsJwhose Hermite coeffi­
cients (!,¢n) satisfy an estimate 

(f,¢n) = O(e~na) (n = 0,1, ... ), (2.3) 

for some a > O. It can be shown that the space S is identical to 
the set of (restrictions to the real axis of) entire functions g for 
which there are M> 0, A > 0, B > 0 such that 

Ig(x + iy)1 <;M exp( - 1TAx2 + 1TBy2) [(X,Y)ElR2
]. (2.4) 

A sequence Ifk)k in S is said to converge to zero when, for 

some a>O, sUPn~O.I, .. enallfk'¢n)l~ when k-oo. 
The space S * consists of all continuous linear function­

als on S. It can be shown that for FES * 
(2.5) 

for all a > O. The smoothing operators N a with Re a > 0 play 
an important role; they map S * into S and are defined by 

(NaF)(q) = i: (F'¢n)e~(n+I/2)a¢n(q) (FES*,qECj. 
n=O 

(2.6) 
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As an integral operator of L 2(lR), Na has the kernel Ka given 
by 

( 
1 )112 ( 1T Ka( q,p) = -.-- exp - -,--

smha smha 

00 I e~ In + 112)a¢n( q)¢n(P) 
n=O 

(2.7) 

The identity in (2.7) is just one way to write Mehler's formula 

00 

= I wn¢n( q)¢n(P) [( q,p)EC2,lwl < 1]. (2.8) 
n~O 

The spaces S 2 and S 2* of smooth and generalized func­
tions of two variables can be defined in a similar fashion. An 
important formula, relating smoothing operators and 
Wigner distributions,24 reads 

(Na,2 Vf )( q,p) = VNJ( q,p) [( q,p)ER2,Rea>0] (2.9) 

for JEL 2(R). Here N a,2 is the smoothing operator for func­
tions of two variables [whose kernel K a.2 ( q,p;x,y) equals 
Ka( q,x)Ka(p,y)], and 

Vf ( q,p) = ~ Wf( ~, ~) [( q,p)ElR
2
] (2.10) 

forJEL 2(lR). Wenote25 that VF (and hence WF ) can be defined 
for FES* and that VF ES 2*. 

Another useful formula26 is 

WN;of( q,p) = Wf ( q cos () + p sin (),p cos () - q sin ()) 

[( q,p)ER2], (2.11) 

which holds for all real () and alIfES. 
In spite of the rather heavy machinery we have devel­

oped here, we shall usually manipulate with generalized 
functions in a rather carefree manner; we shall give details 
only in cases where the verification are not straightforward. 

We now turn to positivity properties of the Wigner dis­
tribution. We have, for n = 0,1, ... ,27 

W",", q,p) = 2( - I)n exp[ - 21T( q2 + p2)] 

XLn [41T( q2 + p2)] [( q,p)ER2]. 

Here Ln is the nth Laguerre polynomial, 

Ln(x) = ± (~) (-.1
xY 

(x;;;'O;n = 0,1, ... ), 
j~O ] J. 

for which a generating formula28 is given by 

(1- W)~I exp[ -xw(I - W)~I] 

00 

= I wnLn(X) (lwl < I,x;;;'O). 
n=O 

(2.12) 

(2.13) 

(2.14) 

Formula (2.12) can be used to show the identity29 

J J W/ ( q,p)K [217"( q2 + p2)]dq dp 

= nto (- l)nl(f,¢nW 100 

e~rK(r)Ln(2r)dr, (2.15) 
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wherefES and K: [0,00 )-C is measurable and satisfies 

1"" IK (xWe - EX dx < 00 (E> 0). (2.16) 

Now positivity properties of the Wigner distribution result 
on taking non-negative functions K with the property that 

(- It E" e-'K(r)Ln(2r)dr;;;,0 (n = 0,1, ... ). (2.17) 

In Ref. 16 a large number of examples of such K's have 
been given. We mention in particular the choices 

K(r)=r"e- P' (O<p<I, n=O,I, ... ), 

K (r) =,.a (a;;;' - !). 

(2.18) 

(2.19) 

The following positivity property is new as far as we 
know. 

Theorem 2.1: Let K: [0, 00 )_[0, 00 ) be nondecreasing, 
and assume that K (x) = 0 [exp(EX)] for some E < 1. Then 
(2.17) holds. 

Proof It follows from Bonnet's theorem3o that for all 
A > 0 there is an xo(A )E[O,A ] such that 

(- It iA 

e-'Ln(2r)K(r)dr 

=(-I)"K(A-) (A e-'Ln(2r)dr. (2.20) 
JXo(A) 

It is easy to check from formula (2.14) that 

( - l)n 1"" e - sLn (2s)ds = Sn (r) + Sn _ I (r) (r;;;,O), 

(2.21) 

where 
n 

Sn(r) = L (- l)ke-'Ld2r) (n;;;, - l,r;;;,O). (2.22) 
k=O 

Since in Ref. 28, Problem 100, p. 392, shows thatSn (r);;;'O for 
n;;;, - 1, r;;;'O, it follows that 

(_ l)nK(A _) (00 e- rL n(2rJdr;;;,0 
J'o(A) 

(A;;;,O,n = 0,1, ... ). (2.23) 

The proof is easily completed by noting that, for n = 0,1, ... , 

Notes: (I) Assume that K is infinitely many times differ­
entiable, and that K (r) and all its derivatives are 0 (e E

') for 
some E < 1. Then (2.17) holds if and only if 

(2.25) 

This follows on using e - 'Ln (r) = IIn!(d Idr)n(e - rr") and 
performing n partial integrations in (2.17). 

(2) Since both K (r) = ,.a(a;;;, - !) and 
K (r) = e - P'(O<p< I) satisfy (2.17), one may ask whether 
K (r) = ,.ae - P' satisfies (2.17). Well, it does not unless a is an 
integer. It can be shown from the formula (2.14) that, for 
n = 0,1, ... , 
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(- 1)" ioo 

e-'Ln(2r),.ae- pr dr 

=(I-p)-a- Ir(a+ I)C
w
n[(1 +wt 

X ---w . (
1 +p )-a-I] 
I-p 

(2.26) 

Here C n denotes "coefficient of wn in." Now Darboux's 
w 

method31 can be used to find the asymptotic behavior of the 
coefficients of the function (I + w)a[(1 + p)l(1 - p) 
- w] - a - I. We get [a = (1 + P )/( 1 - p)] 

(- l)n E" e- rL n(2r),.ae- P' dr 

_ ala - I ) ... (a - n + 1) 
n! 

X [1 + (a + 1 f + 0 (..l)] 
(a+l)(a-n+l) n2 

(n = 0,1, ... ), (2.27) 

and this oscillates for large n when a is noninteger. This 
example shows that the condition (2.17) is rather intricate. 

(3) We give an application of formula (2.15) which has 
nothing to do with the main subject of this paper. In the 
context of the Weyl quantization map we can express the 
left-hand side of(2.15) as (T Kil), where TK is the linear 
operator whose Weyl symbol32 equals K [217'( q2 + p2)]. De­
note by H the Hermite operator - (11 4~)(d 21 dq2) + q2, 
whose Weyl symbol equals q2 + p2. One can now ask how 
wellf (q2 + p2) is an approximation to the Weyl symbol of 
f(H). As an example we considerf(r) = rl12, and to that end 
we chooseK(r) = (rI21T) I 12 in (2.17). Now TK is an operator 
whose matrix relative to the basis (1fn)n = 0.1 .... of Hermite 
functions is a diagonal matrix, with diagonal elements 

(TK 1fn,1fn) = (~n (00 e-'Ln(2r)r I/2 dr 
v21T Jo 

By using Darboux's method, one can show that 

(TK 1fn,1fn) = 1T- 1/2(n + !)112[1 + o (l/n)] 

(n = 0,1, ... ). 

At the same time (..jli 1fn ,1fn) = 1T- 1/2(n + !)1/2 for 

(2.28) 

(2.29) 

n = 0,1, .... Hence TK - ..jli is a diagonal operator (relative 
to the 1fn's) with diagonal elements that are 0 (n -1/2). This 

shows that T K - ..jli is of Schatten's p class with p > 2. Of 
course, all sorts of generalizations are possible here. 

III. PHASE-PLANE DISTRIBUTION FUNCTIONS WITH 
NON-NEGATIVE GAUSSIAN AVERAGES 

Let r> O. In this section we want to find out for which 
<P as in (1.1) or cp as in (1.6) we have 

f f C}<PJ(q,p)exp[-21Ty(q2+p2)]dqdp;;;,0 (3.1) 

for alljES. We require here that <PES 2* or cpES 2 *, for then 
formula (1.5) shows that ct J is the convolution of cpES 2* 
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and W.rES 2
, and this is a smooth function that can be inte­

grated against any Gaussian as in (3.1). For the details con­
cerning convolution theory in the spaces S, S 2, S "', S 2., one 
may consult Ref. 33. We consider here only radially sym­
metric Gaussian weight functions since the more general 
Gaussians exp[ - 2m.rq2 + 6p2)] can be dealt with by con­
sideringtP (a- 18,ar)insteadoftP{8,r)[a = (6 /r)1/2]. We can 
write (3.1) as 

f f G (a,b ) Wf(a,b Ida db, (3.2) 

with G the convolution of cp and exp[ - 2'n;'( q2 + p2)], i.e., 

G (a,b ) = f f cp ( q - a,p - b ) 

xexp[ _2'n;'(q2+p2))dqdp [(a,b)ElR2). 
(3.3) 

The following results show that a G for which (3.2) is 
non-negative for alliES cannot decay too rapidly. 

Lemma 3.1: Assume that G:lR2---+lR is bounded and 
measurable and satisfies G (a,b ) = o(exp[ - 21T(a2 + b 2)]) 
(a2 + b 2---+ (0 ). Then (3.2) is negative for somelES, unless 

f21r 
)0 G (R cos O,R sin 0 )dO = 0 (R >0). (3.4) 

Proof: Part of the argument given here can also be found 
in Ref. 16. Suppose that (3.2) is non-negative for allfES, and 
let 

K (r) = _1 f21r G ( E. cos 0, E. sin 0 )dO. 

21T )0 " 21T " 21T 
(r>O). (3.5) 

We have for any IES by (2.11) 

f f K [2m. q2 + p2)] Wf ( q,p)dq dp 

= 2~ f1r (f I G ( q,p) WN,,.r ( q,p)dq dp )dO>O. (3.6) 

Therefore, by (2.15), we have, for all n, 

an: = (- It L'" e-'K (rlLn (2r)dr>0. (3.7) 

It follows from the formula34 

r' = 2 -a f (_ l)n F2(a + 1) Ln(2r) 
n=O n!F(a - n + 1) 

(a> - l,r> 0) (3.8) 

that 

1"" r'e - 'K (r)dr = 2 - a f F2(a + 1) an' (3.9) 
o n=on!F(a-n+l) 

The left-hand side of (3.9) can be shown to be 
0[2 - a F (a + 1)] as a---+ 00. Indeed, this follows from the 
assumptions on G implying that K (r) = ole -1 as r---+ 00. The 
sum on the right-hand side of (3.9) has, for integer a, non­
negative terms only. Hence, for any m = 0,1, ... , we have 

2244 J. Math. Phys., Vol. 25, No.7, July 1984 

(a = m,m + 1, ... ). (3.10) 

This is certainly not 0 [2 - a F (a + 1)] as a---+ 00, unless all 
am are O. Since the functions e - 'Ln (2r),n = 0,1, ... are com­
plete in L 2([0,00)), we see that K = 0, and the proof is fin­
ished. 

Note: With a similar proof one can show that if Gis 
radially symmetric and satisfies 

for some p>O, and (3.2) is non-negative for alljES, then Gis 
of the form 

G (a,b) = L ( - l)"an exp[ - 21T(a2 + b 2)) 
n<p 

XLn [41T(a 2 +b 2
)) [a,b)ElR2], (3.12) 

with an >0 (n4J). 
Theorem 3.1: Assume that G:lR2---+lR is continuous and 

that 

G (a,b) = 0 (exp[ - 21T6(a2 + b 2)]) [(a,b )ElR2], 
(3.13) 

for some 6> 1. If(3.2) is non-negative for alliES, then G = O. 
Proof: Let (ao,bo)ElR2, and let 

Go(a,b): = G(a - ao,b - bo) [(a,b )ElR2). (3.14) 

We see from (1.2) that (3.2) holds for alll (with Go instead of 
G). Furthermore 

Go(a,b) = 0 (exp [ - 21T€(a2 + b 2))) [(a,b )ElR2) , 
(3.15) 

for any € between 1 and 6. Now Lemma 3.1 shows that 
(27T 
)0 Go(R cos O,R sin 0 )dO = 0 (R>O). (3.16) 

It then follows from continuity of G that 
Go(O,O) = G (ao,bo) = O. This completes the proof. 

Note: It is clear that the conditions on G can be weak­
ened somewhat. 

Theorem 3.2: Let r> 1 and let 8 > r(r - 1) -I. Assume 
that cp:lR2 ---+lR satisfies 

cp (q,p) = O(exp[ - 21T8( q2 + p2)]) [( q,p)ElR2
]. 

(3.17) 

Then there is anlES for which (3.1) is negative, unless cp = O. 
In particular, there is no compactly supported cp;;fO such 
that (3.1) is non-negative for alliES. 

Proof: Let Gbe as in (3.3). Then Gis smooth and satisfies 

G (a,b) = 0 [exp( - 21T 8 ~ r (a2 + b 2))] [(a,b )ElR2]. 

(3.18) 

As 6r/(6 + r) > 1, the theorem follows from Theorem 3.1. 
Note: We can allow cp to be an element of S 2. if we have 

a substitute for condition (3.17). The theorem also holds, for 
instance, when Na ,2 cp (instead of cp) satisfies (3.17) for some 
a> O. This is a consequence of(2.9). The theorem also holds 
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when one requires that (/) be an entire function of two varia­
bles with 

(/) (0,1") = 0 [exp( 7 (1012 + 11"12))] [(0,1")EC2
] 

(3.19) 

for somec<{y- IVy, for then the Gof(3.3) also satisfies 
(3.13) with a {) > 1. All these matters can be proved rigorous­
ly within the framework of the theory in Ref. 33. 

Example: Let y> 0 and consider the choice 
(/)0(0,1") = exp(21Tia01") with aER, a#O. Now rpo is given by 

rpo( q,p) = a-I exp( - 21Tia- Iqp) [( q,p)ER2], (3.20) 

and the G = Go of (3.3) can be shown to equal 

Go(a,b) = (1 + 4fa2)-'/2 

( 
21T11a2 + b 2) 81Tiafab ) 

X exp - - -----""-----,-
1 + 4fa2 1 + 4fa2 

[(a,b )ER2]. (3.21) 

Let g be the Gaussian 2114 exp[ -1T{ 1 + i)q2] whose Wigner 
distribution equals 

Wg ( q,p) = 2 exp( - 21T[q2 + (q + pf]) [( q,p)ER2]. 
(3.22) 

The convolution of Wg and Go is a function of the form 

(Wg *Go)( q,p) 

= exp[ - 1TPI ( q,p) + 1Tl'P2( q,p)] [( q,p)ERz], (3.23) 

with PI a positive definite quadratic and Pz a real noncon­
stant quadratic. Letting rp( q,p) = Re[rpo( q,p)] 
= a-I cos21Ta- 1 qp, so that G (a,b) = Re[Go(a,b)] and 
(/)(0,1") = cos 21Ta01", we get an example ofa (/)such that (3.2) 
takes negative values for certain/'s. This is so since the real 
part of (3.23) does so. Note that this example works for any 
y> 0 while Theorem 3.1 and (3.21) predict trouble only for 
yl(1 + 4fa2) > 1. 

We consider the case y = I, which has our prime inter­
est, in some more detail. The next theorem shows that a rp 
yielding non-negative averages in (3.1) must be of positive 
type in a certain weak sense. 

Theorem 3.3: Assume that rp:Rz_R satisfies 

rp ( q,p) = 0 (exp [ 1TE( q2 + p2)]) [( q,p)ER2] , (3.24) 

for all E> O. A necessary condition that (3.1) with Y = 1 is 
non-negative for allieS is that 

fX> r"e- rrpq [( :yI2]dr>0 (n = 0,1, ... ,qER2). (3.25) 

Here rpq (R ) is the average of rp over the circle of radius R 
with center q, i.e., 

I L2,," 
rpa(R)=- rp[q+R(cosO,sinO)]dO (R>O). 

- 217' 0 

(3.26) 

Proof' Assume that (3.1) is non-negative for allieS. By 
(1.2) it is sufficient to consider the case q = O. Insert formula 
(1.5) into (3.1) and interchange integrals. We get, for allieS, 

f f rp(a,b{f f exp[ -21T(l+p2)] 

X Wf ( q - a,p - b )dq dp )da db. (3.27) 
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The expression between the large parentheses equals 
!I(J,G,( - a, - b )W, where for all (a,b )ER2 

GI ( - a, - b )( q) 

= 21/4 exp[ - 17'( q + a)2 - 21Tibq - 1Tiab ] 

( qER). (3.28) 

This follows from the fact that, for all (a,b )ER2, 

WG,(-a,-bl( q,p) 

= 2 exp[ - 21T{ q + a)2 - 21T(p + b )2] 

[(q,p)ER2] , (3.29) 

and Moyal's formula. The choice/ = tPn gives35 

l(tPn,G,( - a, - b)W 

= [(a2 + b 2tln!]exp[ - 1T(a2 + b 2)] [(a,b )ER2]. 

Hence 

= _1_ f""r"e- r 

4~+2 Jo 

(3.30) 

X [f"" rp (~(COs O,sin O))dO ]dr>o, (3.31) 

for aU n = 0,1, ... , and the theorem follows. 

Note: Observe that r"e- r~21Tnln! has its maximum for 
r = n and that this maximum tends to 1 as n-oo. Also, if 

E> 0, the set ofrwith r"e - r~21Tnln!>Eis an interval around 

r = n with length of the order ~2n log E- j • 

IV. PHASE-PLANE DISTRIBUTIONS, CORRECT 
MARGINALS AND MOYAL'S FORMULA 

Let y> O. In this section we aim at characterizing all 
functions (/) (orrp) as in (1.1) [(or 1.6)] such that (3.1) holds for 
allieS and such that the corresponding phase-plane distribu­
tion functions have correct marginals or satisfy Moyal's for­
mula [see (1.7) and (1.15)]. In the case y>I we shall show 
that, under certain mild conditions on (/), the situation is 
very simple: for y> 1 no such (/) exists, for y = I we must 
have (/) (0,1") = I (correct marginals) or (/) (0,1") = exp 
[ - 21Ti(Oa + 1"b)] for some (a,b )ER2 (Moyal). And in the case 
where y < 1 and (1.7) is satisfied for allieS, we are still able to 
derive certain properties of (/). 

We start with a lemma. 
Lemma 4.1: Let HEL I(R2}nL 2(R2), and assume that 

f J H ( q,p) WA q,p)dq dp>O (jeS). 

There exists Cn >0 with l:ncn < 00 and orthonormal 
In EL 2(R) such that 

n 

with convergence in the L 2(HZ) sense. 

(4.1) 

(4.2) 

Proof' Let Tbe the linear operator defined for KEL 2(R2) 
by 
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(TK)( q,p) = f e-21TiPtK( q + ~ t,q - ~ t) dt 

[( q,p)ER2
]. (4.3) 

This Tmaps L 2(R2) unitarily onto L 2(R2) as can be seen from 
Moyal's formula. 36 And, letting (f® 1)( ql,q2) 

= f( q.) f( q2)' we have T (f ® 1) = Wf , for allfES. Hence, if 
T * is the adjoint of T, 

(4.4) 

where ( , ) denotes the inner product in L 2(R2). Formula 
(4.4)extendstoallfEL 2(R)sinceT*HEL 2(R2) andSis dense in 
L 2(R). We conclude that T*H has a representation37 

n 

withfnEL 2(R) orthonormal, Cn ;;.0, ~nCn 2 < 00 and conver­
gence in the L 2(R2)-sense. Taking Tat both sides of (4.5) we 
arrive at 

(4.6) 

with convergence in the L 2(R2) sense. 
We still have to prove that ~ncn < 00. To that end we 

consider H I ( q,pj = (l/Ji)H( qlJi,plJi). We have [see 
(2.10)] 

(4.7) 
n 

Let a > 0, and apply to both sides of (4.7) the smoothing 
operator N a •2 (see Sec. I). We get by (2.9) 

n 

with convergence in theS 2 sense. 38 Ifwe integrate this identi­
ty over all (q,pjER2, we obtain by (1.7) 

f f (Na •2H.)( q,p)dq dp = Ji ~ cn IINJn 11 2, (4.9) 

where II II denotes theL 2(R) norm. Now IINJn II increases 
to llin II = 1 for all n [see (2.6)], and39 N a •2H I-HI in the 
L I(R2) sense ifaW sinceHEL I(R2), and whenceHIEL I(JR2). 
We conclude that 

~ cn = f f H( q,p)dq dp< 00, (4.10) 

and this completes the proof. 
Note: Since llin II = 1, we have I Wf .\ q,p) I <;2 for 

( q,p)ER2. Hence, the convergence of the series in (4.2) is uni­
form. Since Wfn is continuous for every n, we furthermore 
see that the H of Lemma 4.1 is continuous. 

We are now ready to prove the following theorem. 
Theorem 4.1: Assume that the G of(3.3) is inL I(JR2)nL 2(R2), 
and that (3.1) holds for aIIfES. Then, (a) ify> 1, C}<I>I cannot 
have correct marginals for aIIfES; and (b) if y = 1, and C}<I> I 
has correct marginals for allfES, then (/J = 1, and ct l is the 
Wigner distribution off for alIfES. 

Proof Assume that ct l has correct marginals for all 
fES. This means that 
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f rp ( q,p)dp = 8( q) ( qER), 

f rp( q,p)dq = 8(p) (pER). 

(4.11) 

Hence, if we integrate the G of(3.3) over all b and a, we get, 
respectively, 

f G (a,b )db = ( 2~ ) 112 exp( - 21TYa2) (aER), (4.12) 

and 

f G (a,b Ida = ( 2~ ) 112 exp( - 21Tyb 2) (bER). (4.13) 

Our G satisfies the conditions of Lemma 4.1 and there­
fore we have the representation (4.2) for H = G. With an 
argument similar to the one used for proving convergence of 
~n Cn in Lemma 4.1 we can show that 

~ Cn lin (aW = f G (a,b )db (a.e. aER), (4.14) 

and 

~ cn I(Yfn(b W = f G(a,b Ida (a.e. bER). (4.15) 

Since all cn ;;'0, we conclude that, for all n by (4.12) and (4.13), 

c~/2lin(a)1 <;(l/2y)I/4 exp( - 1Tya2
) (a.e. aER), (4.16) 

and 

c~/2I(Yfn)(b)1 <;(l/2y)1/4 exp( - 1Tyb 2) (a.e. bER). 
(4.17) 

As we shall show in Lemma 4.2, the conditions (4.16) 
and (4.17j are incompatible when y> 1 (unlesscn =0). This 
completes the proof for the case y> 1. When y = 1, it follows 
from Lemma 4.2 that every c~/2fn is a multiple of the Gaus­
sian exp( - 1Ta2

). Therefore, C n =1= ° for only one n, and it easi­
ly follows that 

Hence, as G is the convolution of rp and exp[ - 21T(a2 + b 2)], 
we get rp( q,p) = 8 (q)8 (p). This completes the proof. 

Notes: (1) Since the G of(3.3) is the double inverse Four­
ier transform of (l/2y)(/J (8,r)exp[ - (1T/2y)(8 2 + r)] it is 
clear that one should impose certain conditions on smooth­
ness and growth on (/J to get GEL I(R2)nL 2(R2). For instance, 
conditions of type (1.13) and (1.14) guarantee40 that 
GEL I(R2)nL 2(R2). 

(2) As the proof shows, the theorem can be proved 
equally well with the Gaussian exp[ - 21TY( q2 + p2)] in (3.1) 
replaced by certain smooth functions K ( q,p) with 
S K( q,p)dp = 0 [exp( - 21Tyq2)] and 
S K (q,pjdq = 0 [exp( - 21Typ2)]. 

In the next theorem we replace the condition of having 
correct marginals by the condition that Moyal's formula 
holds. We restrict the class of allowed rp's a little further 
since we need some results from Ref. 33 about convolution 
theory in S 2 and S 2*. Of course, if one chooses a different 
mathematical setting (e.g., a setting based on Schwartz' the­
ory of tempered distributions), one can still prove a theorem 
as the one below. 
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Theorem 4.2: Assume that 41<p (O,1")exp[ - 1TE(O 2 
+ ~)]ES 2 for all E > 0, and that (3.1) holds for allfES. Then, 

(a) if r > 1, Moyal's formula (1.15) cannot hold for allfES, 
gES; and (b) if r = 1 and Moyal's formula holds for allfES, 
gES, then there is an (a,b )ElR2 with Cyl( q,p) 
= WA q - a,p - b ) for allfES [( q,p)ElR2]. 

Proof: Assume that Moyal's formula holds for allf and 
g. Then 

1<P(0,1")1 = 1 [(0,1")ElR2]. (4.19) 

In terms of rp this condition can be written as 

f f rp ( q + a,p + b ) rp (a,b Ida db 

= (rp "'~)( q,p) = o( q)o(p) [( q,p)ER2]. (4.20) 

Here ~(a,b ) = rp( - a, - b ) for all (a,b )ER2, and", denotes 
the convolution product for (generalized) functions of two 
variables. 

By the definition of G and the representation (4.2) we 
have, with K ( q,p) = exp[ - 21TY( q2 + p2)], 

(4.21) 
n 

It will be demonstrated in Appendix A that Cn = Ole - n
p

) for 
some /3 > 0, that!" ES and that the right-hand series con­
verges in the S 2 sense to rp",KES 2. Taking convolution with ~ 
at both sides and interchanging the convolution and summa­
tion signs at the right-hand side (this is allowed42), we get 

(4.22) 
n 

by (4.20) and (4.21). 
We now observe that the Fourier transform of ~ equals 

<P (O,r). Hence, Moyal's formula is valid with <P as well as 
with~. Since C}<P1 = ~ '" Wf we have 

f f C}4>I( q,p)dq dp = f f (~'" Wf )( q,p)dq dp 

= <P (0,0) f f Wr( q,p)dq dp = d IIf1l2, 

(4.23) 

where d = <P (0,0) is a number of modulus 1. Hence, if we 
integrate identity (4.22) over the phase plane, we get by (4.23) 

_1 =ffK( q,p)dqdp =d LCnllfnll2 =d LCn. 
2r n n 

(4.24) 

We conclude from Cn >0 (all n) and Id I = 1 that d = 1. 
On the other hand, (4.22) provides an expansion of Kin 

a series of orthogonal functions, and we have by Parseval's 
formula 

_1 =ff IK(q,pWdqdp= LC~' 
4r n 

(4.25) 

Now,ifweletdn =2rcn,thendn>0,l:n dn = 1,l:nd~ =r. 
This is not possible when r> 1, whence the case r> 1 has 
been dealt with. 
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We shall give two proofs for the case r = 1, one directly 
hereafter, and one in Appendix B. When r = 1, we see that 
exactly one dn equals 1; the others are O. Hence, 

rp ",K = ~ Wf (4.26) 

for somefES with Ilfll = 1. Take the double inverse Fourier 
transform of (4.26). We get the identity 

(y(l)" Y(2)· Wf)(O,r) 

= <P(O,r)exp[ - (1T12)(02 + r)] [(0,r)ER2]. (4.27) 

The expression at the left-hand side of (4.27) can be 
written as 

(y(I). Y(2). Wf)(O,r) = f e2"'ie~( q + + r) f( q - ~ r )dq 

= Ambf ( -1", - 0) [(0,r)ER2]; (4.28) 

here Ambf is the ambiguity function offwhich is well known 
in radar analysis.43.44 From a result of Ref. 44 the following 
inequality can be derived for ambiguity functions. If 
p = 1,2, ... , then for any g, 

(4.29) 

if P = 2,3, ... , the only functions g that never vanish, that are 
twice differentiable, and that achieve equality in (4.29) are of 
the form 

g( q) = exp( - 1Taq2 + 21T/3q - 1TE) (qER), (4.30) 

with arbitrary complex a, /3, E, and Re a > O. 
It is easily verified from the fact that I<P (O,r) I = 1 and 

IIfll = 1 thatfachieves equality in (4.29) for p = 2,3'00' . 
However, our fis allowed to have zeros. What the argument 
of the proof in Ref. 44 shows, though, is that if a smooth g 
achieves equality in (4.29) and g( q II # 0, then g has the spe­
cial form (4.30) in a neighborhood of ql' And as our fis an 
entire function, the conclusion thatf has the special form 
(4.30) remains equally valid. 

If we calculate Ambg for the g of (4.30), we find 

Ambg(O,r) 

= (112 Re a)1/2 exp( - 21T[Re r - (Re/3)2/Re a]) 

X exp [ - ~1Tr Re a - !1T(UJ - r 1m afiRe a 

- (21Ti/Rea)(UJ Re/3 + rIm/3ii)]. (4.31) 

It is now easy to check from (4.27) that I<P (O,r) I = 1 implies 
that a = 1, /3EC arbitrary, rEC such that Ambf(O,O) = 1. 
Then <P becomes 

and 

<P(O,r)=exp[ -21Ti(rIm/3 +ORe/3)] [(0,r)ER2], 
(4.32) 

rp (q,p) = o( q + Re/3 )o(p + Im/3) [( q,p)ER2
]. 

(4.33) 

This completes the proof. 
We shall now prove the claim made in connection with 

(4.16) and (4.17). It is likely that the results of the lemma 
below for r> 1 are known, but we could not find appropriate 
references. In addition, we get useful information for the 
case that 0 < r < 1. 
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Lemma 4.2: Let y> 0, and assume that/a 2(lR) satisfies 

I( q) = 0 [exp( - 1Tyq2)] (a.e. qElR), 

(.7/)(p) = 0 [exp( - 1TYp2)] (a.e.pElR). (4.34) 

Then, (a) ify> 1, we have/= 0, (b) ify = 1, we have 
I( q) = C exp( - 1Tq2) for some CEC, (c) ifO < y < 1, we have, 
with r = (1 + y)I/2 (1 - y)-I12, 

N 

I i(f,tP"Wr"=O(N) (N=O,l, ... ). (4.35) 
,,=0 

Proof We obtain from Mehler's formula (2.8), with 
- iw instead of w, 

( 
2 )112 ( -i 2 + 2) 1 - w

2 
41Tiq pw) -- exp -1I,q p ----~-

1+w2 l+w2 l+w2 

'" = I (-iwtt/l,,(q)t/I,,(p) [(q,p)ElR2,lwl<1]. (4.36) 
,,=0 

Noting that .7 t/I" = ( - i)"t/I" , multiplying (4.36) by 

I( q) (.7 I)(p) and integrating the result over the phase 
plane, we obtain for Iwl < 1 

00 

I w"I(f,t/I"W 
,,=0 

= (1: w2 yl2 J J I( q) (.7 I)(p) 

( 
2 1 - w2 4m'q pw) xexp _1T(q2+p )--2 - 2 dqdp. 

l+w l+w 
(4.37) 

We let w> 0, we insert the estimates (4.34) in the inte­
gral at the right-hand side of(4.37)~ and we take the modulus. 
The integral that turns up can be evaluated explicitly, and we 
obtain 

'" (1 + W 2)1/2 I w"I(f,t/I"J!Z,.;X 2 (O<w< 1), 
17=0 y+l+(y-l)w 

(4.38) 

for some constant K~O. The integral in (4.37) thus converges 
absolutely as long as y + 1 + (y - 1 )w2 > 0. 

Since the left-hand side of (4.37) is a power series with 
non-negative coefficients, we see by Pringsheim's theorem45 

that the radius of convergence of the power series is at least 
equal to r when ° < y < 1, and 00 when y> 1. In the first case 
we have in addition that 

00 

lim sup (r - w) I w"I(f,t/I"W < 00. 
u;----.,.- n=O 

(4.39) 

It is not hard to see then that 

N 

II(f,t/I"Wr"=O(N) (N=O,I, ... ). (4.40) 
n=O 

In the case y> 1 we see that the right-hand side of (4.38) 
tends to zero when W-+ 00. This implies that (f,t/I,,) = ° for 
all n, whence I = 0. Finally, if y = 1, we see that the right­
handsideof(4.38)isO(lwl), W-+oo, whence (f,t/I,,)::;60isonly 
possible for n = 0,1. Since t/lo( q) = 21/4 exp( - 1Tq2), 
t/ll( q) = 21T1/2 q t/lo(q) we see from (4.34) that (f,t/lI) = 0. This 
completes the proof. 
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In the remainder of this paper we let ° < y < 1. We shall 
find conditions on the Wigner distributions of the I" 's as in 
(4.2) and on G that must be satisfied in order that (3.1) is non­
negative for any I while C}<I» has the correct marginals for 
any f. There exist (/) ::;6 1 with these two properties, viz. 
(/) (O,r) = exp(m50r) [(0, r)ElR2] with 
{) = ± y-l(l_ y)1/2. (In fact, this example is not quite 
proper since (/) cannot be tested against all elements of S 2.) It 
can be shown that the G of (3.3) equals in this case 

G ( q,p) = WI ( q,p) 

=-exp _ II{I P __ ~(q+p)2 1 (2- A q2 + 2) 21T ) 

Y l+~ Y 
[( q,p)ElR2], (4.41) 

where 

I( q) = (l/2y)I/4 exp( - 1T[y + ill - y)1/2]q2) (qER). 
(4.42) 

Since the collection of all (/) 's with (3.1) non-negative and 
(1.7) valid for alliis closed under taking convex combina­
tions, it does not seem easy to describe this collection. 

Thelin (4.42) satisfies 

I/( q)1 = (l/2y)1/4 exp( - 1TYq2) (qElR), 
(4.43) 

1(.7 l)(p)1 = (l/2y)1/4 exp( -1TY p2) (pElR), 

while its Wigner distribution satisfies 

WA q,p) = 0 [exp( _ 21Ty( q2 + p2))] [( q,p)ElR2], 
1+~ 

(4.44) 

and its Hermite coefficients are given by (w = Y + i~) 

,f2iif (W - 1)" 
(f,t/ld = ° or (2y)1/42"n! w + 1 ' (4.45) 

according as k is odd or k = 2n is even. Hence 

_ (1 w - 11 k 12) (( 1 - y)k 14) (f,t/ld-O -- =0 -- . 
w+l l+y 

See also Theorem 4.3 below. 
To find a condition on the Win's and on G, we recall 

from the proof of Theorem 4.1 that 
( K ( q,p) = exp[ - 21Ty( q2 + p2)]) 

(4.46) 

with/" orthonormal, Cn >0, .Ln Cn < 00 and, for ( q,p)ElR2, 

I Cn [fn( qW = (_1_)1/2 exp( - 21TY q2), 
17 2y 

ICn 1(.7 In)(PW = (_1_)112 exp( - 21Typ2). 
17 2y 

We shall show that for any n = 0,1, ... and for any 

E<y/(l+~, 

WI.! q,p) = o (exp[ - 21TE( q2 + p2)]) 

(4.47) 

(4.48) 

[( q,p)ElR2]. (4.49) 

To that end we prove the following theorem. 
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Theorem 4.3: LetfEL 2(R) and consider the following 
statements: (a) for all tJ < y we have 

f( q) = O(e- m5t1) (qER), 

(Y f)(p) = O(e- m5p
') (pER); (4.50) 

(b) for all tJ < y we have 

(J,tPn) = 0 [( ~ ~ ~r/4] (n = 0,1, ... ); (4.51) 

and (c) for all E < y/(1 + .JT=""?) we have 

Wf ( q,p) = o (exp[ - 21TE{ q2 + p2))) [( q,p)ER2). (4.52) 

Then (a)=>(b), (b)<::>(c). 
Proof: The implication (a)=>(b) follows from Lemma 4.2 

(c); in fact the result proved there is slightly more precise. We 
shall now show that (b)=>(c). To that end we assume that (b) 
holds and we let 0 < tJ < y. We can writef = Nag, where 
a = ! log (I + tJ )( I - tJ ) - 1 and where the Hermite coeffi­
cients of g equal 

(
I + tJ)nl4 + 118 

(g,tPn)= l-tJ (J,tPn) (n=O,I, ... ). 

Hence gES. Now, by (2.9) and (2.10), 

Wf ( q,p) = WN,.g( q,p) 

(4.53) 

= {i(Na •2 Vg }{ q{i,p{i) [( q,p)ER2). (4.54) 

The kernel Ka •2 of the smoothing operator Na •2 can be 
written as 

K a2 ( q,p;x,y) = _._1_ exp[ -17"( q2 + p2)tanh a) 
. smha 

X exp( - 1T[( q - xlcosh a)2 

+ (p - ylcosh a)2)coth a) 

[( q,p;x,y)ER2XR2). (4.55) 

Since Vg ES 2 we easily obtain that 

Wf ( q,p) = 0 (exp [ - 217"( q2 + p2)tanh a)) [( q,p)ER2). 
(4.56) 

And as 

e2a _ I tJ 
tanh a = --= ----

e2a+1 I+~ 
(4.57) 

the proof of (b)=>(c) is complete. 
We next show the converse (c)=>(b), and therefore we 

assume that (c) holds. It follows that for 0 < E 

< y/(1 + .JT+'T), the integral 

J J exp[21TE( q2 + p2)) Wf ( q,p)dq dp (4.58) 

converges absolutely. Now let, for A;>O, 

K (r) = eEr (r;>O), 

KA(r) = max(K(r),A) (r;>O). (4.59) 

Then we have by (2.15) (see Ref. 46), for A;>O, 

J J KA [217"( q2 + p2)) WA q,p)dq dp 

= nto (- Itl(J,tPnW loo e- rKA(r)Ln(2r)dr. (4.60) 

2249 J. Math. Phys .. Vol. 25. No.7. July 1984 

Since KA is nondecreasing we can apply Theorem 2.1, 
and we find that 

cn(A): = (- It 100 

e- rKA(r)Ln(2r)dr;>0 

(A;>O,n = 0,1, ... ). (4.61) 

Also, by the generating function of the Laguerre polynomi­
als, 

lim cn(A) = (_ l)n (00 e-rK(r)Ln(2r)dr 
A--oo Jo 

=(I-Et-1/(I+Et (n=O,I, ... ). (4.62) 

Since the left-hand side of (4.60) tends to the finite number in 
(4.58) asA-oo, we easily conclude that 

f (I-Et-
1 

1(J,tPnW< 00. (4.63) 
n=O (I + Et 

The proof is completed by noting that (I - E)I/2 
X(I +E)-1/2=(I_tJ)I/4(1 +tJ)-1/4 whenE=tJI 

(I+~). 

Note: Assume thatfsatisfies (c). Then it follows from 

(1.7) that (a) is satisfied with y replaced by y/(1 + Jf=Y1). 
The implication (a)=>(b) cannot be strengthened [see (4.43)­
(4.45)]. 

We conclude this paper with the following theorem. 
Theorem 4.4: Let G be as in (4.46). Then we have 

G( q,p) = O(exp[ - 21TE( q2 + p2))) [( q,p)ER2](4.64) 

for all E < y/(1 + Jf=Y1). 
Proof: The proof follows rather closely the proof of the 

statements (a)=>(b), (b)=>(c) in Theorem 4.3. Therefore we 
shall omit details. 

Let G( q,p): = (l/{i)G( ql{i,pl{i), and define 

Wf,g( q,p) 

= J e-21TiPr( q + ~ t) g(q - ~t )dt [( q,p)ER2),(4.65) 

V ( ) - _I w (-.!L..L) [( )ER2) f,g q,p - {i f,g {i' {i q,p (4.66) 

for fES, gES. Then we have (G, Wf,g) = (G, Vf,g) for allfES, 
gES. 

We shall estimate the Hermite coefficients of G. We 
have 

(4.67) 
iJ 

with 

(4.68) 

This follows from completeness and orthonormality of 
(Vl/Ii.",,)jJ inL 2(R2)(see also the proof of Lemma 4.1). Accord­
ing to Ref. 8, 27.26.1, Yij,kl equals a j- 1 a j - lakal times the 

coefficient of wj;i in [( w + z)l {i] k [( W - z)l i{i] I; here 
an = (n!)-1/22-1/4(41Tt/2. It is important to observe that 
Yij,kl = 0, when k + I =l=i + j. 

It is easy to see that, for all iJ, 
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I(G,v"'i,.;)1 2 
= I(G,W"'i''''jW«G,W'''i)(G,W",), (4,69) 

whence, as };iJ IYij,k/1 2 = Illf'k ® 1f'/11 2 = 1, 

I(G,lf'k ®If'dI 2< L (G,W"'i)(G,W,,), (4.70) 
i+j~k+1 

by the Cauchy-Schwarz inequality. 
To estimate (G,W",,l, we consider};: ~oWk(G, W",.) 

= : F(w) for Iwl < 1. We have, as in the proof of Lemma 4.1, 
for Iwl < 1, 

F(w) = C: W2)112 f f H( q,p) 

( 
2 2 1 - w

2 
41Tiq pw) Xexp -1T(q +p )--2 - 2 dqdp, 

l+w l+w 
(4.71) 

with 

n 

It follows easily from the Cauchy-Schwarz inequality and 
(4.43) and (4.44) that 

[( q,p)ER2
]. 

(4.73) 

As in the proof of Lemma 4.1(c) we conclude that 
!If 

L r"(G,W",.)=O(N) (N=O,I, ... ), (4.74) 
k~O 

where r = (1 + y)I!2 (1 - y)-1/2. Hence (G,W"'k) 

= 0 ([(1 - 8)/(1 + 8)]kI2) for all 8 < y, and we obtain by 
(4.70), for all 8 < Y, 

(G,lf'k ® 1f'/) = 0 [( ~ ~ ~r + 1114] (k,l = 0,1, ... ).(4.75) 

This shows that for any a <! log [( 1 + y)/( 1 - y)] there 
is an FES 2 such that G = Na 2F. As in the proof of the state­
ment (b)=>(c) in Theorem 4.3 we conclude that, for any 
a <!log [(1 + y)/(1 - y)], 

G( q,p) = o (exp[ -1T( q2 + p2)tanh all [( q,p)ER2
], 

(4.76) 

and the proof is easily completed now. 
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APPENDIX A: SMOOTH POSITIVE DEFINITE 
FUNCTIONS OF TWO VARIABLES 

In the proof of Theorem 4.2 the following theorem was 
required. 

Theorem A.I: Let KES 2 be positive definite, i.e., 
(K,J®/»O for allfEL 2(R). There are non-negative numbers 
Cn and orthonormalfnES such that 

with convergence in the S2 sense. Moreover, when the cn's 
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are ordered decreasingly we have Cn = 0 (e - nE) for some 
E>O. 

The proof of this theorem relies on the following 
lemma. 

LemmaA.l: Let KnES 2(n = 0,1, ... ). ThenKn---+Oin the 
S2 sense if and only if (Kn,F®F)---+O for every FES*. 

Proof: It is known47 that Kn ---+0 in the S 2 sense if and 
only if(Kn,H)---+O for all HES 2*. Hence we only have to show 
that (K n,F ® F)---+O for every FES * implies that (K n ,H )---+0 
for every HES 2*. 

By polarization we can assume that (K n ,F ® G )---+0 for 
every FES *, GES *. Let FES *. The space S * is a Frechet 
space48

; as a countable system of norms on S * we can take, 
for m = 1,2, ... , 

(A2) 

Therefore we can find, by boundedness of 
(Kn,F® G) (n = 0,1, ... ) for every GES*, anm = 1,2, ... and an 
M> ° such that 

(A3) 

for all GES * with IIG 11m < 1. Hence, S * = UI~ 1 BI, where 

BI = {FES*IIIG 111<1=>I(Kn,F®G)I</(n = O,I, ... )}, (A4) 

for I = 1,2, .... Again using that S * is a Frechet space we 
conclude that there is an 10 = 1,2, ... and an open set in S * in 
which Blo is dense. From this we infer the existence of M > 0, 
ko = 1,2, ... with 

(AS) 

for all FES *, GES * with IIF Ilko < 1, IIG 11/0 < 1. Ifwe take 
F = exp(k Iko)lf'k' G = exp(lllo)lf't, we get 

I(Kn,lf'k ® 1f'/)I<M exp( - k Iko -1110 ) (n,k,1 = 0,1, ... ). 
(A6) 

It is now easy to show [as (Kn ,If'k ® If't)---+O for all k,l] that 
(Kn,H) = };k./(Kn,lf'k ® 1f'/) (If'k ® If'I,H)---+Oforevery HES 2*. 

Corollary: With an entirely similar proof one can show 
that if K n ES 2 and lim (K n ,F ® F) exists for all FES * then 
there is exactly one KES 2 with Kn-K in the S2 sense. 

We now prove Theorem A.1. We have the representa­
tion49 

(A7) 
n 

where Cn >0, };n c~ < oo,Jn EL 2(R) orthonormal and where 
the convergence is in the L 2(R2) sense. In addition, for every 
n, 

CJn(u) = f K(u,ulfn(u)du (uER), (A8) 

and from this one readily concludes thatfnES, e.g., by ex­
panding K in a Hermite series };k,/ dkl If'k ® If'I with 
dkl = o (exp[ - E(k + I)]) for some E>O. We assume here 
and in the remainder that Cn > 0. 

Now letFES*. We shall check that };ncn l(fn,FW < 00. 

To that end we take a sequence Fk in S with Fk -F in the S * 
sense if k-oo. We have, for all k, 

(A9) 
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by (A6). The terms in the right-hand side series are non­
negative for all k and tend to C n I Un,F W when k-+ 00. The 
left-hand side tends to (K,F®F), when k-+oo. By Fatou's 
lemma we conclude that l:n Cn IUn,FW < 00. That is, we 
have shown that limN~'" (l:;; = OCn In ®!n' F ® F) exists for 
all FES *. The corollary after Lemma A.l implies that 
l:;;=o Cn In ®!n converges in theS 2 sense. Because of (A7) 
the limit isK, whenceK = l:ncn In ®!n with convergence in 
the S 2 sense. 

We finally show that C n = Ole - nE) for some E> O. It is 
assumed here that Cn ;;,cn + I > 0 (all n). We have 

n 

for some E> O. Hence there is an M> 0 such that, for all n, 

(All) 

It follows from orthonormality of thein's and Parseval's 
theorem that for any m = 1,2, ... there is an 
n = n(m) = 0,1, ... , m + 1 such that 

(AI2) 

Therefore, cn(m)<;M(m + 2)e-1m + I)E. 

We have assumed that Cn > 0 for all n, and therefore 
n(m)-+oo as m-+oo. Now let n = 1,2, ... , and take an m with 
n(m)<;n<;n(m + 1). Then m;;.n - 2, and, by monotonicity of 
the Cn 's, 

cn<;cn1m) <;M(m + 2)e- 1m + I)E<;Mne- ln -I)E, (A13) 

when n is sufficiently large. This completes the proof of 
Theorem A.l. 

APPENDIX B: SECOND PROOF OF THEOREM 4.2 (b) 

We start from the formula cp*K = ! Wf in (4.26), where 
cp satisfies CP*CP = 8 ® 8, K ( q,p) = exp[ - 2tr( ql + p2)], and 
IES, II III = 1. This formula can also be written as 
cP*Wg = Wf , whereg (q) = 21/4 exp( _trqZ). 

We shall use the following result50: when CPo and tPo are 
entire functions, then (z = x + iy) 

2 J J Icpo(z)tPo(zW exp( - 2trlzl Z)dx dy 
c 

<;J J Icpo(zW exp( - trlzlZ)dx dy 

c 

(Bl) 

c 

and, if the right-hand side is finite, there is equality in (B 1) if 
and only if CPo(z)tPo(z) can be expressed as C exp(2truz) for 
some UEC and some CEC. We apply this result with 
CPo = tPo = BlwhereBlis the Bargmann transform51 off, 
given by 

(B I)(z) = eII/2)=!U *g)(z) 

= 21/4 J e(112)1Tr - '* - q)f( q)dq (ZEC). (B2) 
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The Bargmann transform provides an isometry 
between the spaces L Z(R,dq) and L 2[C,exp( - trlzlZ)dx dy)]. 
Hence, the right-hand side of(Bl) equals 1, as 11/11= 1. We 
shall show that the left-hand side of (Bl) equals 1 as well, so 
that [(B l)(zW has the special form as indicated above. 

According to Ref. 23, Eq. (2.S), we have (z = x + iy) 

(BI)(z)exp( - !trlzIZ) = (f,GI(x, - y)), (B3) 

where, for (a,b )ER1, 

GI(a,b)(q) 

= 21/4 exp[ -tr( q - a)l + 2tribq -triab] (qER). 
(B4) 

Hence, the left-hand side of (B 1) can be brought into the form 

2 f f I (f,GI(x,y)W dx dy. 

By Moyal's formula we have 

I (f,GI(x,y)W 

= 2 f J Wf(a,b )exp [ - 21T(x - a)Z 

- 2tr(y - b f]da db = (Wf*Wg)(x,y). 

Hence, the left-hand side of (B 1) can be written as 

(B5) 

(B6) 

2( Wf * Wg, Wf * Wg). (B7) 

Now ~ = cp *Wg, and (cp*HI,cp*H2) 
= (cp*cp*Hl>H2 ) = (HI,Hz) for any HIES z, HzES 1

. Hence, 
the left-hand side of (B 1) equals 2( Wg * Wg, Wg * Wg). Using 
that 

(Wg*Wg)(a,b) = exp[( -tr(a2 + b 2)] [(a,b )ERZ], 
(BS) 

we see that the left-hand side of (B 1) equals 1. 
This shows that there is equality in (B 1), whence (B I)(z) 

is of the form C exp(2truz) for some CEC and some UEC. 
Writing u = a + ib, we see from Ref. 23, Eq. (2.S), thatlis a 
multiple of GI(a,b). And since IIIII = GI(a,b) = 1, we get 

Wf ( q,p) = 2 exp[ - 2tr( q - a)Z - 2tr(p - b )1] 

[(a,b )ERZ
]. (B9) 

Finally the formula CP* Wf = Wg shows that 
CPt q,p) = 8 ( q + a)8 (p + b). This completes the proof. 
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A composite quantum system consisting of two distant subsystems and described by a correlated 
state vector ¢l12 is considered. It was shown in a previous work by the authors [Ann. Phys. 96, 382 
(1976)] that such a system can be equivalently described in terms of the reduced statistical 
operators PI and P2 of ¢l 12 applying to the subsystems and a correlation operator Ua between them. 
It is argued that this description has a firm physical foundation for the system considered in view 
of the fact that, on account of the subsystems being distant, one can only measure pairs of 
subsystem observablesA I, B2 in coincidence. The direct measurement of A I such that [A loPI] = 0 
on the ensemble of first subsystems performs distantly (without interaction) an orthogonal 
decomposition of the ensemble of second subsystems P2' that amounts to the measurement of the 
twin observableA2(A 2=UaAI U a- IQ2' Q2 being the range projector ofp2)' A number of 
coincidence experiments have confirmed this claim, and have disproved all attempts (on the 
quantum and on the sllbquantum levels) to view this decomposition of P2 as being present also 
before the measurement of A I' Hence, this decomposition into subensembles comes about in the 
very measurement of A I' and Ua determines them in a simple way. It is demonstrated that Ua is 
essential for twin observables and twin symmetry operators. A detailed study of these operators is 
presented from a unified point of view. Puzzling features of quantum correlations described by Ua 

show up in composite states when the mentioned distant decompositions of P2 into subensembles 
can be incompatible with one another. A general definition of such ¢l TJR states (called Einstein­
Podolsky-Rosen states) is given in a few equivalent forms, and the non uniqueness of the Schmidt 
canonical form of ¢l TJR is investigated in order to encourage further theoretical and experimental 
exploration of distant quantum correlations. 

PACS numbers: 03.65.Bz, 03.65.Ca 

I. INTRODUCTION 
To begin with, we try to give an answer to the question: 

What is intuitively paradoxical about distant correlations in 
quantum mechanics? 

To this purpose, we are considering a quantum system 
consisting of two subsystems, that is described by a wave 
vector ¢l \2' We have shown I that, within the framework of 
quantum mechanics, this system can be equivalently de­
scribed in terms of the separate states of the two subsystems 
(the reduced statistical operatorsPI andp2) and the quantum 
correlations between them (the antiunitary correlation oper­
ator Ua mapping the range of PI onto that of P2): 
¢l12-[PI,Ua ,P2J. Inspired by Schrodinger,2 we made ' a sys­
tematic investigation of the nature and physical implications 
of the correlations established by Ua by studying distant 
measurement of subsystem observables (that are complete 
and have a purely discrete spectrum). 

Let us restrict ourselves, for the sake of an illustration, 
to the two-photon system used in the Freedman and Clauser 
experiment. 3 When one finds out by measurement that the 
first photon is in the state of polarization fIJI' then the second 
photon is necessarily in the state of polarization Ua fIJ I' From 
the quantum-mechanical point of view, ¢l12 collapses (with­
out any interaction with the second photon) into 
fIJI ® (Ua flJd· This quantum-mechanical prediction was con­
firmed by direct polarization measurement on the second 
photon in the Freedman and Clauser experiment. Thus, it is 
experimentally verified that the correlation operator Ua de­
termines the state of the distant photon (after the measure­
ment on the first one). 

More generally, measurement of any observable A I on 
the first photon implies I the distant measurement of the twin 
observableA 2 UaA,U a-IOn the second photon. More­
over, if one considers two incompatible observables A 1 and 
B Ion the first photon (e.g., linear polarizations through two 
different planes), the corresponding twin observablesA2 and 
B2 on the second photon are also incompatible because the 
above similarity transformation by Ua preserves commuta­
tors. It means that one can distantly, hence without distur­
bance, measure any of the two incompatible observables on 
the second photon. Hence, one may conclude that the second 
photon "knows the answer,,2 to both measurements, sug­
gesting incompleteness of the quantum-mechanical descrip­
tion by ¢l12' This is the essence of the famous Einstein-Po­
dolsky-Rosen (EPR) paradox.4 

In a correct statistical language, the direct measure­
ment on the ensembiepi of first photons singles out distantly 
the subensemble (Ua fIJI) from the ensemblep2 of second pho­
tons present before the measurement. Asking the question 
what is actually happening with the ensemble of second pho­
tons in this change, one takes the position of physical rea­
lism. There are two possible answers. Either (a) the change is 
taking place in reality (under distant influence without inter­
action of any type that we know today), or (b) the change is 
only in our knowledge, so that the second photons were in 
the same quantum-mechanical subensemble (Ua flJd also be­
fore the meausrement on the first photons. 

It should be noted that from the point of view of the 
Copenhagen school of thought, the question of the realistic 
meaning of the collapse ¢l12-+<PI ® (Ua flJd is not physical. 
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Contrarily, Einstein, SchrOdinger, and others did consider 
this question physical, but they could not accept alternative 
(a). 

As far as alternative (b) is concerned, both Einstein and 
Schrodinger had their visions of it. Schrodinger's hypothe­
sis2 was in terms of quantum-mechanical entities: He envis­
aged that<P12 goes over spontaneously into a mixed statepl2' 
where the phases in the coherent mixture <p 12 disappear when 
the two particles get sufficiently apart so that they are out of 
the range of mutual interaction. In this mixed state quasi­
classical statistical correlations appear, and this type of cor­
relation is intuitively easy to grasp. The mixed statepl2 gives 
some predictions that are different from those implied by 
<P12' hence experiment could decide. The Schrodinger hy­
pothesis was experimentally refuted5.6 (cf. Ref. 7, p. 1922; 
also Ref. 8). 

In the Bell model9 (inspired by Einstein) the existence of 
quasiclassical statistical correlations was assumed on a sub­
quantum level (the so-called model of local hidden varia­
bles). This model enables one to view each individual pair of 
photons as having a definite state of polarization in every 
plane simultaneously. Bell's theorem9 revealed a contradic­
tion between this model and quantum mechanics, so it be­
came possible to make an experimental decision,3·7.10 which 
disproved the model oflocal hidden variables. 

At present, as far as we know, there is no third way 
within alternative (b). Thus, the apparent untenability of this 
alternative is what is intuitively paradoxical about quantum 
distant correlations II: It remains either to reject physical 
realism independent of the measuring arrangements or to 
consider seriously alternative (a). One wonders if Einstein 
were alive today how he would react to this dilemma, to 
which the new experimental facts have brought us. We be­
lieve that alternative (a) deserves systematic investigation. 
We feel that quantum correlations in the ensemble <P12 are 
something real, and that the correlation operator Ua plays a 
key role in their understanding (cf. Sec. VA). 

The two basic aims of this article are as follows. (i) To 
explore quantum correlations in any pure composite state 
<P12 from the point of view of measurement. In other words, 
since twin observables are the basic form how the correlation 
operator Ua shows up, we study twin observables in general 
(Le., without the restrictions imposed in the previous arti­
cle!). (ii) To study different conditions under which quantum 
correlations show up in a nontrivial way, i.e., when one has a 
general EPR-type state vector. 

For the second aim it will tum out that twin symmetry 
operators are useful. Therefore, it is desirable to investigate 
twin observables and twin symmetry operators from a uni­
fied point of view, as particular cases of twins of normal 
operators (cf. Sec. IIB).12 

II. MATHEMATICAL INTERMEZZO 

A. Description of correlated subsystems in terms of the 
polar factors of antllinear operators 

If HI andH2 are the state spaces of the two subsystems 
of a composite quantum system, then the Hilbert space of 
antilinear operators Aa mapping HI into H2 and satisfying 
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Trl A !Aa < 00 is a realization13
-

15 of the tensor product 
H I ®H2• 

A simple way to see the meaning of Aa that corresponds 
to a given composite state <P 12 is to choose an arbitrary ortho­
normal basis I cP n In = 1,2,00'] in HI and to expand I <P 12 in this 
basis: 

(1) 
n 

The physical interpretation of (1) is as follows: When a first­
subsystem measurement results in CPn' the second subsystem 
is by this very fact in the state AaCPn/llAa CPn II. Besides, the 
square of the norm IIAa CPn 112 is the probability of this result. I 

The advantage of the antilinear-operator realization of 
HI ®H2liesin thefactthatA a connects HI withH2, and thus 
it is well suited for the description of the quantum correla­
tions between the two subsystems. 

The measurement of a first-subsystem observable that 
has I cP n In = 1,2,00'] as its eigenbasis is not necessarily a mea­
surement on the second subsystem. It is such a distant mea­
surement on the second subsystem if and only if the "relative 
states,,16lAacpnln = 1,2,'00] are orthogonal. This is the case 
if and only if I I cP n In = 1,2, ... ] is an eigenbasis of the reduced 
statistical operator PI=Tr21<p12) (<pnI (which means that the 
measured observable is compatible withpJ!. Then (1) be­
comes the Schmidt canonical form 

(2) 
m 

where 

(3) 
m 

all r m > 0, and 

Aa = Uap:12 (4) 

is the polar factorization of Aa (cf. Appendix 4 of Ref. 1). 
In the context of distant measurement the two polar 

factors of Aa have separate physical meanings in statistical 
terms: PI describes the improper ensemble l7 of first subsys­
tems implied by the proper ensemble of composite systems 
represented by <P12; Ua is the correlation operator I connect­
ing the states CPm obtained in the direct measurement with 
the states UaCPm that come about in the distant measure­
ment. Actually, Ua determines the subensemble (UaCPm) of 
second subsystems that is singled out in distant measure­
ment (when the direct measurement has selected the suben­
semble CPm). 

B. Normal operators as twins 

Definition 1: Let HI and H 2 be the state spaces of two 
subsystems and let <P12ElII ® H2 be a composite state vector. 
Two normal bounded operators A I in HI and A2 in H2 are 
called twin operators with respect to <P12 if they satisfy 

(5a) 

and 

A r <P12 = A2<P12' (5b) 
Theorem 1: Conditions 5(a) and (b) are equivalent to 
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(6a) 

and 

A2Q2 = UaA I U a- IQ2' (6b) 

where Q2 projects onto R (P2)' the range of 

P2=Tr 11<p12)(<pd· 
Proof Let us assume the validity of (Sa) and (Sb). Then, 

utilizing Al Tr:zB12 = Tr~IBI2' Tr2BI~1 = (Tr2BdAI' 
and Tr2A:zB12 = Tr2 BI~2 (which are valid for every bound­
ed linear operator BI2 in HI ®H2 as can be easily checked), 
one can write A lPl = Tr2 A 11<p12) (<pd = Tr2 A I 1<p12) (<pd 
= Tr21<p12)(<pdA I = Tr21<p12)(<pdA I =PIAI' which 
proves (6a). Therefore, we can take a common eigenbasis 
{lPm 1m = 1,2,. .. } of PI and of A I (hence also of A t)inR (pd, 
the range of PI' Expanding <P12 in this basis, one obtains a 
Schmidt canonical form (2). Replacing (2) in (Sa), one arrives 
at 

Ir:';2(A IlPm) ® (Ua lPm) = Ir:';2lPm ® (A I Ua lPm). (7) 
m m 

Owing to A IlPm = amlPm' partial scalar product (cf. Appen­
dix 1 of Ref. 1) of r;;; I12lP m with (7) gives A I Ua lP m 
=amUalPm orA2UalPm =a!UalPm = UaAIUa-I(UalPm)· 
Since {UalPm 1m = 1,2 ... } spans R (P2)' (6b) follows. 

If on the other hand, (6a) is valid, then (2) and 
AllPm = amlPm follow as above. Further, Eq. (6b) implies 
A2UalPm =a!UalPm, and A IUalPm =amUalPm·Conse­
quently, (7) and (Sa) hold true. One proves (Sb) analogously. 

Q.E.D. 
Since Al andA2 play symmetrical roles in (Sa) and (Sb), 

the latter are equivalent to 

[A 2,p2] = 0, 

AIQI = U a-
IA2UaQI' 

where Q I is the range projector of PI' 

(8a) 

(8b) 

Furthermore, as (Sb) is symmetrical to (Sa) with respect 
to adjoining, one has two more pairs of equations equivalent 
to (Sa) and (Sb): 

[A t,pd = 0, 

A I Q2 = UaA t U a- IQ2' 

and 

(9a) 

(9b) 

[A I,p2] = 0, (lOa) 

AtQI = Ua-IA~UaQI' (lOb) 

The reduced statistical operators PI and P2' as well as 
their range projectors QI and Q2' are basic examples of twin 
operators. This follows from I 

P2 = UaPI U a- IQ2' 

and from 

QI<P12 = <P12 = Q2<P12' 

(11) 

(12) 

that is evident when <P12 is written in a Schmidt canonical 
form (2), respectively. 

C. Hermitian twins 

Let us now discuss the most important class of normal 
operators-the Hermitian ones. In this case conditions (Sa) 
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and (Sb) reduce into one equation, 

A I<P12=A2<P12' (13) 

However, the equivalent conditions (6a) and (6b) are both 
required when a given pair of operators A I andA2 are tested, 
whether they are twins or not. 

If, on the other hand, one asks the question which first­
subsystem observable A I has a twin when <P12 is given, then 
Eq. (13) is of no use. But (6a) by itself gives a complete answer 
to this question. 

An observable A I has a twin ifand only if it is compati­
ble withpl' The proof of this statement is obvious if the right­
hand side of (6b) is understood as a prescript for the con­
struction of an A2 observable. 

D. Unitary twins 

If UI and U2 are unitary operators inHI andH2, respec­
tively, then, owing to commutation of any operator from HI 
with anyone from H 2 , it follows immediately from Defini­
tion 1 that UI and U2 are twins if and only if 

UP2<P12 = <P12 (14) 

(UI U2 = UI ® U2), or equivalently (according to Theorem 1), 

[UI,PI] =0 (ISa) 

and 

(ISb) 

If we consider the maximal symmetry group GI of PI' 
i.e., all U I satisfying (ISa), and the analogous group G2 of P2' 
then each of these groups is broken up into equivalence 
classes where equivalent operators are those that reduce into 
the same operator in the range of the correspondingp. In 
other words, equivalent operators differ only in the corre­
sponding null space N (p). Thus, the canonical operator in 
each class is that among the elements of the latter which acts 
as the identity operator in N(p). 

Denoting by II the identity operator in HI' and by Q t 
the complementary projector (II - Qd of QI' the canonical 
operator equivalent to U I [satisfying (ISa)] is 

(16) 

In both HI and H2 the canonical operators form groups that 
we denote G ~ and G ~, respectively. 

The correlation operator Ua gives via (ISb) an isomor­
phism between G ~ and G ~, enabling one to single out the 
subgroup (G ~ X G ~ )d' the so-called diagonal of the direct 
product G ~ X G ~ , consisting of the ordered pairs of the form 
(UIQI + Qt,Ua UIU a-

IQ2 + Q~), UIEGI· 

Now, we can rephrase (ISa) and (ISb) as follows: Two 
unitary operators U I and U2 are twins if and only if UIEGI, 
U2EG2 , and (U~ ,U~ )E(G~ X G~)d' We denote by G12 the 
group of all UI U2 in HI ® H 2, where UI and U2 are twins. 

III. DISTANT CORRELATIONS IN TERMS OF 
MEASUREMENT 

A. Detectable part of a subsystem observable 

Since the measurement of A I compatible with P I on <P 12 

lies at the root of the study of twin observables, we first con-

M. Vuji/::i6 and F. Herbut 2255 



                                                                                                                                    

centrate on it. As a matter of fact, it can be replaced by the 
measurement of the detectable part of AI: AIQI (on t/J12)' 

Before we elaborate this, we have to derive a suitable 
spectral form of A I Q I from the spectral form of A I' 

The operator AIQI has necessarily a purely discrete 
spectrum whatever is the spectrum of A I' Namely, A I re­
duces in each eigensubspace of PI' and all the eigensubspaces 
corresponding to positive eigenvalues of PI [and making up 
its range R (PI) = R (QI)] are finite dimensional (because PI 
has a purely discrete spectrum, see Ref. 18, p. 329; and 
Tr I PI = 1). Therefore, the entire possible cotinuous part of 
the spectral form of A I falls into the null space of QI' 

If l:n an P \n l is the discrete part of the spectral form of A I' 
and if we enumerate by m those values of n for which 
p\nlQI #0, then we have 

AIQI = 2Pm P \ml QI' 
m 

All terms omitted from l:nanP\nl (for which P \nlQI = 0) 
correspond to undetectable eigenvalues an of A I' because the 
probability to obtain such a value in the measurement of A I 
on <P12 is zero: 

p(an.AI,t/Jd = (t/JdP\n1 1t/J\2) 

= Tr12 P\n1 1t/J12) (t/Jd = Trl pllnipi 

= Trl p\nlQifJI = O. 

The remaining eigenvalues am are all detectable be­
cause p\mlQI #0 implies Trl p\m1pI > O. To see this, we 
choose a unit vector Icp) such that p\mIQllcp) = Icp). Then 
Trl p\m'pl = Trl(P\mIQdpt(P\mIQI) 

>(cp l(p\mIQI101(P\mIQI)lcp) = (cp Ipllcp) >0. 

In this way we have proved: 
Lemma 1: Whatever the spectral form of A I that is com­

patible with P I' the spectrum of A I Q) is purely discrete, and 
one can write 

(17) 
m 

where m enumerates the distinct detectable eigenvalues of 
A I' i.e., those which have a positive probability in the mea­
surement of Al on t/J\2' Decomposition (17) is unique under 
the requirement 

(18) 
m 

and we refer to (17) as the suitable spectral form of A I Q I' 
Owing to [A loPI] = 0, the range of PI is invariant for A I' 

and the latter reduces there into its relevant part A ; .13 In 
order to avoid domain restrictions, we utilize the detectable 
part A IQI (defined in the entire first-subsystem state space) 
instead of A ;. However, the suitable spectral form of AIQI 
corresponds in fact to the standard spectral form of A ; [in 
which the eigenvalues are distinct and the eigenprojectors 
add up into the identity operator in R (ptlJ. 

Now we can elaborate the physical relation between A I 
and A IQI' that makes them indistinguishable on t/J\2' 

Lemma 2: (i) The entire continuous spectrum of A I that 
is compatible withpi is undetectable on t/J\2' 
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(ii) The probability of a detectable eigenvalue am of A I 
on t/J12 is the same as that of AIQI on t/J\2: 
p(am.AI,t/Jd = p(am.AIQ),t/Jd· 

(iii) Any predictive measurement of either A lor A IQI on 
t/J12 giving am as the result, converts t/J12 into the same state 
p\m1t/J12/IIP\m1t/Jdl· 

Proof (i) Let D be an arbitrary domain on the real axis, 
and let P \D I be its spectral projector (or spectral measure) 
determined by A I' The probability to obtain a result from D 
in a measurement of A Ion t/J12 is Trl PIP\DI. Sincepi = QifJI' 
this probability is zero whenever P\DIQI = 0, i.e., whenever 
R (P\D)) is part of the null space of PI' This is the case when D 
is the continuous spectrum of A I' 

(ii) Trl PIP\ml = Trl PI(P\mIQI)' 
(iii) p 1Imlt/J12/IIP\m1t/JdI = (p\mIQI)t/J12/IIP\mIQIt/Jdl due 

to (12). 
Q.E.D. 

Corollary: Two first-subsystem observables compatible 
with P I are indistinguishable in measurement on t/J \2 if and 
only if their detectable parts coincide. This indistinguishabi­
lity is obviously an equivalence relation in the set of all first­
subsystem observables compatible with PI' We take for the 
canonical representative of any equivalence class the Hermi­
tian operator that acts as zero in the null spaceN (PI)' We call 
such operators canonical (with respect to t/Jd. 

Remark: For any given t/J12 the canonical operators of 
the first subsystem form a Lie algebra L ~ with "(i/I/) times 
the commutator" as the Lie product. 

B. Twin observables 

Now we assume that A I and A2 are twin observables, 
and we derive the basic mathematical and physical implica­
tions of this relation. 

Lemma 3: If A I and A z are twin observables, then: 
(i) A IQI and A2Q2 are also twins, and vice versa. 
(ii) The detectable eigenvalues of A I and those of A2 are 

the same, i.e., if (17) is the suitable spectral form of A IQI' 
then that of A2Q2 is 

(19) 
m 

and 

(20) 
m 

(iii) The eigenprojectors P \mIQI and P ~m1Q2 correspond-
ing to the same detectable eigenvalue am are also twins. 

Proof (i) A IQlt/J12 = A2Q2t/J12 is equivalent to (13) due to 
(12). 

(ii) and (iii) Applying Ua ···U a- IQ2 to (17), and taking 
into account AzQz = Ua (A IQtlU a- IQz [cf. (6b)], one obtains 

(21) 
m 

The antiunitary operator Ua takes by similarity transforma­
tion orthogonal projectors decomposing the identity opera­
tor in R (p I) into orthogonal projectors which decompose the 
identity operator in R (P2)' Hence, (21) is the suitable spectral 
form of A 2Qz. Further, 
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'tim [Ua(P\m)QdUa-I]Q2=p~m)Q2' 

where P ~m) are the eigenprojectors of A2 corresponding to the 
detectable eigenvalues. 

Q.E.D. 
The quantum-mechanical meaning of twin observables 

can be summarized in the following way. 
Theorem 2: If A I and A2 are twin observables with re­

spectto¢12 [seeEq. (13)), then their measurements on ¢12 are 
indistinguishable: 

(i) The probability p(am.AI,¢d to obtain a detectable 
eigenvalue am in a measurement of A I on ¢ 12 is the same as 
that of am when A2 is measured on ¢12' i.e., the same as 
p(am .A2,¢d· 

(ii) If the two measurements mentioned in (i) are predic­
tive, they have the same effect on ¢12' i.e., they convert the 
latter into 

p\m)¢12/ I1P \m)¢ull = p~m)¢12/llp~m)¢dI· 
Proof (i)p(am.AI,¢d =p(am.AI QI,¢d 

= (¢dP\m)QII¢12) = (¢dP~m)Q21¢12) = p(am.A2Q2,¢d 
= p(am .A2,¢d [cf. Lemma 2(ii) and Lemma 3(iii)]. 

(ii) Follows immediately from Eq. (12) and Lemma 3(iii). 
Q.E.D. 

Thus, a direct measurement of A I is by this very fact a 
distant measurement of A2 and vice versa. The term "dis­
tant" refers to the fact that the measurement of a first-sub­
system observable A I ==A I ® 12 requires lack of interaction 
between the measuring apparatus and the second subsystem. 
The concept of distant measurement was introduced in pre­
vious work I for the special case of complete observables A I' 
Now we have extended this concept to all first-subsystem 
observables compatible with PI' 

In distant-correlation experiments (which were invent­
ed to decide for or against local hidden variable theories),7.10 
as a rule one deals with a special kind of twin observables­
with twin projectors PI and P2, having the physical meaning 
of simultaneous occurrence of events on distant subsystems 
(e.g., the first photon goes or does not go through an analyz­
er, and the same happens with the second photon; see Dis­
cussion C in Ref. 1). These twin projectors PI and P2 provide 
us with an important example of distant measurement: 
When the event PI happens in the laboratory, thenP2 occurs 
on the distant subsystem. The coincidence measurements in 
the above experiments check this quantum-mechanical 
statement confirming it. 

IV. DISTANT CORRELATIONS IN THE EPR CASE 

A. Criteria 

Definition 2: A composite state vector ¢12 is an EPR­
type state vector ( a ¢ ~rR) if there exist two first-subsystem 
observables A I and B I such that both are compatible with PI 
and that their detectable parts A IQI and B I Q I are incompati­
ble with each other. In other words, this condition means 
that the Lie algebra L ~ (see Remark) is nonabelian. 

Thus, in a ¢ ~rR one can measure distantly (i.e., without 
interaction with the second subsystem) either of the two twin 
observables A2Q2 and B2Q2' which are necessarily [due to 
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6(b)] incompatible with each other. We believe this is a natu­
ral generalization of the original EPR state vector4 (where A I 
was the coordinate and BI was the linear momentum), as 
well as of all the other examples studied in the literature 
since 1935.7.10 

An obvious necessary and sufficient condition for a ¢12 
to be a ¢ ~fR is that at least one positive eigenvalue of PI (or 
equivalently of P2) be degenerate. Necessity is due to the fact 
that [AI,pI] = 0 and [BI,pI] = 0 imply that both Al and BI 
reduce in each eigensubspace of PI in R (PI)' Unless one of 
these eigensubspaces is more than one-dimensional, A I Q I 
and BIQI have to commute. Sufficiency is obvious. 

A group-theoretical version of this condition is given in 
the following theorem. 

Theorem 3: A state vector ¢12 is of the EPR type if and 
only if its symmetry group G ~ is nonabelian. 

Proof The group G ~ is a Lie group, and its Lie algebra 
is L ~. The latter is nonabelian if and only if so is G ~ . 

Q.E.D. 

B. Schmidt canonical form 

It may not be realized that the Schmidt canonical form 
of a given ¢12 is, in general, nonunique. If ¢12 is not of the 
EPR type, i.e., if all positive eigenvalues of PI are nondegen­
erate, then the Schmidt canonical form (2) is unique: 

m 

Namely, the eigenbasis of PI inR (pd is unique up to a phase 
factor exp(u m) for each m independently. But, owing to the 
antilinear nature of Ua, one has Ua exp(u m )<Pm 
= exp( - um )Ua<Pm, hence this freedom cancels out, leav­

ing each <Pm ® ( Ua <P m ) unchanged. 
On the other hand, if ¢12 is of the EPR type, then there 

exists at least one degenerate eigensubspace V (r m ), r m > 0, of 
PI' in which there are orthonormal bases differing from each 
other more than by a permutation or by phase factors. Since 
each eigenbasis in R (PI) gives a Schmidt canonical form (2), 
one thus obtains different forms of this kind, i.e., expansions 
(2) differing more than by rearrangement of the terms. 

Theorem 4: The group G 12 of ¢ 12 is the symmetry group 
of the Schmidt canonical form of ¢l2> i.e., for every two ca­
nonical forms (2) there exists one element UI U2 of G12 taking 
one into the other; and vice versa, each element of Gl2> when 
applied to an expansion (2), gives again such an expansion 
(which is not necessarily a different one). 

Proof Let 

I/:2
<pm ® (Ua<Pm) = ¢12 = I/:'2tPm ® (Ua tPm) 

m m 

be two canonical forms of ¢12' The two eigenbases 
{<Pm 1m = 1,2, .. · J and {tPm 1m = 1,2, .. · J of PI inR (PI) define 
[nonuniquely in N(PI)) an element UIEGI: 
tPm = UI<Pm, m = 1,2, .. ·, that obviously commutes with PI' 
Let U2 be a twin of U I • Then 
tPm ® (Ua tPm) = (UI<Pm) ® (Ua UI<Pm), and making use of 
15(b), one further has 

tPm ® (Ua tPm) = (UI<Pm) ® (U2 Ua<Pm)' 
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The proof of the converse statement runs along the same 
lines in the opposite direction. 

Q.E.D. 
V. DISCUSSION 

A. On the physical meaning of P1. Ua • and P2 

Though ifJ,z and the pair of operators PI' Ua are math­
ematically equivalent (cf. Theorems 5 and 7 in Ref. I), physi­
cally p, and Ua do not have separate meanings if all observa­
bles (measurable on the composite system) are taken into 
account. Restriction to the class of first-subsystem observa­
blesA, ®Iz endows the notion ofp, with physical contents, 
whereas further restriction to the subclass of observables 
compatible withp, ([A"pa = 0) gives physical basis to the 
concept of the correlation operator Ua • [The observables of 
this subclass are precisely those which have twins 
A2QZ = UaA,U a-'Q2--cf. (6b)-among the second-subsys­
tem observables.] 

Therefore, one cannot disagree with Bohr'9 that the 
state ifJ12 of the composite system is actually an unseparable 
whole, but this does not prevent one from exploring the con­
ditions under which the "parts" (the two subsystems and the 
correlation between them) have separate physical meaning. 

When the subsystems are distant (i.e., sufficiently far 
apart from each other so that they are not interacting), but 
correlated (e.g., have interacted in the past), then the typical 
experiments are coincidence measurements. 7 These are mea­
surements of composite events of the type P,P;, where P, is 
some event (projector) in H, (e.g., a linear polarization ana­
lyzer orientated in a certain direction and completed with a 
detector measuring the event of "passing through" in case of 
photons), and P; is an independently chosen event in H2 
(e.g., one measured by a differently orientated polarization­
measuring arrangement). We assume that P, is compatible 
withp" and we argue as follows. 

The probability p( P ,P ; ,ifJ nl p( I ,P ,P ; ,ifJ nl of the oc­
currence of P,P; in the state ifJ12 can be broken down to the 
conditional probability p( P; ,ifJ,zIP,) of P; under the condi­
tion thatP, took place, and to the probability p( P"ifJnl of PI: 

p( P,P; ,ifJd = p( P"ifJnlp( P; ,ifJulP,). (22) 

Evidently, 

p( P"ifJd = Tr, PIPt· (23) 

Further, 

p( P; ,ifJdP,) = Tr2 P ;P2( PI)' (24) 

wherepz( Ptl is that subensemble ofp2 Tr,lifJd <ifJuI 
which corresponds to the subensemble PIP,P,/Tr, PIP, ob­
tained by the occurrence of PI: 

pz( Ptl = PzPzPzITr, PIP" (25) 

where P2 is the twin event of PI' i.e., 

Pz=UaP, U a- 'Qz' (26) 

and Trz PzPz = Tr, PIPI' Actually, Eq. (25) is a special case 
of the more familiar general expression 

pz( PI) = Trl PllifJ,z)(ifJniP,/Tr l PIPI' (27) 

obtained from the latter by utilizing (13). 
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One should note that the above argument reduces any 
coincidence experiment on distant subsystems to the mea­
surement of P; on the distantly prepared subensemble 
pz( PI)' The restriction of the choice of PI to events compati­
ble with p, means that the distant preparation is, in fact, the 
distant occurrence of the twin event Pz. Thus, coincidence in 
this case actually reduces to successive measurements of Pz 
and of P; (they need not be compatible with each other). 

As seen from Eq. (26), it is the correlation operator Ua 

that determines which event Pz is the twin of Pl' For in­
stance, in the well-known Freedman-Clauser experiment, 3 

the two-photon polarization state ifJ12 implies a Ua such that 
PI and Pz correspond to parallel orientations of the analyz­
ers; whereas in another known experiment, zo P, and Pz cor­
respond to perpendicular orientations. 

The correlation operator Ua is an entity endowed with 
physical meaning to the extent to which the restriction 
[P"p,] = 0 is natural. The weaker restriction to any subsys­
tem events PI and P; is actually not a restriction, because on 
distant subsystems there is nothing else to be measured. As 
far as we know, in all experiments performed so far, 
[P"p,] = 0 was no restriction either due top, = !II' There­
fore, in these cases the physical meaning of Ua seems to have 
been established beyond doubt. 

As to a general ifJ12 describing two distant and correlat­
ed suybsystems, the requirement [PI,p,] = 0 is a restriction. 
It selects out an important class of measurements because 
this requirement is equivalent to the following: (i) The occur­
rence of P, is a no-disturbance direct measurement. z I (ii) The 
distantly prepared subensemble pz( PI) comprises precisely 
those distant subsystems on which an event Pz occurs. In 
other words, when [PloP,] #0, then the nonselectivezl direct 
measurement of P, changes p, (i.e., P IP'PI 
+ (I, - Pdp,(I, - PI) #pd, andpz decomposes into the dis­
tantly prepared subensemblepz( PI) [given by (27)] and the 
remainder, but these two are not orthogonal to each other. 

To draw a conclusion from the above argument, one 
should bear in mind that quantum correlations are a kind of 
entanglement of the predictions of subsystem events, and 
that there is no other way to disentangle them than to per­
form subsystem measurements. z Therefore, no-disturbance 
measurements on both subsystems (equivalent to 
[P, ,p ,] = 0) seem to be best suited for the study of observable 
consequences of quantum correlations. On the other hand, 
this same condition [PI,p,] = 0 makes it possible for the cor­
relation operator Ua to play an important role [determining 
P2( PI) via Eqs. (25) and (26)]. Hence, Ua describes basic 
aspects of quantum correlations in the general state ifJt2 un­
der the given conditions. 

B. What is paradoxical in distant measurement in the 
EPR case? 

Let us return to this question put in the Introduction. 
Two possibilities (a) and (b) were given, and it was pointed 
out that alternative (b) had been disproved experimentally. 
Now we discuss alternative (a), and we point to two essential 
aspects of the change taking place as a result of the direct 
measurement. 
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(i) When an observable A I' compatible withpI' is select­
ed, one has before its direct measurement decomposition (2): 

j, EPR ~ 112 ( U ) '1'12 =.c,,/m({Jm® a({Jm' 
m 

where [({Jm 1m = 1,2,.··} is a common eigenbasis of A I and of 
PI in R (PI)' In the direct measurement of A I' ¢ ~iR col/apses 
into 

m 

The entire improper ensemble of second subsystems 

was decomposable, i.e., potentially decomposed, into the su­
bensembles [ Ua l({Jm) «({Jm I U! 1m = 1,2,. .. } also before the 
measurement. In the collapse ¢ ~iR-+pdAI) the composite 
system, containing the distant subsystem, undergoes a phys­
ical change that has been checked and proved in coincidence 
measurements of the PIP; type (cf. Sec. VA). The ensemble 
P2 does not change in the collapse because 
Trll¢ ~iR) (¢ ~iRI = TrlPdAd, but its potential decomposi­
tion (29) becomes actual as given by (28), and this takes place 
without any interaction with the second subsystem. Namely, 
the occurrences of p~m)=I({Jm) «({Jm I on the first subsystem 
separate out distantly the subensembles 

p~mIp2p~m)/Trl p~mlpl = Ua l({Jm )«({Jm IU!. (30) 

From the point of view of von Neumann's quantum 
theory of measurement, 18 the direct measurement of A I on 
the first subsystem is the second link in a two-link chain, 
where the first link is the composite state ¢ ~iR. Von Neu­
mann has shown that the very interaction of the mea­
suring apparatus with the first subsystem gives rise to the 
collapse ¢ ~iR -P dA d. (We do not discuss the total collapse 
of the entire chain, which is the well-known problem of the 
quantum theory of measurement.) 

Thus, the collapse ¢ ~iR_pdAI) is puzzling by itself. 
But in the EPR case, there is more to it. 
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(ii) The nonuniqueness of the Schmidt canonical form 
(2) (cf. Sec. IVB) allows any of an infinite number of collapsed 
composite ensembles pdA d (but they are not simultaneous­
ly realizable if one selects incompatible A d. This has the 
consequence that P2 can be actually decomposed in any of a 
number of mutually incompatible ways implied by (28) with­
out any interaction with the second subsystem. 
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In quantum physics the tests of most properties do not have predetermined outcomes. The latter 
have nevertheless well-defined probabilities of being realized during a test. Following Popper we 
interpret these probabilities as physical propensities. A first purpose of the present article is to 
formalize the propensity interpretation in the framework of state-property structures. Next, 
Gleason's theorem asserts that in the Hilbert space there exists a unique propensity function (i.e., 
one probability measure for each state vector); the propensities are thus uniquely determined by 
the state vector. Conversely, we prove that if the state-property structure admits one and only one 
propensity function, then the set .Y' of all properties is a complete atomic orthomodular lattice. 
We point out that according to our assumption the probabilistic aspect of the system is entirely 
determined by its deterministic aspect. Assuming furthermore that each property can be ideally 
tested, it follows that.Y' is isomorphic to the direct union of Hilbert ian space lattices. We recover 
thus the purely classical and purely quantum frameworks as the two extreme cases. The 
intermediate cases correspond to quantum mechanics with-possibly continuous­
superselection variables. Finally, we prove that a system is classical, i.e., all properties are 
mutually compatible, if and only if the propensity function is dispersion free. In our approach the 
quantum probabilities appear thus as a generalization of classical determinism rather than a 
generalization of classical probabilities. 

PACS numbers: 03.65.Ca, 02.50. + s 

1. INTRODUCTION 

In Ref. 1 B. d'Espagnat wrote: "most predictions of 
quantum mechanics are of a statistical nature and therefore 
make sense only for ensembles." This is probably the root of 
the discomfort that many people feel about quantum me­
chanics. Yet, in the late 1950's, Sir Karl R. Popper argued 
that a different interpretation of probability, called the pro­
pensity interpretation, solves the problem of single events, 
and in tum, the problem of the interpretation of quantum 
mechanics. 2

•
3 Indeed, d'Espagnat's statement refers to the 

frequency interpretation of probabilities, but is in opposition 
to the propensity interpretation. 

We shall come back to the propensity concept in Sec. 3. 
For the time being, let us just briefly quote Popper: "I pro­
pose a new physical hypothesis. The two slits experiment 
convinced me that probabilities ( ... j are physical propensi­
ties, comparable to Newtonian forces, ( ... ) to realize singular 
events." 

The first purpose of the present article is to formalize 
Popper's idea in the context of state-property structure.4 

Another important motivation is the Gleason theorem, 
which states that there exists one and only one probability 
measure on the set of closed subspaces of a Hilbert space, 
with value one on a given ray.s We remind that in the usual 
Hilbert space quantum mechanics the properties are repre­
sented by the closed subspaces. A property is then called 
actual whenever the corresponding subspace contains the 

alSUpported in part by the Swiss National Science Foundation. 

state vector. Consequently, any (pure) state is then complete­
ly and uniquely determined by the set of all actual properties, 
and, in tum, any (pure) state completely and uniquely deter­
mines the "propensity of any property to realize itself during 
a measurement." This is a beautiful result. However, it 
seems to us that the conclusion is physically more natural 
than the Hilbert space assumption. Accordingly, the second 
purpose of the present article is to prove a theorem which is 
in a way the converse of Gleason's one (see Sec. 5). 

Our main result is the following: If the state-property 
structure (see Sec. 2) admits one and only one propensity 
function (see Sec. 3), and if each property can be ideally test­
ed (Sec. 4), then the states are naturally represented by atoms 
of the property lattice ..cf, and ..cf is isomorphic to the direct 
union of Hilbert space lattices (Sec. 5). Hence the system is 
either purely classical (all Hilbert spaces are of dimension 
one), or purely quantum (only one Hilbert space), or quan­
tum with-possibly continuous-superselection variables. 6 

In Sec. 6 we characterize compatible properties and 
classical systems in terms of the propensity function. In the 
last section we summarize the conclusions. 

2. THE STATE-PROPERTY STRUCTURE 

In this section we first fix the notations, and then recall 
the concept of a property of a physical system.6-9 

A state-property structure (S.P.S in short) is a triplet 
(.Ii' ..cf, 0') where.I is a set, whose elements represent all 
possible (pure) states of the system, and 1 is an orthogonality 
relation on.I: two states E, 11 are orthogonal, E 1 11, iff there is 
an experiment which gives always a certain outcome a 
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whenever the initial state is E, and a different outcome {3 =1= a 
whenever the initial state is TJ (see Ref. 7). The set it' of all 
properties of the system is a complete lattice (see below). It 
includes the "never actual property" O. Finally, u: ~ ---+ it' is 
the map which maps each state E onto the strongest (i.e., 
smallest) property actual in the state E [hence u(E) =1= 0]. The 
order relation on it' and the map () are related as follows: 

a <bq(VE~, utE) <a~u(E) <b). 

Consequently, for all b E it', 

(1 ) 

where V denotes the lower upper bound. 
The orthogonality relation on .I provides it' with the 

Aerts-orthogonality relation 7 : V c, b E it', 

c 1 b q(V E, rp~, u(E) < c and u(rp) < b ~ 1 rp). 

(We use the same notation for the orthogonality relations on 
.I and it'.) The interpretation of c 1 b will become clear after 
Theorem III. For the time being let us anticipate that when­
ever c is actual, a test of b cannot give the positive answer. 
The orthogonality relation on it' is characterized by 
(V a,b,cEit'), 

(1) a Ib~b la, 

(2) a <b and b 1 c=:>a 1 c, 

(3) a 1 a~ = 0 (or, equivalently, a 1 b~ A b = 0). 

In the remaining part of this section we remind the con-
cept of property. A property is something which the system 
can have in act or not and which can be tested by a yes-no 
experiment. If the system has the property in act, one says 
that the property is actual. In that case, whenever a test is 
carried out, the positive result is certain to be secured, i.e., 
the positive result is predetermined. Hence, an actual prop­
erty is nothing but what Einstein called an "element of rea­
lity. ,,10 A typical property of a particle is, for instance, the 
property of being localized in some space region A. The 
property is actual whenever the particle is in a state such that 
a counter outside A can never detect the particle. (In that 
example, the positive result is secured whenever the counter 
does not detect the particle.) 

Clearly, a property can be actual for some states of the 
system, but nonactual for other states. If I bi 1 iEI is a collec­
tion of properties, A b i denotes the property which is actual 
if and only if all the bi's are actual. Any test of a bi is also a 
test of A bi . If the b;'s are never simultaneously actual, then 
A bi = 0 (we identify properties which are always simulta­
neously actual). The order relation on the set it' of all the 
properties is defined as follows: 

a < b q a A b = a. 

It is straightforward to verify that it' is a complete lattice, 
with A bi the greatest lower bound.6-8 

Let us emphasize that whenever one tests a nonactual 
property, both results, in general, are possible. 

Several authors use the word proposition instead of 
property. But this sounds too much as a logical concept rath­
er than a physical one. We consider the concept of property 
as a primitive one, but different authors define a property as 
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a set of equivalent yes-no experiments,6-8 or as an "ideal" 
yes-no experiment (i.e., a kind of limit of actual yes-no ex­
periments).4,9 

3. PROPENSITIES 

In the late 1950's Popper proposed the propensity inter­
pretation of probabilities. He "gave up the frequency inter­
pretation" because of "the problems of interpretating quan­
tum mechanics and the probability of single events" (see Ref. 
2). This has raised many interesting discussions (see, e.g., 
Refs. 11-16). The intuitive idea of propensity can be present­
ed as follows. Assume that the system under consideration is 
a silver atom which just enters a Stem-Gerlach magnet, and 
assume that there are two counters after the magnet. It is a 
well-known empirical fact that the atom has a well-defined 
probability (depending on its initial state and on the Stem­
Gerlach magnet) to localize itself in the "upper" or "lower" 
counter. There are several possible objective interpretations 
of this probability.17 First, the epistemic one, which claims 
that the atom is always localized at some point, but that it is 
objectively impossible to know where, as for a classical 
Brownian particle. The de Broglie-Bohm model of quantum 
mechanics adopts this interpretation. 18,19 Next, the frequen­
cy interpretation claims that the probability refers to ensem­
bles of atoms. The statistical interpretation of quantum me­
chanics refers to this viewpoint.20

•
21 Finally, the propensity 

interpretation, as we understand it, claims that each single 
atom is spread in both beams simultaneously, and that the 
interaction with the counters is such that the atom has a 
physical propensity of localizing itself in one counter or the 
other. 

In order to measure this physical propensity one makes 
statistics over many silver atoms in the same initial state, i.e., 
one measures a frequency. But the distinction between the 
frequency and the propensity interpretation is sharp: in the 
former the probability is a characteristic of an ensemble of 
atoms, whereas in the latter the probability is a characteristic 
of the interaction of a single atom and the counters. Only the 
last interpretation takes seriously the fact that certain ex­
periments do not have a predetermined outcome. 

Now, the counters could be replaced by different ones, 
working on different physical principles. Experimentally, 
the propensity of an atom does not depend on the measuring 
apparatus. Hence the propensity is a modality of the proper­
ties and not of the way one tests them. 

The above idea is formalized below and in the next sec­
tion. Bohr insisted that one should never speak of a system 
without specifying the measurement apparatus. In our 
framework this means that the propensities of properties 
which cannot be simultaneously tested, do not necessarily 
satisfy the law of classical probability. 22 We propose thus the 
following definition. 

Definition: Let (.Ii' it',u) be a S.P.S. and w: 
.I X it' ---+[0,1]. W is a propensity function iff it satisfies the 
following conditions: 

(1) W(E, a) = 1 q u(E) < a VE~, aEit', 

(2) W(E, O"(TJ)) = 0 q E 1TJ V E, TJ E~, 
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(3) a<lr~'tJE~, w(E,a)<w(E,b), 

(4) bil bj 'tJi=1j = 1,2,3,···=WE~, 

W(E, V bi ) = IW(E, bi ), 
i 

(5) W(E, bi) = ° 'tJ iEl~ W(E, V bi) = 0. 
I 

The two first conditions follow from the structure of 
(.Ii' .5t', CT). Condition (3) is obvious. Condition (4) stems 
from the idea that mutually orthogonal properties can be 
tested simultaneously. Accordingly, the propensity function 
W(E,.) restricted to such a set (b i J must satisfy the usual con­
ditions ofa probability function. Condition (5) is imposed for 
symmetry reasons. 

Two examples ofS.P.S. with propensity functions are 
given by classical and quantum mechanics. In the latter ex­
ample.I is the set of rays of a complex separable Hilbert 
space dfP, with the usual orthogonality relation, .5t' is the 
lattice of closed subspaces of dfP, and CT is the inclusion. For 
this example Gleason's theorem asserts that there exists one 
and only one propensity function. 5 In classical physics .5t' is 
the power set of the set of states: .5t' = P(.I), the orthogona­
lity relation on .I is the trivial one: E 1 'Tj~ =1= 'Tj and 
aiE) = (E J. 7 Accordingly, it follows from Conditions (1) and 
(2) that there exists one and only one propensity function: 

W(E, a) = [~ ~;::]. 
We now come to a crucial remark. The fact that in the 

classical case only the propensities "one" and "zero" occur 
means nothing but the well-known fact that classical (i.e., 
Newtonian) mechanics is deterministic (or predeterministic, 
since every experiment has a predetermined outcome). An 
important consequence of this remark is that propensities 
are generalizations of classical determinism, rather than 
generalizations of classical probabilities. 

Let us make clear that we do not consider statistical 
mechanics here. Statistical mixture would be introduced 
with the help of measure theory applied to the state space.I. 

4. THE HYPOTHESES 

In this section we formulate our basic assumptions. 
Axioms: The S.P.S. (.Ii' .5t', CT) is such that 
(1) CT is one-to-one. 
(2) There exists one and only one propensity function w. 
(3) For all E~, b E .5t', there is a state 'Tj E.I such that 

ai'Tj) < band w(E,b) = W(E,ai'Tj))· 
The central remark for motivating Axioms (1) and (2) is 

that a statement about a property of an individual system can 
be falsified if and only if the property is actual. Hence we 
conclude that the state of a system at time to must be com­
pletely and uniqUely determined by the set of properties ac­
tual at that time to [Axiom (1 )]. This is the Jauch-Piron char­
acterization of states. 23 However, we go further by assuming 
that, in tum, each state determines completely and uniquely 
the propensities of all the properties [Axiom (2)]. In other 
words, Axioms (1) and (2) state that the set of Einstein's ele­
ments of reality 10 characterize the state of the system and the 
propensity of each property. 
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We now interpret Axiom (3). A test of property b is 
called ideal iff the state 'Tj after the test has been carried out 
and the positive result has been secured, depends only on the 
initial state E and on the property b. Moreover the test is of 
the first kind iff ai'Tj) < b.24 This implies that an ideal test of 
the first kind of the property b is also a test of ai'Tj). Axiom (3) 
is thus physically motivated. 

5. THE MAIN RESULTS 

The following theorem is the main result of the present 
article: 

Theorem I: If the S.P.S. (.Ii' .5t', CT) satisfies Axioms (1) 
and (2), then 

(a) The property lattice .5t' is atomic, canonically ortho­
complemented (i.e., a 1 b<;:::;>a < b ') and weakly modular. 

(b) CT is a bijection between .I and the atoms of .5t'. 
(c) If furthermore Axiom (3) holds, and.I contains at 

least four mutually orthogonal states, then .5t' is isomorphic 
to the direct union6 over a set r of Hilbert ian space25 lattices: 

Let us recall that a Hilbertian space is almost, but not 
precisely, a Hilbert space. 25

-
28 In fact, if the field over which 

the Hilbertian space is defined is a finite extention of the real 
numbers, then the Hilbertian spaces in Theorem I can be 
replaced by Hilbert spaces.29 

Except for the above remark, Theorem I states that 
there are essentially only two S.P.S. satisfying Axioms (1)­
(3), namely, the purely classical one (where all dfPa are of 
dimension one) and the purely quantum one (where r con­
tains only one point). The intermediary cases correspond to 
quantum mechanics with-possible continuous-superse­
lection variables. 

The proof of Theorem I is done in several steps. 
Theorem II: If the S.P.S. (.Ii' .5t', CT) satisfies Axioms (1) 

and (2), then .5t' is atomistic (i.e., atomic and 'tJ bE.5t', 
b = V (p IP is an atom and p < b J 4) and CT is a bijection 
between.I and the set of atoms of .5t'. 

Proof II: First we prove that 'tJ E E.I aiE) is an atom. The 
proof proceeds by contradiction. Assume that aiE) is not an 
atom for some state E E.I. Then, 3 b =1= ° such that b < aiEl. 
And 3 l/J E .I such that ail/J ) < b. Let fL:.I X .5t' -[0,1] be de­
fined by: 

( ) [
AW(l/J, a) + (1 - A )W(E, a) if 'Tj = E 

fL 'Tj, a = w('Tj, a) if 'Tj i= E, 

where A E]O,I[. It is easy to check thatfL is a propensity 
function. But fL(E,b) i= w(E,b) which contradicts Axiom 2. 
Hence aiE) is an atom, 'tJ E~, and .5t' is atomic. It follows 
from (1) that .5t' is in fact atomistic. 

Finally we prove that CT is surjective onto the atoms of 
.5t'. Letp E .5t', thenp is actual for some state E E.I: aiE) <po 
But if p is an atom, then aiE) = p. 

Henceforth we identify the states E,'Tj,l/J,.·· with the 
atoms and write E,'Tj,l/J,." E.5t'. 

• 
Theorem III: If the S.P.S. (.Ii' .5t', CT) satisfied Axioms 

(1) and (2), then for all a, b E .5t' 
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a 1 b9(V€~, w(€,a) = l=>w(€, b) = 0). 

Proof III: First assume that alb and w(€, a) = 1. Then 
€ < a, and € 1 TJ VTJ < b. Hence w(€, TJ) = 0 VTJ < b. And 
w(€, b) = 0 because !.t' is atomistic and w satisfies Condition 
(5) of a propensity function. 

Next we prove the converse. Let € < a, TJ < b. One has 

w(€, a) = l=>w(€, b) = 0 

=>w(€, TJ) = O=>€ 1 TJ· 

Corollary IV: Under the same assumption 

w(€, a) = O¢:>€ 1 a. 

• 
Theorem V: If the S.P.S. (Il' !.t', u) satisfies Axioms (1) 

and (2), then for all aE!.t', a =I 1, there is a state €~ such 
that € 1 a. 

Proof v: The proof proceeds by contradiction. Let 
ce!.t', e =I 1 be such that w(€, c) =I 0 V € E I. Then Vb> e 
one has w(€, b) =I 0 V € E I. Hence, Theorem III implies 

V b>e, b1={alalb J = {OJ. 

Let 

( ) _ {A + (1 - A )w(€, a) if a> e} 
/.l€,a -. , 

w(€, a) tfnot 

whereAE]O,I[. It is straightforward to verify that/.l is a pro­
pensity function. But/.l(€, c) =I w(€, c) V €<te, which contra­
dicts Axiom (2). 

• Theorem VI: If the S.P.S. (I1 ,!.t', u) satisfies Axioms 
(1) and (2), then !.t' is orthocomplemented and weakly modu­
lar, and for all a,b E !.t', a 1 b¢::?a < b ' (where b ' is the ortho­
complement of b ). 

Proof VI: First we prove that !.t' is orthocomplemented. 
Put 

a' = V {b I b 1 a J . 
By Theorem III and Condition (5) of the propensity function 
w, one gets a' 1 a. By Theorem V one has a V a' = 1. In­
deed, if not, there would be a state €~ such that € 1 a Va', 
hence 

€ 1 a=>E < a'=>E < a Va', 

which is a contradiction. Accordingly one has 

w(€, a') = 1- w(€, a) V €EI, a E!.t', 

and the map': a---+a' is an orthocomplementation. 
Next, let a < b'. One has 

w(€, a) = l=>w(€, b ') = l=>w(€, b) = O. 

Hence alb. The converse is immediate. 
Finally !.t' is weakly modular. Indeed, it is known that 

every orthocomplemented lattice which admits a propensity 
function is weakly modular.30 For completeness we repeat 
the proof: Let b < e, we want to prove that e /\ (e' Vb) < b. 
Let € < e /\ (e' Vb), one has 
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b<c=>b 1 e' 

=>w(€, b) = w(€, b V e') - w(€, e') = 1 - 0 = 1 

=>E<b. 

• 
It should be noticed that a property b is nonactual (Le., 
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potential) iff w(€,b) =I 1, but its orthocomplement is actual 
iff w(€,b ) = O. Hence, b nonactual does not imply b ' actual. 

Theorem VII: let (Il' !.t', u) be a S.P.S. satisfying Axi­
oms (1) and (2).!.t' satisfies the covering law ifand only if the 
third axiom holds. 

Proof VII: We first prove the "only if' part. For all 
€ E I, a E !.t' one has: 

w(€, a) = 1 - w(€, a') - w(€, a /\ €') 

= 1 - w(€, a' V (a /\ €')) 

= w(€, a /\ (€ Va')). 

a /\ (€Va') is the Sasaki projection,4 which corresponds to 
the usual projection postulate in the case of Hilbert space 
quantum mechanics. It is an atom, hence a state, whenever 
!.t' satisfies the covering law. 

We now prove the "if' part of the theorem. Let €~, 
aE!.t', w(€, a) =I O. And let TJ E I, TJ < a be such that 
w(€, a) = w(€, TJ). The existence of such a state TJ is the con­
tent of Axiom (3). We want to prove that TJ = a /\ (€Va'). 
Since !.t' is orthomodular, one has TJ = a /\ (TJ Va'), it is thus 
sufficient to prove that TJ Va' = € Va'. This is done in three 
steps: 

(a) € < TJ Va'. Indeed, TJ <a 

=>a = TJV(TJ' /\a) 

=>w(€, a) = w(€, TJ) + w(€, TJ' /\ a) 

=>w(€, TJ' /\ a) = 0 

=>€<TJVa'. 
(b) TJ V a' covers a': Let bE!.t' be such that 

a' <b<TJVa'. 
# 

Since !.t' is orthomodular, there is aCE !.t', e =I 0, a' 1 e 
such that e V a' = b. Accordingly e < a and e 
= a /\ (a' V c) <a /\ (TJ Va') = TJ· Hencee = TJandb = TJ Va'. 

(c) TJ Va' = EVa'. Indeed, one has 

a' <EVa' <TJVa'. 
# • 

Theorem VIII: If the S.P.S. (Il' !.t', u) satisfies Axioms 
(1) and (2) and if!.t' is irreducible (i.e., !.t' is not the direct 
union of two lattices6 and!.t' =I {O, 1 J, then !.t' contains at 
least three orthogonal atoms. 

Proof VIII: Let €E!.t' be an atom. !.t' =I {O, 1 J =>E' =I O. 
If €' is not an atom, then €' contains at least two orthogonal 
atoms. We thus only have to prove that €' is not an atom. Let 

/.l(TJ, a) = w(TJ, a) if TJ =I € 

/.l(€, a) = [~ 
AW(€, a) + (1 - A )w(¢, a) 

if €<a 
if €la , 

if not 

where AE]O, 1 [ and ¢ =I € is a fixed state. If €' would be an 
atom, one would have 

€<a¢::?a' <€'¢::?a = € or a = 1, 

€ 1 a¢::?a < €' ¢::?a = €' or a = 0, 

and it would be straightforward to verify that /.l is a propen­
sity function, hence /.l = w. In particular /.l(€, ¢ ) = w(€, ¢ ). 
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But this is possible only if E 1 ¢, which implies that 

¢ = E' and !£' = [0, E, E', 1 J . 

But then!£' would be reducible. 

• 
The proof of Theorem I is now a direct consequence of 

the above theorems and of Pi ron's representation theorem.6 

To conclude this section, let us remark that Axiom (3) is 
used only to prove the covering law. We conjecture that Axi­
om (3) is not independent of Axioms (1) and (2). Other open 
problems are the following. Does a nonseparable Hilbert 
space admit more than one countably additive propensity 
function?31,32 Do the Axioms (1)-(3) imply that 
W(E, 7]) = W(7], E) for all states E, 7]? And 
W(E, a A b) = W(E, a)w(a A (E V a'),b ) for all compatible (see 
next section) properties a and b ? Do Axioms (1) and (2) imply 
that any irreducible!£' is necessarily infinite?33 

The problem of the most general dynamics compatible 
with our kinematics is considered in Refs. 34 and 35. 

6. COMPATIBLE PROPERTIES AND CLASSICAL 
SYSTEMS 

In this section we characterize compatible properties 
and classical systems in terms of the propensity function w. 
In this section (I1' !£', 0') denotes a S.P.S. satisfying Axioms 
(1) and (2). First, we recall some definitions.4 ,6 

Definitions: (1) Let a,bE!£'. a and b are compatible prop­
ertiesiffa = (a A b) V (a A b '). We use the following notation 
a++b. (2) A property c is classical iff c++a for all aE!£'. (3) !£' 
is classical iff all properties are classical. 

It can be shown that this compatibility relation is sym­
metric (see, e.g., Ref. 6). In the case of Hilbert space lattices 
compatibility is equivalent with the usual concept of com­
muting operators. Different lattice characterizations of 
compatible properties and classical lattices are given, for in­
stance, in Ref. 6. In particular, 

(i) a++b¢:}(aV b )Ab / <a Ab /, (2) 

(ii) !£' is classical ¢:} !£' is the power set of the set of 
states: !£' = P (I ). 

For completeness we recall without proof the following 
theorem6: 

Theorem: (1) The set Z of all classical properties of!£' is 
a classical atomic orthomodular sublattice of !£'. 

(2)!£' is the direct union of irreducible atomic orthomo­
dular lattices!£' a : 

!£' = V!£'a' 
aEr 

where r is the set of atoms of Z. 

(3) b = V (bAa) for all bE!£', 
aEr 

(4) E = E A a for a unique aEF. 

Corollary IX: For all EE...!', bE!£' one has 
W(E, b) = W(E, bAa), whereaEFis the unique classical atom 
such that E A a = E. The proof is immediate, since 
a 1{3 Va=/{3EF.7 

The following theorems are the main results of this sec­
tion. 
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Theorem X: For all a,bE!£' one has a++b 
¢:}VEE...!', W(E, a A b) + W(E, a Vb) = W(E, a) + W(E, b). 

Theorem XI: c is a classical property 
¢:} VEE...!', W(E, c) E [0, I J . 

Corollary XII: :f is classical ¢:} the propensity function 
is dispersion free. 4 

Proof x: Assume that a++b. One has 

W(E, a Vb) + W(E, a A b ) 

= w(E,(a A b /) Vb) + W(E, a A b) 

= W(E, a A b /) + W(E, b ) + W(E, a A b ) 

= W(E, a) + W(E, b). 

Conversely, assume that the right-hand side of 
Theorem X holds. We want to prove that (a Vb) A b / 
< a A b / [See Eq. (2)]. Let E < (a Vb) A b /, then W(E, b) = ° 
and W(E, a) = W(E, a Vb) + W(E, a A b) = 1. Accordingly 
E 1 band E < a, hence E < a A b /. • 

Proof XI: Assume that c is a classical property, and let 
EE...!'. One has C++E. But E is an atom, hence E < c or dc. 

Conversely, assume that W(E, c) E [0, 1 J VEE...!', and let 
bE!£'. Wewanttoprovethat(c Vb) A b / < cAb / [SeeEq. (2)]. 
Let E < (c Vb) A b /. If dc, then Elc V b which contradicts 
E < c V b. Consequently E < c, and E < cAb /. 

• 
Corollary XII follows immediately from Theorem XI. Note 
that the converse part of Corollary XII is the Jauch-Piron 
impossibility theorem of noncontextual hidden variables.36,37 

Corollary XIII: !£' is classical ¢:} for all EE...!', aE!£', 
E<a, one has W(E, a Ab) = W(E, b) VbE!£'. 

The proof is immediate. Notice the similarity between 
the right-hand side of Corollary XIII and the classical condi­
tional probabilities. Indeed the former states that the pro­
pensity of any property b in a state such that the property a is 
actual, is equal to the propensity of a A b. 

7. CONCLUSION 

The hypothesis that, at any time, the state of the system 
and the propensities of all properties are completely and 
uniquely determined by the set of properties actual at that 
time implies that the states are in one-to-one correspondence 
with the atoms of the property lattice!£'. Moreover the lat­
ter is canonically orthocomplemented and weakly modular. 
Let us emphasize that the hypothesis assumes that the sys­
tem is entirely determined by the set of Einstein's elements of 
reality,1O or in other words, that the nondeterministic aspect 
of the system is entirely determined by its deterministic as­
pect. 

Assuming furthermore that for each state, any property 
can be ideally tested, implies that!£' satisfies the covering 
law, whence :f is isomorphic to the direct union of Hilber­
tian space lattices. In this way we recover the usual classical 
and quantum mechanics (possible with superselection varia­
bles) in a common framework. Let us note that the "wave 
packet reduction" is demonstrated to occur for ideal first­
kind tests. It turns out that a system is classical iff the pro­
pensity function is dispersion free, i.e., iff only the propensity 
zero and one occur. Accordingly, the quantum propensities 
enlarge the concept of classical determinism. 
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Let us emphasize that our approach is fundamentally 
concerned with individual systems, which we describe simi­
larly in quantum as in classical physics. In this article we did 
not consider statistical mechanics. Actually, the description 
of statistical mixtures of states, or of incomplete knowledge 
of the state, requires the use of classical probability theory 
(Le., measure theory) applied to the state space ~. 
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Note added in proof Since we submitted this article we 
noticed that the first axiom is unnecessary. Indeed, a proof 
similar to the ones of Theorems II and V shows that the 
second axiom implies that for all states E, 'T] E ~, if 
aiE) = ai'T]), then W(E, a) = w('T], a) 'tfaE.!L'. Accordingly, all 
the results concerning the property lattice .!L' hold also with­
out Axiom (1). We also noticed that nonseparable Hilbert 
spaces admit exactly one propensity function [combine con­
dition (5) of a propensity function with Ref. 31]. 
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Bound on the Nth order term of the partition function of the massive 
Schwinger model 

M. P. Fry 
School of Mathematics. Trinity College. Dublin 2. Ireland 

(Received 22 June 1983; accepted for publication 16 December 1983) 

An upper bound on the vacuum-to-vacuum amplitude of the Schwinger model with massive 
fermions is obtained. 

PACS numbers: 03.70. + k, 11.15.Bt 

1. INTRODUCTION 
A question of interest since the early 1950's has been the 

following: To what extent does renormalized perturbation 
theory exhaust the information content of a relativistic 
quantum field theory? Stated differently, how much infor­
mation is lost in the Feynman series? For the tjJ 4 theory in 
twol and three2 dimensions (tjJ ~,3) and the Yukawa interac­
tion in two dimensions (Y2)3,4 the answer is that none is lost 
in the series for their Euclidean Green's functions (or 
Schwinger functions), and, for tjJ ~, none is lost as well in the 
series for its physical mass and two-body S-matrix.5 These 
theories have sufficient analyticity in the coupling constant 
and sufficiently slow growth in large orders to allow the 
unique recovery of these quantities by Borel summation. 

There are examples where this is not the case. Massless 
super-renormalizable field theories are known to contain 
nonanalytic terms in the coupling constant that forbid ex­
pansions in its powers. 6 In QCD in four dimensions with 
massless quarks, 't Hooft 7 has argued that the correlation 
function G (p2) of the color-singlet operator qq cannot be 
uniquely summed if it has the usually assumed analyticity 
properties in thep2-plane with multiparticle singularities ex­
tending to infinity along the cut. Field theories that have a 
nontrivial ultraviolet fixed point may also impose restric­
tions on their unique summability.8 

Presumably field theories exist whose associated Feyn­
man series are not even asymptotic. It is straightforward to 
construct physically reasonable potentials in quantum me­
chanics whose ground-state energies have associated Ray­
leigh-Schrodinger series that are not asymptotic, even 
though each term is well defined.9 These potentials have the 
general form 

N 

V(x) = I gnvn(x), 
n=O 

where the Vn are polynomials in x, and g is the coupling 
constant. Since this isjust how the nonderivative terms in the 
Lagrangian of a large class of boson field theories would look 
after Wick ordering and renormalization, it is not unthink­
able that some of them have nonasymptotic Feynman series. 
In this connection we note the preliminary result of Froh­
lich 10 that there is no family of tjJ 4 theories in four dimensions 
to which renormalized perturbation theory is asymptotic. 

It can be generally said that the faster the coefficients of 
a Feynman series associated with a field theory grow with 
order, the more analyticity is required about the origin of the 
complex coupling constant plane to uniquely reconstruct the 
quantity of interest from the series. Typically, if the expan­
sion coefficients grow like (n!)'!, analyticity in a region about 

the origin with opening angle A 1T /2 is required. 3 Therefore, 
the large-order behavior of a field theory, by itself, can only 
be an indication of the odds favoring its unique summability. 
There are simple examples illustrating the folly of inferring 
anything more than this. II 

Table I summarizes current knowledge of the large-or­
der growth of several field theories. To facilitate compari­
son, the Feynman series for the Euclidean vacuum-to-vacu­
urn amplitude Z (hereafter called the partition function) has 
been singled out in twol,12-17 and three dimensions2,13-15; in 
four dimensions l8 the Schwinger functions in order n, de­
noted by Sn' are the obvious quantities to compare. The 
quantity K is a sufficiently large n-independent constant. 
The result for two-dimensional quantum electrodynamics 
with massive electrons (hereafter called QED2) will be de­
rived here. A related model, the massive Thirring­
Schwinger model,19 is also sometimes referred to as QED2. 
The charge-O sector of this model and the massive sine-Gor­
don theory are equivalent. The authors of Ref. 19 showed 
that the Feynman series in the coupling constant for the 
Schwinger functions of the latter theory converge for suffi­
ciently large electric charge. 

The decreasing rate of growth of the expansion coeffi­
cients as the physically relevant field theories are ap­
proached in two and three dimensions is striking. For tjJ ~, all 
graphs in a fixed order have the same relative sign, so that the 
growth of the Zn 's is due to the growth in the number of 
graphs. With the addition of fermions, graphs with an even 
or odd number of fermion loops differ by an overall sign that 
is presumably responsible for the sharply reduced upper 
bound on the Zn 's for the Y2 theory. A (non-) Abelian local 
gauge symmetry will introduce correlations among graphs 
in a fixed order, and this may contribute to a further slow 
down in the growth of the Zn's. This is illustrated by the 
Schwinger model (QED2 with massless electrons) whose par­
tition function actually has a convergent power-series ex­
pansion. 17 It will be indicated below why it is expected that 
the bound on the Zn's in QED2 can be improved to IZn I 
<X n, as for the Schwinger model. 

A further indication of the trend toward better behaved 
power-series expansions with increasing symmetry is given 
by conformal covariant QED. This is QED4 in a special 
gauge with massless electrons and no electron loop sub­
graphs. The conformal electron propagator turns out to be 
analytic about the origin of the coupling constant plane.20 

In four dimensions the subtractions due to renormaliza­
tion may further ameliorate the growth in large orders. The 
remarkable bounds of de Calan and Rivasseau 18 on the 
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TABLE I. Upper bounds on the Euclidean vacuum·to·vacuum amplitude Z. and the Schwinger functions S. in order n. The bounds on Z. in the last column 
are for QED with massless and massive electrons. The bound for Y2 is also claimed in footnote 32 of Ref. 3. The S. 's for ¢> ~.3 and Y2.3 have the same dominant 
bounds as the Z. 's. 

Dimension 

2 

3 
4 

LIZ. I<K' n! (Refs. 1,12-14) 

IZ. I <K' n! (Refs. 2,13,14) 
IS. I <K' n! (Ref. 18) 

Schwinger functions of r/J: in order n are encouraging. 
As Table I indicates, present knowledge of the large­

order behavior of (non-) Abelian gauge field theories that 
include fermions is deficient. For the simplest case, QED, 
progress in any number of dimensions has been barred by a 
lack of knowledge of the order of growth of the renormalized 
fermion determinant, detren (1 - eSA ), obtained by integrat­
ing over the fermion degrees offreedom. HereA p is the vec­
tor potential, S is the free electron propagator, and e is the 
coupling constant. In fact, detren is just exp(single fermion 
loops--counter terms). Ideally one would like to prove that 
detren is an entire function of e and, having established this, 
determine its order and type, assuming thatAp is a Gaussian 
random field. The desirability of this will become evident in 
Sec. 3. For the Schwinger model, the solution is well known: 
detren is Gaussian in Ap .17 This simple result follows from 
the fact that (01 ipi (xl) ... ipn (xn )10) = 0 for n;;;'4 and zero 
electron mass. 17.21 For nonzero electron mass this is no long­
er true, and the growth properties of detren have to be rees­
tablished. 

It022 has examined this case and has found that detren is 
Gaussian dominated for real Ap EL2nLq (q > 2) in QED2• 

Since his upper bound is not almost everywhere finite with 
respect to the functional measure assocated withAp ' it can­
not be used here to study the large-order behavior ofQED2• 

A new bound is obtained in Sec. 3. 
For QED4 some results on the order of growth of detren 

that neglect charge renormalization effects are known for 
special field configurations and massless electrons. 23

,24 It 
should be stated that charge renormalization is absent by 
definition in the model studied in Ref. 23. For QCD2 and 
QCD4 it is known that massive fermions are essential for a 
satisfactory definition of detren • 25 Nothing is yet known 
about their orders of growth. 

It is apparent from the foregoing that knowledge of the 
large-order behavior of QED2 would be desirable before at­
tacking other (non-) Abelian gauge field theories. Attention 
is focused on its gauge-invariant sectors as these are the phy­
sically relevant ones, and because the infrared divergences 
present in its charged sectors are absent. The large-order 
behavior of the partition function is singled out because it is 
the simplest gauge-invariant quantity in QED2• On the basis 
of previous studies cited in Table I, e.g., Ref. 3, the 
Schwinger functions in the charge-O sector are expected to 
have the same dominant large-order behavior. 

The final result, (4.45), is 

IZ2n I..;; [C In(mnlp)]2n, (Ll) 

where m is the bare electron mass, p( < m) is an infrared 
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Yukawa 

IZ. I «K log n)" (Refs. 15, 16) 

IZ. I<K'(n)!1/3 (Ref. 15) 

IS.I<? 

QCD,SU(2)L XU(I), QED 

IZ. I <K', m = 0 (Ref.l7) 
(Klogn)", m>O 

IZ.I<? 
IS.I<? 

cutoff, and C is a sufficiently large constant. The presence of 
p in (1.1) is a result of the upper bound on detren in terms of 
trace ideal norms obtained in Sec. 3. Such norms ruin gauge 
invariance by putting fermion propagators and vertices in 
the wrong order in closed loops. The possibility remains that 
a better bound can be obtained that will permit the limit 
p = 0 to be taken. Referring to (1.1), it may then happen that 
when In(mlp) drops out, so will the In n term, yielding 
I Z2n I..;; C 2n as for the Schwinger model. 

2. DEFINITION OF THE PARTITION FUNCTION 

Our starting point is the following expression for the 
partition function obtained by formally integrating out the 
fermions in the vacuum-to-vacuum amplitude: 

(2.1) 

where detren denotes a suitably renormalized Fredholm de­
terminant that will be defined below. The integral operator 
Kis 

K = (P 2 + m2)1/4S(x _ y)AA (y)g(y)(P2 + m2)-1/4, 

(2.2) 

where iPp = Jp , 

S = J d 2p eipx m - p 
(21T)2 p2 + m2 (2.3) 

is the two-point Schwinger function for the electron with 
bare mass m > 0, gEC [; is a space-time cutoff, and 
AA = A *hA. For ApEY', the space of tempered distribu­
tions, thenAA EC 00 if the ultraviolet cutoff function hA EC 00. 

Our choice for h A is 

J d2p . A 

h (x) = -e,pxh (p) 
A (21T)2 A , (2.4) 

with hA (p)EC [;;hA (p) = 1 for p2..;;A 2; hA (p) = 0 for 
p2;;;'(A + m)2 and A> O. The choice of A + m as the cutoff 
point is arbitrary. 

The Gaussian measure dp for Ap is chosen to have 
mean zero and covariance 

J dp Ap,A (X)Av,A (y) = D~v(x - y), 

whose Fourier transform is 

(2.5) 

D A (k) = (tJ _ kp kv ) h ~ (k ) (2.6) 
pv pv k 2 + p2 k 2 + p2 ' 

where p2 > 0 is an infrared cutoff. 
The electric charge is denoted by "tEe to avoid confu­

sion with the exponential function. 
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Our conventions for the Y matrices are 

(YJl,Yv I = - 'lOJlV Vt = 0,1), 

YJl * = - YJl ' 

and, naturally j = PoYo + PIYI' 
A word on the choice of Kin (2.2): We work on the 

Hilbert space L 2(R2,d 2X;(2) of two-component square-inte­
grable functions on R2. The K in (2.2) differs from SAg on 

L 2(R2,~p2 + m2 d 2p,(2). But the two are equivalent given 
the natural unitary equivalence of L 2(R2, d 2X) and 

L 2(R2,~p2 + m2 d 2p ). Our choice of Hilbert space and K is 
motivated with the view of taking the limit A = 00 at the end 
of our calculation. 

We now tum to the definition of the renormalized de­
terminant, detr•n. The operator K is a compact operator in 
the trace ideal ~ 2 + E' € > O. This is an easy consequence of a 
proposition stated by Seiler and Simon.26 The trace ideal 
~ n (l..;n < 00) is defined for compact operators A with 
IIA 1I:=Tr(A *A t /2 < 00. Then the determinant 

det3( 1 - AK), defined by 

det3(1 -AK) = det[(1_AK)e"K+(1I2)A 2K2
] , 

is an entire function of A of at most order 3: 

(2.7) 

det3(1 - AK) = IT [(1 - AA; )iA, + 112(U,)2] , (2.8) 
;=1 

where AI' ... are the eigenvalues of KECff 3.27 

The graph in Fig. 1 a is not present in the loop expansion 
of (2.7). It is only conditionally convergent and mayor may 
not contain a current nonconserving piece, depending on 
how one regulates. Its offspring obtained by integrating over 
A ,Fig. 1 b, has an ultraviolet logarithmic divergence that Jl . 
must be subtracted out. Therefore, define the Wick-ordered 
quantity 

Tr:K2:= J d 2x d 2y g(x)PJlv(x - y)g(y) 

X [AJl.A (X)Av.A (y) - D :v(x - y)], (2.9) 

wherepJlv is the transverse piece of 
tr(S(x - Y)YJlS(y - x)Yv)' whose Fourier transform is 

~ _ ~({) _ qJlqv)[l _ 4m
2 

PJlv(q) - rr JlV q2 q(q2 + 4m2)1/2 

X arctanh( 2 q 2 1/2)] . (2.10) 
(q +m) 

Summation is implied over repeated polarization indices. 
We can now define 

detren (1 - AK) = e - (A 2/ 2)Tr:K ':det3( 1 - AK ), (2.11) 

which is depicted graphically in Fig. 2. All loops with an odd 
number of external photon lines vanish (C-invariance) except 
for the tadpole graph in Fig. 1c which we dropped alto­
gether. If detr•n is expanded in a power series in A, inserted in 

(a) (b) (e) 

FIG. 1. 
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FIG. 2. 

(2.1), integrated, and the limit A = 00 taken term by term in 
the series 

00 

Z(A) = L Z2n(A)A 2n, (2.12) 
n=O 

the renormalized perturbation expansion for the partition 
function is obtained. Moreover, if {) 2(0) is interpreted as a 
large but finite space-time volume-which will not be done 
here-and the volume cutoff g is replaced by unity, then the 
extra powers of momentum in the numerators of graphs ob­
tained by gauge invariance allow the removal of the infrared 
cutoffp. 

To conclude this section note that 

IZ 2n(A)I..; (2~)! J dPI d~2:n detrenlA=o 

3. DETERMINANT INEQUALITIES 

We proceed to prove the following result: 
Theorem 3.1: 

-- ---det 1 I d
2n 

I (2n)! dA 2n ren A = 0 

..; ~ ( ~r(IIL II~n + anllHL 117 

(2.13) 

x,8nnnE/(2+E)IIHII~~1-E + ITr~2:ln), (3.1) 

forn = 1,2, ... ,0<€..;1 anda,,8sufficientlylarge. Theoper­
ator K has been split into low and high momentum parts 

K=L+H, 

where 

(3.2) 

L = (P 2 + m2) 1/4S <AAg(P2 + m2)-1/4, (3.3) 

S «x) = ( d
2
p e;Px m - j (3.4) 

JIPI <;m (2rr)2 p2 + m2 ' 

and ;>0. As in the case of K, a proposition of Seiler and 
Simon26 can be used toshowthatHECff 2 +E' O<€ < 2. Using 
the same procedure as Renouard3 one may easily show that 
LECff I for t> O. Therefore,28 HLE~ I.We will prove 
Theorem 3.1 by first establishing some relevant lemmas. 

Lemma 3.2: Let 

HECff 2 +., €> 0, LECff I' 

Then 

det3( 1 + L + H) = det3( 1 + H )det( 1 + L ) 
Xdet(l - (1 + L )-1(1 + H)-IHL) 

X exp( - Tr L + ~ Tr L 2 + Tr (HL )). 
(3.5) 

Proof It is sufficient to give the prooffor L.HE~ I since 
det3( 1 + A ) is a continuous function of A on ~ p' 1 ..;p"; 3.29 

Then 

det3(1 + L + H) = det3(1 + H)det(l + L )det(l + D) 
X exp( - Tr L + ! Tr L 2 + Tr(HL )), 
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where 

D= -(1 +L)-I(1 +H)-IHL, 

since 

1 + L + H = (1 + H)( 1 + L )( 1 + D ). 

Lemma 3.3: Tr L = O. 
Proof Since LECCi I' then30 

(3.6) 

Tr L = f d 2X d 2y d 2Z tr [ D _ 114 (x - y)S < (y - z) 

Lemma 3.4: For HECC 2 + €I € > 0, LECC I' 

Idet3(1 + H)det(1 + L )det(1 - (1 + L )-1(1 + H)-IHL)I 

(3.7) 

(3.8) 

< f Ildet3(1 + H)A n(1 + H)-llllldet(1 + L)A n(1 + L )-IIIIIHL 11~/n!. (3.9) 
n=O 

Proof By the expansion det(1 + D) =~: =0 Tr(A n(D)), withD given by (3.6), and the fact that A n(AB) = A n(A)A n(B), 
we get 

Idet3(1 +H)det(1 +L)det(1 +D)I 

= I n~o( - trdet3(1 + H)det(1 + L )Tr(A n(1 + L )-IA n(1 + H)-IA n(HL)) I 
00 

< L Ildet3(1 + H)A n(1 + H)-llllldet(1 + L)A n(1 + L )-IIIIIA n(HL )111' 
n=O 

whichgives(3.9)using271IA n(HL)III<IIHL 11~/n!. 
Lemma 3.5: For LECC I and Tr L = 0, 

Ildet(1 +L)A n(1 +L)-1112<eneIlLII~. (3.10) 

Proof For LECC I we have by a result of Simon,27 

IIdet(1 + L)A n(1 + L )-111 2 

<en exp(2 Re(Tr L ) + IlL lin 
from which (3.10) follows with Tr L = O. 

Lemma 3.6: For HECCi 2+E' 0<€<1, 

Ildet3(1 +H)A n(1 +H)-1112<Cnexp(FIIHII~!:), 
(3.11) 

for C and F sufficiently large. 
Proof It is sufficient to give the proof for HECC I' Then 

IIdet3(1 + H)A n(1 + H)-111 2 

= IIdet(1 + 0H)A n(1 + OH)-III 

Xexp[ - 2 Re(Tr H) + Re(Tr H2)], 

where OH = H + H* + H*H. Let - l<a l <a2< ... be the 
eigenvalues of OH and Ai the eigenvalues of H with the 
/3i = 2 Re Ai + IAi 12 ordered so that - 1 </31 </32< .... Us­
ing det( 1 + H) = IIt= I (1 + Ai) it follows that 

IIdet(1 + 0H)A n(1 + OH)-III 
00 

II (1 +ai ) 
i=n+ 1 

n 1 00 

= II -- II(1 +/3J 
i=1 1 +ai i=1 

(3.12) 

Since the first equality is finite we conclude that the multi­
plicities of the eigenvalues a i with a i = - 1 and of the 
eigenvalues Ai with/3i = - 1 are equal. Let k>O denote this 
multiplicity. The left-hand side of (3.12) is nonvanishing 
when n>k and is equal to 
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n 1 00 

II -- II (1 +/3i)' 
i=k+1 I +ai i=k+1 

where - I <ak+ I <ak+2 <"', - I </3k+ I </3k+2 < .... 
Choose a constant C (> 1) sufficiently large so that 

I +a i >(1 +/3i)/C, i>k+ 1. 

Then 
00 

Ildet(1 +OH)A n(1 +OH)-III<cn-k II (1 +/3i)' 

and 

00 

<cn II [(1 + 2 ReAi + IAiI 2) 
i=n+ 1 

xexp( - 2 ReAi + ReA m 
xexp [ itl (ReA ~ - 2ReA ill 

i=n+ 1 

We note that there exists a constant FI such that 

(1 + 2 Re A + 1,1, 12)exp( - 2 Re A + Re A 2) 

<exp(FIIA 12+1, 

(3.13) 

where ° <€<1. This is obvious for 1,1, 1>8 for any 8, while for 
1,1, I small the left-hand side is 1 + 0 (1,1, 13 ). Then 

00 

II [(1 + 2 ReAi + IAiI2)exp( - 2 ReAi + ReA ~)] 
i=n+ 1 

<exp(FI i=~+1 IAiI
2H

). (3.14) 

Finally, using the inequality 

expIRe ,1,2 - 2 Re ,1,)<2 exp(F2lA 12+ E), (3.15) 

for €>O and F2 sufficiently large we get from (3.13H3.15) 
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IIdet3 (1 + HlA "(1 + H)-11I2 

<2"C" exp(FI i=t+ I IAi 12H + F2 itl IAil2+E) 

<rc" exp( itl IAiI
2H

) 

<2"C" exp(F IIH II~ ! ~), 

where 0 < E< 1, F = max(FI,F2). For the last inequality we 
used27l:~ IIA;(H)12 H<IIH II~ !~, which proves the lemma. 

Combining (3.5) and (3.8)-(3.11) we obtain 

I det3(1 + L + H)I<lexp(! Tr L 2 + Tr(HL))1 

X exp((F 12)IIH II~! ~ + !IIL II~) 
00 

X L IIHL 117 (CerIZln! 
n=O 

<exp(llL II; + (1 + {Cel!IHL III + (F 12)IIH II;!~)· 
(3.16) 

By a Cauchy estimate and the definition (2.11) we get 
from(3.16) 

(2~)! I ~z:" detren I A = 0 

<supldet3(1 - AK)e - A 2/2 Tr:
K2VIA 1

2
" 

4> 

<eXp(aIA 12 + b IA 12+' - 2n InlA I), (3.17) 

where 

A= IA lei
4>, 

a = IlL II~ + (1 + {Ce)IIHL III + !ITr:K2:1 (3.18) 

b = (F 12l!IH II~!~. (3.19) 

Let M denote the right-hand side of (3.17). Then for n > 0, 

inf M«aeln + e((2 + E)b 12n)2IIZ + E)r. (3.20) 

Proof Since d Z Mid IA 12> 0, M has only one minimum 
at IA I = ro, where 2a~ + (2 + E)br02 + E - 2n = O. Thus 
M(ro)«e/~)". Since ro'«2nlb (2 + Ej)"/IZ + E) then 

1 a (2 + E)brOE 
- = - + -'---'---'''--
~ n 2n 

a ((2 + E)b)2I(Z + E) <- + , 
n 2n 

for which (3.20) follows. 
Finally, since a in (3.18) and (3.20) is composed of three 

terms, we apply the inequality 

(a l + a2 + a3 + a4 r<4" - l(a7 + a~ + a~ + a~), (3.21) 

for ai' ... ,a4 ;>0, n = 1,2, ... to (3.20). From (3.17)-(3.21) we 
get 

(2~)! 1 ~z:n detren 1,,=0 

< ! (~r [IlL II~n + (1 + {CerIIHL 117 

+ ((2 + E)F 14fn/1z + E)nEn/IZ + E)IIH 1I~"t- E 

+ ITr:Kz:ln/2n], 

from which Theorem 3.1 follows. 
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4. BOUNDS 

We now proceed to place bounds on the integrals aris­
ing from the application of Theorem 3.1 to (2.13). Our main 
tool in this section is the hypercontractive inequality.31 It 
implies that if Q is a polynomial in A /-L,A of degree nand p;> 1 
then 

4.1 fJlIILII~n 

By the hypercontractive inequality 

J dJlllL II~n«n - 1r( J dJlIIL IIi )"IZ, 

for n;>2. Since LECCf 2 we get from (3.3) 

ilL II~ = 2 J d Zx d 2y(A/-L,Ag)(X)D1/2 

X(x - y)D i~z(x - y)(A/-L,Ag)(y), 

where DI/2 is given by (3.7) and 

1 dZp eipx 

Dz«x) = - , 
Ipl<m~ (211l (p2 + m2)Z 

From (4.3) 

J dJlllL Iii = 4 J d zxl,,·d ZYz g(xl) .. ·g( Y2)Dl/z(x l - yIl 

XD ;;'z (XI - yIlDl/z(xz - Y2) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

XD I')Z(X2 - Y2)[D~/-L(XI - YI)D!,(X2 - Y2) 

+ D~v(XI - xZ)D~v(YI - Yz) + (XZ++Y2))' 
(4.5) 

The topologies of the Feynman diagrams corresponding to 
the right-hand side of(4.5) are depicted in Fig. 3. Since these 
are finite by power counting in the limit A = 00 we get from 
(4.2) and (4.5) 

1~ J dJlllL 11~"«n - l)"(Ii + I2r12
, (4.6) 

where 

II = ~J IT d
2
k;lg(k I WDI/2(k l + k2 + k3) 

(21/') ;= I 
,A. ,A. 

XD 1')2 (k2)D/-L/-L(k3), (4.7) 

12 = ~ J IT d 2k;g(kl)g(k2)g(k3)g( - kl - k2 - k3) 
(21/') ;= I 

XD ;;'2 (k4)D ;;'z(ks)DI/2(kl + k4 + k6) 

(4.8) 

and 

D~ =- D~ =+ 

FIG. 3. 
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A k tJl'V - kl'kv/(k Z + J-LZ) (4.9) 
Dl'v( ) = Z Z 

k + J-L 
Referring to the Appendix, (A2), (A3), and (A5) give 

11< ~JdZk Ig(kW~k2 + m2{2ff2[ln (m;)]Z 
m(21T)6 J-L 

+ 1T4InC:; + 1) + :4} , (4.10) 

while (A6), (A 7), and (A9) give 

Ilzl < mZJ-L~~21T)9 J ;DI d zk; Ig(kl)k(kz)k(k3) 

xg(kl + kz + k3)1 [(k l + k3)Z + J-LZ](k i + mZ)I/z 

X(k~+mZ)I/Z[(ln(4~~r +1)+ ~r+ !], 
(4.11) 

for m;>p. From (4.6), (4.10), and (4.11) it is clear that for all 
m;>J-L an n- and ;-independent constant CI can be found 
such that 

1~ J dJ-LIIL II~"< [nl/ZCI In(m; /J-LW", (4.12) 

for n>2. 

4.2 sd,uIIHLII~ 

By the hypercontractive inequality 

J dJ-LIIHL 117 «n - l)"(J d,uIlHL Iii )"12, 

where n>2 and 

HL = [(PZ + m2)1/4S > AAg(P2 + mZ) -1/4-/i] 

X [(p2 + m2)1/4+/iS <AAg(PZ + m2)-1/4] 

(4.13) 

==A>B<, (4.14) 

with tJ > 0 and 

(4.15) 

From the definitions of S < and S > it is easy to show that 
A > ,B < E1fJ z. Hence 

J dJ-LIIHL 117 «n - 1)"( J dJ-LIIA > II~ liB < II~ )"12, (4.16) 

where 

IIA > II~ = 2 J d 2X d 2y(AI'.Ag)(X}D1I2 + 2/i(X - y) 

XD f12(x - y)(AI'.Ag)(y), (4.17) 

liB < II~ = 2 J d 2X d 2y(AI'.A )(X)DI/2(X - y) 

XDi)2_2/i(X-y)(AI'.Ag)(y), (4.18) 

and 

(4.19) 
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= 4J d
2
x l· .. d

z
Yzg(xtl ... g(YZ}D1I2 + 2/i(X I - YI) 

XD (;2 (XI - YI}D1/2(X2 - Y2)D i)2 _ 2/i(X2 - Y2) 

X [D~I'(XI - YtlD~(X2 - Y2) 

+D~v(XI-X2}D~v(YI-Y2)+(X2++Y2)]' (4.20) 

The topologies of the Feynman diagrams corresponding to 
the right-hand side of (4.20) are the same as in Fig. 3 with 
appropriate Dz-functions. Again, since these are finite by 
power counting in the limit A = 00 we get from (4.16) and 
(4.20) 

1~ J dJ-LIIHL 117 «n - 1)"(1314 + 15)"12, (4.21) 

where 

(4.23) 

and 

15 = ~ J IT d 2k;g(kl)k(k2)k(k3) 
(21T) ;~ I 

Xg( - kl - kz - k3)D f12 (k4)D i)2 _ 2/i (k5) 

XDI12 + 2/i(k l + k4 + k6) 
A A A 

xD1/2(k5 + k6 - k2)Dl'v (k6}Dl'v (k l + k3 + k6)' 
(4.24) 

Referring to the Appendix, (AW), (All), and (A13) give 

13 < [tJ(m; )4.5m 1+ 4.527/2 - 2/i1T4] -I 

X J d 2k Ig(k W(k Z + mZ)II2+ 2/i 

X [In( m
2
f2 + 1) + 3 ] , (4.25) 

J-L 2tJ( 1 - 4tJ) 

provided 0 < tJ <!, while (A14), (A15), and (A17) give, with 
the same restriction on tJ, 

14< (m;)4.5 Jd 2k Ig(kW~P + m2 
mtJ29/21T4 

X [In( m~fZ + 1) + 1T] . (4.26) 

Finally, (A18), (A19), and (A23) give 

1151< m~/i;:~2 J ;DI d
Z
k;lg(k l )k(k2)g(k3) 

Xg(kl + k2 + k3)1 [(k l + k3)2 + J-L2] 
x(ki + m2)112+2/i(k~ + m2)1/2 

X [ 4~m2 r(..!.. _ 2tJ)r(4tJ) + C(tJ)] (4.27) 
,u2tJ 2 ;2 ' 

with O<tJ <l 
From (4.21) and (4.25)-(4.27) it is possible to find an n­

and ;-independent constant C2 such that for all ; > 0 and 
n>2 
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FIG. 4. 

1~fdJlIIHLII7<[nC2In( ~f2 +l)r (4.28) 
Since for Re z> 1, 

IIHzlI~ =~ r d 2qd 2p 
(21T) jlPI > mt ,.-... 

4.3 fdJlIIHII~n+E 

Using the general interpolation theorem for the spaces 
C(J p as stated by Seiler and Simon26 we get 

X IA!'.Ag(qW 
[(p+q)2+m2]1/2(p2+m2)2Rez-3/2 ' 

(4.34) 

IIH 112 + e <C31IH(4 + 3e)l(4 + 2e) Ibl2 - e)/12 + e) 

X IIH 112e/12 + e) 
16 + 5e)/18 + 4e) 4 , (4.29) 

where 0 < C3< 1, 

Hz = (p2 + m2)1/4S -: AAg(P2 + m2)-1/4, (4.30) 

and 

S>- r d
2
p ip" m-j (4.31) 

it follows that 

IIH(4 + 3£)/(4 + 2£) II~ 

<2(21T)-4[m2(1 + ;2)] -E/14+2E)1 d2q d2p 
".-- Ipl>mt 

X IA!'.Ag(qW 
[(p + q)2 + m2] 1/2(p2 + m2)(\ + E)/I2+E) 

<[m2(1 + ;2)] -E/(4+2E)lIHfs:~E)/I8+4edl~. (4.35) 
Z - jlPI >mt (21T)2 e (p2 + m2)z . 

The topologies of the Feynman diagrams generated by 
From (4.29) and Holder's inequality we obtain S dJlIIH fs: °5E)I(S + 4e) II; are those of Fig. 3 with D (;2 replaced 

with D (~ + E)/(2 + E)' These are finite by power counting in the 
limit A = 00. Hence from (4.35) 

x (f dJlIIHI6 + 5e)/18 +4e) II/n/12 + e)Y/2, (4.32) 
lim fdJlIIH(4+ 3E)/14 + 2E) II; <C4[m2(1 + ; 2)] - E/(2+ E), 

A_oo 

where it is recalled that 0 < €< 1. Applying the hypercontrac­
tive inequality to the two integrals on the right-hand side of 
(4.32) gives, for n;;,2 + €, 

where C4 = lim SdJlIIHfg: ~E)/lg +4E) II;· 
A_ oo 

Next, for Rez> 3/4, 

11Hz!!! = (21T)-sjk21>mt i~\ d 2
k i 

Ik.l>mt ,,-..... ".-- ............... 
tr[t,:g(kl - k 2)AAg(k2 - k3)AAg(k3 - k4)AAg(k4 - kIll 

X I' (kt +m2)1/2(k~ +m2)2Rez-3/2(k~ +m2)1 2(k~ +m2)2Rez-3/2 

from which one obtains 

IIHI6+5E)/ls+4E,II!«21T)-S[m2(1 + ;2)] -E/12+E) ~ ~ 

r rr4 d 2k tr[AAg(kl - k2) .. .AAg(k4 - k l)] 
X )1k,I>mt .= i (k2 + m2)1I2(k 2 + m2)E/(4+2E)(k2 + m2)1/2(k 2 + m2)E/14+2E) 

Ik.l>mt' \ \ 2 3 4 

< [m2(1 + ;2)] - E/{2 +E)IIH~:02E)/(4+ 2E) II!. 

(4.36) 

(4.37) 

(4.38) 

The topologies of the diagrams obtained from SdJlIIHf3 :°2.-)114+ 2.-) II: are depicted in Fig. 4. All of them, including those 
obtained by permuting photon lines, are finite by power counting in the limit A = 00. Therefore, using (4.38) we can state that 

l~f dJlIIH{6+ 5E)/IS+ 4E) II! <Cs[m2(1 + ;2)] -2E1(2+ E), (4.39) 

where 

Cs = lim fdJl!!H~:02E)I{4+2'-) II! < 00. 
A-oo 

Combining (4.33), (4.36), and (4.39) gives, for n;;'2 + €, 

l~n;,f dJlllH IW+.-<nnC~(l + ;2) - nEl{4 + 2E), (4.40) 

where C6 is a ;-independent constant. 
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4.4 fdp ITr:K2:In 

Application of the hypercontractive inequality gives 

J dpITr:K 2:/"«n - l)"(J dP(Tr:K 2:)2),,/2, 

provided n>2. From (2.9) it follows that 

(4.41) 

J dp(Tr:K2l = 2 f d2XI· .. d2Y2g(XI)· .. g(Y2)P/ltv, (XI - Y!lP/l2V2(X2 - Y2)D~'/l2(XI - X2)D~'V2(YI - Y2)' (4.42) 

Noting from (2.10) thatp/lv(q) = 0 (q2/m2) forq2-<)andp/lv(q) = 0 (1) forq2---+00 , (4.42) is manifestly finite in the limit A = 00 

by power counting. Hence, 

(4.43) 

where 

C; = lim fdP(Tr:K 2:)2 < 00. 

"-00 
4.5 Bound on IIm,,_oo IZ2n(A)1 

We now combine (2.13), (3.1), (4.12), (4.28), (4.40), and (4.43) to obtain 

1~IZ2,,(A )1=IZ2,,1 = (~)" {[CIln( ;)r + [aC2 In( ~f + l)r + (,8C6l"( I ;2; 2)"E/(4+ 2E) + ( ~7 )"}, (4.44) 

provided n>2 + € and m;>p. By setting t = n andp < m it is evident that a sufficiently large constant C can be found such 
that 

IZ2" I.;;;; [C In(mnlpW", 

for all n. 

APPENDIX: ESTIMATES 

1./1 

Usint 
[(kl + k2 + k3)2 + mZ] -1/2«Ji,lm)(k i + m 2)1/2[(k2 + k3f + m2] -1/2 

for k;eE, where E denotes a two-dimensional Euclidean space, and letting k2.3 ---+mtk2,3 we get from (4.7) 

25/2 i 3 I;'<k )1 2 Ik 2 + m2 
1

1
< __ lld 2k. 6\ I V I 

m(21T)6 1"'1<1;= I I [(k2 + k3)2 + lIt2p/2(k~ + lIt2)1/2(ki + p 2/m 2; 2) 

< 25/2
6 
r 3 dZk; Ig(kIW~ki +m2 . 

m(21T) Jlk,I<1 III Ik21Ikz+k31(k~ +p2/m2t 2) 
Let 

J _ r Ik2 + k31d 2k2 dZk3 
1- Jlk,I<1 Ik21(k2 + k3)Z(k~ + p2/m1t 2) , 

and combine the denominators involving k2 and k3 using 

1 II dz 
-;;b= 0 [az+b(l-zW' 

Then 

J
I
< tdzr Uk31 + Ikzl(1-z)]d2kld2k3 . 

Jo J lk,I<llk21[Q+qz(1-z)+p2(1-z)lm2;2)2 

Lettingk;--.[k~z(l-z) +pz(1-z)/m2t2]k~ it follows that 

J
I
< t ~ r Ik31d

2
k2 d2k3 + tdz r d

2
k2 d2k3 . 

Jo ~l-zJlk,I<1 Ik21[zk~ +p2/m2;Z]1/2(Q + 1)2 Jo Jlk,l"'l (k~z+p2/m2;2)(k; + 1)2 
The remaining estimates are elementary and give 

J I<2r[ln( :;) r + 1T4In( 2:; + 1) + :4. 

Equation (AS) combines with (A2) to give (4.10). 
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2.12 

Using the bound (AI) we get from (4.S) 

1/
2

1.;;; 160 X f II6 d 2k.lg(k nk )g(k )g(k + k + k )1 [(k l + k3)2 + f-l2](k i + m
2
)1/2(k ~ + m

2
)1/2 

m2112(21T) I 12 Jlk41<m~ ·-1 I I g 2 3 I 2 3 Ik Ilk + k Ilk Ilk + k I(k 2 + /12)2 
r- Ik,1 <m~ 1_ 4 4 6 5 5 6 6 r-

(A6) 

Let 

(A7) 

f ----,-_d---'2p'--_ .;;;21T 1n(4 + _4m_;). 
Jlpl<m~ [PI [P + k I Ik I (AS) 

Setting x = k 2/(k 2 + f-l2) we get 

J2.;;;(~:;3fdx[ln(4+ 4;; ~1~X)r.;;;(~:;3{[ln(4~1+ m~~2)++r+:}, (A9) 

provided m;>J-l. Insertion of (A9) in (A6) gives the bound (4.11). 

(AlO) 

Let 

J - f Ik2+k311-4Iid2k2d2k3 
3 - J 1k21 > I Ik21(k2 + k3)2(k ~ + J-l2/m2; 2) . 

(All) 

Combine denominators and rescale k3 as for II to obtain 

J~t dz f Ik311-41id2k2d2k3 +t dz f d 2k2 d2k3 
3'" Jo (1_z)1I2+21i J 1k21>1 Ik21(zk~ +J-l2/m2;2)112+21i(k~ + W Jo (1-z)4Ii J 1k21>1 Ik2141i(zk~ +J-l2Im2;2)(k~ + 1)2' 

(A12) 

provided 0 < () < l. After some easy estimates we get 

~ [ (m2;2) 3] J3 .;;; - In --2- + 1 + . 
() J-l 28(1-48) 

(A13) 

Equation (A13) combines with (AlO) to give (4.25). 

From (4.23) and proceeding exactly as for II and 13 one gets 

I ~25/2(m;tli i 3 d 2k Ig(kdI2~ki + m2 

4'" )6 II I I II 4051 I 2 2 2 2 ' m(21T Ik21<li~ I k2 - k2 + k3 (k 3 + J-l 1m ; ) 
(A14) 

provided 0 < () < l. Let 

J - f Ik2 + k31d
2
k2d2k3 

4- J 1k21<1 Ik211-41i(k2+kY(k~ +J-l2/m2;2)' 
(A15) 

Combining denominators and rescaling k3 as for II gives 

J t dz f Ik31d2k2d2k3 + Lid f 
4';;;Jo ~l-z J 1k21<1 Ik211-41i(zk~ + J-l2/m2;2)1/2(k~ + W 0 ZJ1k21<1 

(A16) 

from which one easily obtains 

J4';;;~[ In( ~~ 2 + 1) + 1T ]/28. (A17) 

Equation (A17) combines with (A14) to give (4.26). 
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5./5 

From (4.24) and repeated use of the bound (A I l we get after the scale change k4,s,(] -m~k4,5,6 

6 6 [(k + k )2 + J.l2](k 2 + m2)112 + 26(k 2 + m2)1/2 
1/51< 2~~~Or)2 ~k.l> III d2k;lg(kl)k(k2)k(k3)g(kl + k2 + k3l1 Ik Ilkl +; II +46lk II ~481k + k l(k 22+ JJ 2/m2r2)2 . 

(m J.l':J jll'k I I' = I 4 4 6 5 S 6 6 r' ':J 
,< (AlB) 

Next we split the k6 integration into a high and low momentum piece, Let 

J> = r d2k4d2ksd2k6e(lk61-1) <C(15), (Al9) 
s jll~:II~11 Ik41Ik4+k611+46lksll-46lk5+k61(k~ +J.l2/m2~2)2 

where C is a ~-independent constant that is finite by power counting provided 0 < 15 <!. The other contribution from the k6 
integration is 

J < _ r d 2k4 d
2ks d2k6 e(l - Ik6 1) , (A20) 

5 - jll~:II~: Ik41Ik4+k611+46Iksll-48Iks+k6i(k~ +J.l2/m2~2)2 

Using the estimates 

r d
2
k4 <21Tr(2- _ 2t5)r(4t5) 

jlk.l> I Ik Ilk II + 46 2 
Ik.I<1 4 6 

S 
d2ks 21T -----=:....--- < -, 

Ik,I<llkll-46lk+kl 15 
Ik.I<1 S 5 6 

one gets 

J 5' < 4; r (~ - 215 )r(4t5)( :~r 
Equations (AI9) and (A23) combine with (AI8) to give (4.27). 
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Electromagnetic fields invariant up to a duality rotation under a group of 
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Electromagnetic fields invariant up to a duality rotation under a group H of space-time isometries 
are analyzed. The symmetry equations h • F = cos a(h )F + sin a(h )F. are integrated by noticing 
that a defines a homomorphism of H to SO(2). Applications of that concept to Einstein-Maxwell 
equations are studied. Cosmological models are considered. Special attention is paid to Bianchi 
universes which are shown to admit nontrivial, spatially homogeneous-up-to-a-duality-rotation, 
electromagnetic fields of all algebraic types. All L.R.S. type-V solutions to Einstein-Maxwell 
equations in which the electromagnetic field shares the symmetry of the gravitational field up to a 
duality transformation are derived. Discrete isometries are also analyzed. 

PACS numbers: 04.20.Jb 

I. INTRODUCTION 

Let (M,g) be an oriented Riemannian space-time and let 
H be its group of isometries. An electromagnetic field F de­
fined on M is said to be "invariant up to a duality transforma­
tionunderthegroupH"if,forallelementshEH,h· F differs 
from Fby a duality rotation, 

h • F = cos a(h ) F + sin a(h )F.. (1.1 ) 

Here, h • F is the usual pullback of Fby h, whereas F· is its 
dual two-form. The angle a(h ) depends on the group element 
h, but is a space-time constant. Unless otherwise stated, the 
terms "duality transformation" will always mean "constant 
(in space-time) duality transformation." 

When h preserves the orientation, the property (1.1) im­
plies (see Appendix A) 

h· F· = - sin a(h)F + cos a(h) F· (1.2) 

and 

h. Ft = eia(hIFt, (1.3) 

h.P=e-ia(hIP, (1.4) 

where Ft and Pare, respectively, the following self-dual and 
anti-self-dual two-forms: 

Ft = ~ (F- iF·), 

P=! (F + iF·). 

(1.5) 

(1.6) 

It is well known that if the metric g and the field F obey 
Einstein-Maxwell equations and if Fis nonsingular, then, 
every symmetry of the metric is a symmetry of the Maxwell 
field up to a duality transformation. This results from a 
theorem by Misner and Wheeler that states that the electro­
magnetic field itself is determined from the metric up to a 
duality transformation, 1 and motivates our present work. 
Some examples of Einstein-Maxwell solutions with an elec­
tromagnetic field that shares the symmetry of the metric 
only up to a nontrivial duality rotation have been given in the 
literature. 2 

-) Work supported in part by U.S. National Science Foundation grant num­
ber PHY-82l67l5 to the University of Texas. 

b) On leave from Departement de Physique, Universite Libre de Bruxelles, 
Belgium. 

As we shall see, the study of the equation (1.1) is some­
how similar to the study of gauge fields invariant up to a 
gauge,3 of spinor fields invariant up to a phase transforma­
tion,4 and of homothetic motions.5 

It follows from (1.1), (1.2), and the properties of the 
pullback offorms that the function a: h-a(h) defines a 
group homomorphism of H to SO(2), 

a(hg) = a(h ) + algI. (1.7) 

When the image of H by this homomorphic mapping is the 
identity, the relation (1.1) reduces to the strict invariance of 
F. New interesting possibilities appear when the image of H 
is SO(2) itself or some nontrivial subgroup. 

Since SO(2) is abelian, one easily infers from (1.7) that 
a(h ) vanishes for all commutators, 

a(h 1- Ih 2- Ih\h 2 ) = O. (1.8) 

Accordingly, the derived group H ' belongs to the kernel of 
the homomorphism. When H is abelian, this is obvious, but 
in the case when H' is equal to H (as for noncommutative 
simple groups), this imposes a(H) = {O J. 

We shall assume from now on that H is a n-dimensional 
Lie group (1 <.n <.10) and shall confine our attention on its 
component connected with the identity. The above formulas 
can then be rewritten 

(1.9) 

and 

!/ SAFf = ikAFt, .Y SAP = - ikAF, (1.10) 

where k A is defined, in our additive notations, by 

(1.11) 

and where .Y SA are the Lie derivative operators along the 
Killing vectors SA (A = 1, ... ,n). Formula (1.8) becomes 

(1.12) 

where C A Be are the structure constants of the isometry 
group. 

We shall also assume that the group H is transitive on 
M. The discussion is easily extended to the general case of a 
non transitive group. 
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II. HOMOMORPHISMS H-SO(2) 

Let us consider a basis of right-invariant vector fields on 
H, denoted by {SA j, and its dual basis, {wA j (no confusion 
should arise between SA' right-invariant vector field on H 
and SA , Killing vector field on M). One has 

[SA,SB] =CCABSc ' diijA= -!CABCWB 1\ we. (2.1) 

The left-invariant vector fields XA such that 

XA (e) = SA (e) 

(e is the identity) obey 

[XA,XB] = -CCABXC 

and their dual basis (wA 
) is such that 

dwA =! CABCWB 1\ we. 

(2.2) 

(2.3) 

(2.4) 

Theorem: There is a bijective correspondence between 
homomorphisms a: H __ SO(2) and functions on H, (i) which 
vanish at the identity, and (ii) the gradients of which are right 
invariant. 

Proof (1) da is right invariant [ale) = 0 is obvious]. 
From the homomorphism condition (1.7), one easily 

derives 

a[<p,(h)] =a[<p,(e)] +a(h), (2.5) 

when <p, is the one-parameter group ofleft translations gen­
erated by an arbitrary right-invariant vector field. It thus 
follows that 

.!f SAa=aSp = kA' (2.6) 

where the numbers k A are the values of .!f SA a at the identity. 
This in tum implies that the gradient of a, 

-1 a -A k-A ua== SAa w = A W , 

is right invariant. 

(2.7) 

It is clear that the same argument applied to right trans­
lations shows that da is also left invariant. Moreover, one 
has 

.!f xp = kA (2.8) 

(with the same kA ), sinceXA = SA attheidentity. Actually, if 
the gradient of a function is right (left) invariant, it is auto­
matically left (right) invariant because XA and SB commute. 

The condition (1.12) is equivalent to d 2a = O. 
(2) If djis right invariant and ifj(e) = 0, thenj defines a 

homomorphism of H to SO(2). 
Indeed, one finds 

i
glg2 

j(gtg2) =j(g2) + dj 
g2 

=j(g2) + fl dj 

= j(g2) + j(gt) - j(e) 

= j(gt) + j(g2)' 

where the transformation of the integral is allowed because 
of the invariance of dj (right multiply the path joining g2 to 
gt g2 by g2- 1). This proves the theorem.6 

Theorem: Any set of constants kA obeying (1.12) 

kAC A
BC =0 

2277 J. Math. Phys., Vol. 25, No.7, July 1984 

defines one and only one local homomorphism of H to SO(2). 
Indeed, the right-invariant one-form w = k A wA is 

closed and defines locally one and only one function a such 
that 

ed. 

(i) ale) = 0 

(ii) da = w. 

Global restrictions arise when H is not simply connect-

III. SOLUTION TO THE INVARIANCE CONDITIONS-H 
IS SIMPLY TRANSITIVE ON M 

In order to derive the solution to the symmetry equa­
tions (1.1) for a given H, we first consider the case when His 
simply transitive: to any pair ( P, P ') of space-time points, 
there corresponds one and only one transformation h E H 
such that h ( P) = P' ( M can be identified with H; the Killing 
vector fields and the right-invariant vector fields then coin­
cide; A = 1,2,3,4). 

Let us choose an arbitrary fiducial point Po and denote 
by h p the unique transformation of H that maps P on Po. Let 
a be a homomorphism of H to SO(2). 

It is clear that F is determined everywhere in M by the 
symmetry conditions (1.1) whenever F is known at Po, and 
that these conditions do not restrict F( Po). The expression 

F( P) = cos a(hp)F( P) - sin a(hp)F*( P) (3.1) 

withF( P) = h ~F( Po) = h ~F( Po) (h *F= FV h EH), is 
accordingly the general solution to the symmetry equations. 
F differs from the invariant two-form field Fby a space-time 
dependent duality rotation. 

In the invariant basis (wA J, (3.1) reads 

FAB ( P) = cos a(hp)FAB - sin a(hp)F!B' (3.2) 

where the components FAB are constant. 
Theorem: If both F and F obey Maxwell equations 

(dF= dF= dF* = dF*), then 
(i) either da(hp) #0 is lightlike, in which case Fand Fare 

null (E2 - B2 = E·B = 0); (ii) or a(H) = (O J and Fis strictly 
invariant. 

Proof In terms of the self-dual two-form Ft , (3.1) re­
duces to 

Ft = e - ia1hp)Ft . (3.3) 

This leads, assuming Maxwell equations for both F and 
F, to 

o t 
da(hp) 1\ F = O. (3.4) 

If a(h p) # 0 is timelike or spacelike, (3.4) implies Ft = 0 
(use the self-duality of Ft). Accordingly, if the field Fis non­
trivial, either a(h p) = const(:::} a(h p) = a(h po) = 0), or 
da(hp) is lightlike. In that latter case (3.4) implies that the 
invariants E2 - B2 and E·B both vanish (see Ref. 1). 

It res'!1ts from this theorem that the unphysical invar­
iant form F is, in general, not a solution to Maxwell equa­
tions. 
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IV. SOLUTION TO THE INVARIANCE CONDITIONS-H 
IS MULTIPLY TRANSITIVE ON M 

In that case, M can be identified with the quotient space 
H /K, i.e., with the set ofteft cosets hK of the stability sub­
group at, say, Po. K is isomorphic to the stability subgroups 
at the other points. Greek indices will refer to M, capital 
Latin indices to H, and small Latin indices to the subgroup 
K. 

In the mapping u: H-M: g_gK, the right-invariant 
vector fields 5A are mapped, as is well known, on the Killing 
vector fields 5A , whereas the left-invariant vector fields Xa 
(corresponding to the subgroup K) are mapped on 0, 

(4.1) 

The pullback of any two-form field qJ on M is a two­
form field on H that obeys 

.!t' xau*qJ = ° Xa..J u*qJ = 0. (4.2) 

Moreover, one finds 

.!t' u*m = u*.!t' m. SA T SAT 
(4.3) 

Reciprocally, if a two-form field X on H obeys 
.!t' Xa X = ° = Xa ..J X, there is one and only one two-form 
field on M such that X = u*qJ. 

LetGt bethepullbackofFt (u*Ft = Gt). Gt cannot be 
self-dual on H, since the dimension of H exceeds four. We 
shall solve the symmetry equations 

.!t'SA G t = ik A G t (4.4) 

on the group H and then "project" G t back on space-time 
(standard trick of differential geometry). 

From the analysis of the previous section, it follows that 
the general solution of (4.4) is given by 

(4.5) 

where the at AB 's are constant and where a is a homomor­
phism of H to SO(2). We must then impose the conditions 
(4.2), which tum out to be algebraic equations for G ~B' In­
deed, the second equation (4.2) becomes 

o tOt 
G aB = G Ab = ° (4.6) 

(only at a{3 can be different from zero), whereas the first one 
reads 

'k GO t GO t c F GO t C F ° I a AB + AF aB - BF aA = (4.7) 

[we have used .!t' xawA = C A 
aBW

B
, which follows from the 

identity .!t' xW = X ..J dw + d (X .J w)]. These equations can 
be rewritten as 

atAa-(atAa)t +ikaa t =0, (4.8) 

where the matrix Aa has components (Aaf A = CC aA' 
The problem of determining all H-invariant two-forms 

F (up to a duality transformation) is thus reduced to the alge­
braic problem (4.6)-(4.7) and the demand that Gt induces a 
self-dual form on M. 

Note that the two-form at is projectable on M if and 
only if ka = 0, i.e., if the homomorphism ofthe isotropy 
subgroup K to SO(2) defined by a is trivial. It is shown in 
Appendix B that when ka #0, Fis necessarily a null two­
form. 

2278 J. Math. Phys., Vol. 25, No.7, July 1984 

V. A CLASS OF HOMOTHETIC MODELS 

As a first application, we consider space-times with a 
four-dimensional transitive group G4(1) of homo the tic mo­
tions. The group is of type I according to the classification 
given in Petrov (Ref. 7, p. 63). Its generators are 50 = ao, 

51 = aI, 52 = - xlao + a2, 
53 = (b 2 - 1)x° ao - Xl al + b 2X2 a2 + a3(b #0). The metric 
g is homothetically invariant, 

(5.1) 

This is a generalization of cosmological models homogen­
eous in space and time. 

A basis of invariant forms is given by 

WO = e(l - b'IX'(dxo + x 2 dx l ), 

WI = eX' dXI, 

w2 = e - b
2x' dx2, (5.2) 

Since O'A generates a homomorphism ofG4(1) to R, O'A C A
BC 

must vanish, which implies that only 0'3 can be different from 
zero. 

We shall further assume that the metric is diagonal in 
the basis (5.2) and that WO is timelike. By appropriate normal­
izations, the coefficients of (WO)2 and (W I)2 can be set equal to 

2a x 3 

± e ' . The metric reads5 

ds2 = e2UX'[ _ (WO)2 + (W I)2 + a2(w2)2 + C2(W 3 )2] (5.3) 

(~0'3)' 

The Maxwell field must obey 

(5.4) 

which is a natural extension of the equations of the previous 
section. Again, only k3 # O. This implies 

F = eUX'(FA!" cos kx3 + F1" sin kX3)WA 1\ 01', (5.5) 

where FA!" are arbitrary constants. 
From Maxwell equations, one infers 

0' = - (1 - b 2), 

POI = F02 = FI3 = F23 = 0, 

Fm = 2b F12, 

k=2b. 

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

Accordingly, the Maxwell field is non-null. One of its princi­
pal orthonormal tetrads is just obtained from { 01' J by appro­
priate rescalings. If one had not allowed for the possibility of 
a duality rotation in (5.4), one would have been unable to 

fulfill the Maxwell equations (the field eUx'p cannot obey 
these equations) and one would have missed the solutions 
below. This shows the importance of incorporating the term 
kAF* in (5.4) 

Finally, the Einstein equations, which also tum out to 
be algebraic equations, simply yield 

(5.7) 

and 

Fm = 2b. (5.8) 
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This completes the resolution of the Einstein-Maxwell equa­
tions for the above fields. 

The metrics (5.3), (5.6a), (5.7) depend on two param­
eters. They belong to a class described by Barnes,8 who 
found them by algebraic means. When b 2 = 1, u vanishes by 
(5.6a) and the homothetic motions reduce to true isometries 
(McLenaghan-Taricq-Tupper solutions). Note again that k 
never vanishes (b #0). 

VI. BIANCHI COSMOLOGICAL MODELS WITH AN 
ELECTROMAGNETIC SOURCE 

As a second example, we consider cosmological models 
of the Bianchi type whose source is an electromagnetic field 
that shares the symmetry of the metric up to a duality trans­
formation. The isometry groups are three-dimensional and 
act on spacelike hypersurfaces. Their structure constants 
can be written as 

(6.1) 

with nabab = ° (see Ref. 9, Chap. 6, for the details). From 
now on, small Latin indices stand for group indices and run 
from 1 to 3. 

For all types but types VIII and IX (which will be ex­
cluded in the sequel), the equations ka C abe = 0 possess non­
zero solutions and allow for the new possibility of electro­
magnetic fields invariant up to a nontrivial duality rotation. 
These equations have actually been studied by Eardley in the 
context of homothetic Bianchi models, \0 and we will not 
repeat his discussion here [homomorphisms H-SO(2) and 
H-R are locally equivalent]. 

Let Xo = 0 be a hypersurface of transitivity. It is easy to 
show that the following equations hold on it as a conse­
quence of the symmetry hypotheses. 

(3) U' 0 (3) U' K - ° .z Sagkm =, .z Sa km - , 
(3).2" cPk __ k f!8k (3).2" f!8k = k '!lk 

ta (!) - a' Sa a· 

(6.2) 

(6.3) 

Here, gkm is the metric induced on the hypersurface, K km is 
its intrinsic curvature whereas '!lk and f!8k are the electric 
and magnetic components (with respect to the hypersurface) 
ofthe electromagnetic field. 11 Moreover, the fields 
gkm' Kkm , '!lk, and f!8k are constrained on thexo = O-hyper­
surface by the Gkl = Tkl equations, as well as by Gauss' law 
and the div f!8 = 0 equation. These equations are called the 
constraints, as opposed to the other Einstein-Maxwell equa­
tions, which are truly dynamical. 

Theorem: Let conversely gkm' K km , '!l\ and f!8k (i) obey 
both the conditions (6.2), (6.3) and the constraints on the 
hypersurface XO = 0; and (ii) be propagated off that hyper­
surface by means of the dynamical Einstein-Maxwell equa­
tions. Then the group generated by the ta's is an isometry 
group of the full space-time metric and is such that 
.2" SaF = kaF* (and of course, the constraints are preserved 
in time). 

The proof of this theorem, which shows that the as­
sumed symmetry is compatible with the Einstein-Maxwell 
equations provided it is with the constraints, is standard (see 
in this context Refs. 10 and 12): take for simplicity a slicing 
obtained from XO = ° by the conditions 
.2" Sa N = 0, .2" Sa N k = ° (N is the lapse, Nk is the shift). 
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Show that the initial conditions (6.2)-(6.3), together with the 
dynamical equations, imply in that gauge (i) ao (3).2" Sagkm 
( = (3).2" Sa ar$km) = 0 = aO (3).2" SaKkm 

(3) (3) C.P ° b . . (= .2" Sa aoKkm) (Tkm obeys .z Sa Tkm = ecause 1t 1S 
duality-invariant) and (ii) ao(3).2" s. '!lk + ka f!8k) 

( _(3) c£' a fffk + k a f!8 k) - 0 a (3).2" f!8k _ k '!lk) 
- .z Sa ° a ° -, 0 Sa a 

( = (3).2" Sa aof!8k - ko ao'!lk) = 0. Conclude then that (6.2) 
and (6.3) hold at all times, which easily leads to the desired 
result. 

In the invariant frames! dxO,wa }- where XO is defined 
by the above gauge conditions-the metric only involves xO. 
In the same way, the general solution to the symmetry equa­
tions (6.3) is 

~a( xO, x) = cos a( x)E"( XO) - sin a( x)/3 a( XO), 

f!8 0
( xO, x) = sin a( x)E"( XO) + cos a( x)/3a( XO), 

where E" ,pa are functions of time only and where 

(6.4) 

da = kawa. Without loss of generality, the invariant frame 
can be taken so that a = kx3 [i.e., w3 = dx\ ka = (O,O,k I]. 

It results from the above theorem that the dynamical 
Einstein-Maxwell equations can only restrict the time de­
pendence of gab ( XO), E"( XO), and p a( XO), i.e., must be ordi­
nary differential equations for these functions. This is easily 
checked in the case of the Einstein equations, since 
T)..p. ['!la, f!8b] = T)..J.' [E", P b] [the spatial dependence (6.4) 
of ~a, f!8 a drops out from the energy-momentum tensor]. As 
to the dynamical Maxwell equations, they reduce to 

t a = [((iI2)C d
bc Z d - kbZc)E"beN l-y'g] 

+ CabcNbzc + (2ab + ikb)NbZ a, (6.5) 

where za are the spatial components of frt , 
za = E" + ipa. (6.6) 

To completely demonstrate that the application to 
Bianchi models of Maxwell fields invariant up to a duality 
roation indeed opens up new nontrivial possibilities, it re­
mains to prove that the constraints do not imply F = 0 when 
ka #0. This can be seen by direct inspection of the con­
straints, which tum out to be simply algebraic in gab , Kob ' E", 
andpa, 

(2aa - ika)za = 0, (6.7) 

KabKab - K2 - R + (1!2g)(E"~ + papb) = 0, (6.8a) 

- 2KbcCbac - 4Ka cac = (l/"fg)EabcEbpc, (6.8b) 

where R (gab' C c de) is the curvature of the surfaces 
XO = const. 

Let us stress that these constraints do not imply that the 
electromagnetic field is null; all algebraic types are allowed 
forF. 

Although the "fictitious field" (E", p a) does not obey the 
dynamical Maxwell equations because of the ka term in 
(6.5), the initial value problem is independent of ka to a large 
extent. 

Theorem: For all class B types, except type III, the con­
straint (6.7) is equivalent to aaza = 0 . 

The proof is straightforward since ka = kaa. The initial 

Marc Henneaux 2279 



                                                                                                                                    

value problem is thus obviously independent of k a • 

Theorem: For types I and II, any solution of the initial 
value problem with ka #0 is also a solution with ka = O. 
Reciprocally, given a solution of the initial value problem 
with ka = 0, it is possible to find some ka # 0 so that Eqs. 
(6.7)-(6.8) hold. 

Proof (i) Type I (C a
bc = 0) 

(6.7) reads kaZ a = O. Given ZO, it is always possible to 

find ka #0 so that kaZ a = O. 
(ii) Type II (nab = diag(I,O,O), aa = 0) 
Again, (6.7) reads ka za = 0, but this time, ka is re­

stricted by ka nab = O. Equation (6.8b) implies C f3 3 = ~ f3 2 

so that given a set (gab' K ab , €", f3a) obeying (6.8), one can 

always find ka #0 solution to kl = 0, ka €" = kaf3 a = O. 

We finally note that the cases ka #0 lead, when the 
electromagnetic field is non-null, to truly new metrics. In­
deed the gravitational field determines the electromagnetic 
field up to a constant duality rotation, I whereas the cases 
ka #0 and ka = 0 differ by a nonconstant duality rotation. 13 

Any exhaustive study of electromagnetic Bianchi models 
must accordingly include the case ka #0. 

It is difficult to find exact solutions to the Einstein­
Maxwell equations when ka # 0 because these models are in 
general nondiagonal: ka couples the various components of 
the electromagnetic field. Noticeable exceptions are models, 
the diagonality of which results from additional symmetries, 
as we now pass to discuss. 

VII. L.R.S. BIANCHI MODELS 

For definiteness, we consider the L.R.S. type V IVllh 
case, 

as it is the only L.R.S. Bianchi model that admits a nontrivial 
k A • The type V Killing vectors are ai' a2 , and 
a3 + Xl al + x 2 a2• The generator of the additional isometry 
is 

(7.2) 

Taking (6.4) into account, the requirement that the elec­
tromagnetic field be invariant under 54 up to a duality trans­
formation is equivalent to 

(7.3) 

where Ie determines a homomorphism of the isotropy sub­
group at the origin [generated by 54 and isomorphic to SO(2)] 
to SO(2) and is accordingly restricted to be an integer by 
global considerations. Actually, it is only when Ie = 0 or ± 1 
that the equations (7.3) possess a nontrivial solution (let us 
insist that there is no such restriction on k): 

Ie = 0, EI = C = f3 I = f3 2 = 0, 

E3 and f3 3 arbitrary; (7.4) 

k = E, E = ± 1 ~ = f3 3 = 0, 
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EI = -Ef32, C=Ef3 I
, 

f3 I and f3 2 arbitrary. (7.5) 

In the first case, the electric and magnetic fields are parallel 
and point in the third direction. In the second one, the field is 
null-in agreement with the theorem of Appendix B-and 
corresponds to a circularly polarized wave propagating 
along the third axis. Since Gauss' law and the div &J -law 
impose E3 = f3 3 = 0, we shall consider from no one that sec­
ond possibility. 

Maxwell equations read, for the field (7.5), 

/32 = N /C(Ef3 2 
- kf3 I

), /31 = N /c(Ef31 + kf32). (7.6) 

In the gauge N = c, they can be straightforwardly integrated 
and yield 

f3 I = E exp EXo sin kxo = E E2, 

f32 = E exp EXo cos k XO = - E E\ (7.7) 

where E is an integration constant. We have chosen the axes 
(XI' x 2)sothatf3 1 = OandE>Owhenxo = O. The time scale 
XO is related to the proper time t by 

N dxo = dt q c dxo = dt. (7.8) 

When inserted into (6.4), the relation (7.7) leads to 

- E g'1 = E exp EXo cos k ( XO _ EX3 ) = &J 2, 

E g' 2 = E exp EXo sin k ( XO - EX3 ) = &J I. 

(7.9) 

This represents a wave that propagates in the positive or in 
the negative X3 direction according to whether E is equal to 
+ 1 or - 1. Its frequency is determined by Ik I, and its po­

larization, by the sign of - kE (positive helicity if kE < 0). 
The electromagnetic stress-energy tensor possesses the 

radiation form and is explicitly given by 

(7.10) 

its other components all vanish. 
The nontrivial Einstein equations are equivalent to 

(
0,)2 a c E2 ° - + 2- - - 3 = - exp 2EX , 
a a c a2 

(7.11) 

EE2 ° 
- -2- exp 2EX , 

a 
(7.12) 

.. . 2 2 2 0 d 21n a 2(d In a)2 2 0 aa+a - a = q---+ -- - = , 
(dX O)2 dxo 

(7.13) 

C (C)2 acE 2 ° - - - + 2- - - 2 = - exp 2EX , 
c c a c a2 

(7.14) 

where we have explicitely used the condition N = c. The 
equation (7.11) is the Goo = Too equation, the equation (7.12) 
is the R 03 = T03 equation, whereas the remaining ones are 
the R II = Til = R22 = T22 and the R33 = T33 equations. 

Depending on the sign of(a/a)2 - 1, the equation (7.13), 
which is the same as in vacuum, leads to three possibilities: 

(ia) a = A (sinh 2x0)1/2 (valid for XO > 0) or 

(ib) a = A ( - sinh 2x0)1/2 (XO < 0); 
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(iii) a = Aed , E' = ± 1. (7.17) 

Here, A is a constant of integration which can be set equal to 
1 by an appropriate redefinition of Xl and x2 

(xl_Ax!, x 2_Ax2; this does not modify the structure con­
stants), whereas the origin of Xo has been chosen so that 
a (0) =A [cases (7.16) and (7.17)] or 0 [case (7.15)]' 

The constraint equations (7.11) and (7.12) are only com­
patible with the first and third possibilities and impose (with 
A = 1): 

Case (7.15): (ia) E = - 1 E = {J, 

(ib) E = + 1 E = {J, (7.18) 

Case (7.17): E'=E, no restriction onE. (7.19) 

It is then very easy to integrate Eq. (7.12) for e. One 
finds 

Case (7.15): (ia) e = Be(3/21Xo(sinh 2x0)-1/4, (7.20) 

(ib) e = Be - (3121Xo( - sinh 2x0)-1/4, 

(7.21) 

Case (7.17): e=BexpE(E 2/2+1)x°. (7.22) 

In both cases, Eq. (7.14) is identically satisfied by the above a 
ande. 

VIII. PROPERTIES OF THE L.R.S. SOLUTIONS 

Let us first tum to the solution (7.9), (7.15), and (7.20), 
with E = - 1. The metric reads, explicitly, 

ds'l = B 2e3Xo(sinh 2x0 )-1/2[ - (dXO)2 + (dX3)2] 

+ (sinh 2x°)e - 2x' [(dXI)2 + (dX2)2] ( XO > 0). 
(8.1) 

It represents an anisotropic universe filled with an electro­
magnetic wave propagating in the negative x3 direction. This 
universe expands from an initial singularity located atxO = 0 
(a finite amount of proper time in the past). The singularity is 
of the "cigar type," with Kasner exponents (2/3, 2/3, 

- 1/3). As XO _ 00, both a and e increase as ~o and there is 
thus "isotropization." 

If one takes E = + 1, one just gets the time reversed 
solution, with a singularity in the future. The wave now pro­
pagates in the positive x 3 direction. We recall that this direc­
tion is defined by a3 > O. 

When the electromagnetic wave number vanishes, 
these solutions reduce to the one described by Ftaclas and 
Cohen. 14 Note that the stress-energy tensor and hence, the 
metric, are independent of k-actually, the metric is of the 
"radiation fluid-filled, plane symmetric type." Besides, the 
solutions with different k (but same metric) can be obtained 
from one another by a space-time-dependent duality rota­
tionfj ( XO - EX3), the gradient of which is lightlike and along 
the direction of propagation of the electromagnetic wave (the 
field is null). 

Although the above metric (8.1) does not possess addi­
tional Killing vectors, the solution (7.17), (7.22) is invariant 
by a seven-dimensional group of motions acting on space­
time. Indeed, the change of coordinates 
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eEZXO = (ziB )(2UV)I12, 

~3 = (ziB )(2ulv) 1 12, (8.2) 

withz= 1 + E 2/2, brings the metric and the electromagnetic 
field to the form 

ds2 = - 2 du dv + v2lz[(dXI)2 + (dX2)2] , (8.3) 

EV
l/z 

- I [ ( k ) F= z cos -;-lnv dv A dx 1 

- E sin (~ In V)dV A dX2]. (8.4) 

The metric (8.3) is conformally flat and represents a 
Kagan subprojective space (Ref. 7, p. 252), i.e., here, a special 
type of plane gravitational wave with seven Killing vectors. 
The electromagnetic field is only strictly invariant under a 
transitive six-dimensional subgroup ( x ay - y ax never Lie­
derives F). 

The above classes of solutions contain all electromag­
netic Bianchi type V universes with local rotational symme­
try in which the Maxwell field shares the symmetry of the 
metric up to a duality transformation. 

IX. BIANCHI MODELS WITH DISCRETE SYMMETRIES 

The concept of Maxwell fields invariant up to a duality 
rotation is also useful for understanding discrete symme­
tries. Let us consider again the Bianchi type-V case, but this 
time, without assuming a = b, 

ds2 = _ N 2( xO)(dXO)2 + a2( xO)e - 2X'(dxl)2 

+ b 2( xO)e - 2X'(dx2)2 + e2( xO)(dx3f (9.1) 

The metric possesses the following discrete symmetries 
[in addition to the G3(V) group]: 

Y 1: xo_xo, Xl_ - Xl, X2_X2, X3_X3, (9.2a) 

as well as their product 
Yf3:XO-XO, XI __ XI, X2 __ X2, X3_X3. (9.2c) 

Yf 3 preserves the orientation, whereas Y 1 and Y 2 do not. 
Conversely, the existence of these discrete symmetries im­
plies the diagonality of the metric. In order to determine the 
possible electromagnetic, diagonal type-V models, one must 
thus find all the Maxwell fields invariant up to a duality 
rotation under the full group 
H 3(V) = G3(V) u [YI, Y 2, Yf3J (and their products). 

We first tum to the task of determining a(H3( V)). Since 
both Y 1 and Y 2 commute with the transformations gener­
ated by 53,it follows from a property demonstrated in the 
first appendix that k3 must vanish (together with kl and k 2 ). 

In other words, the image of G3( V) is trivial, 

a(G3(V)) = [OJ (~ka = 0). (9.3) 

We next note that the product laws 
(Yf 3f = e, Y 1 Y 2 = Yf 3 = Y 2Y 1 imply (see Appendix AI 

2a(Yf 3) = 0, (9.4a) 

a(Y1) - a(Y2) = a(Yf3)' (9.4b) 
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Two cases need to be considered: either ala' 3) is the 
identity, or it is half a revolution. To investigate the conse­
quences of the second equation (9.4), we assume that a(Y 2) is 
the identity, which we can always do by performing an ap­
propriate constant duality rotation 13 on the electromagnetic 
field (a(Y2)-a(Y2) - 213).15 The relation (9.4b) implies 
then that a(Y I) is equal to ala' 3)' 

(i) ala' 3) = 0, a(Y d = O. (9.Sa) 

The symmetry equations imply 

Ifl = fijI = if2 = fiJ2 = 0 = fiJ3. 

Only 1f3 can be nonvanishing. 

(ii) ala' 3) = a(Y I) =! (half a revolution). 

The symmetry equations imply 

1f2 = 1f3 = 0 fiJ 1= fiJ3 = O. 

Only If I and fiJ 2 can differ from zero. 

(9.Sb) 

(9.6a) 

(9.6b) 

Because of the constraint aaZ a = 0, one must reject the 
first case. In the second case, that constraint is automatically 
satisfied. We have thus proved the following theorem: 

Theorem: In all diagonal type-V Bianchi models filled 
with a non-null electromagnetic field, the electric and mag­
netic components ifa and fiJa are characterized, up to a glo­
bal duality rotation, by the conditions (9.3) and (9.6).16 

It is not our purpose here to discuss the integration, in 
the comoving frame, of the Einstein-Maxwell equations for 
the above fields. Let us merely mention that solutions do 
exist, because (9.1) and (9.6) are compatible with the con­
straints. Moreover, these solutions define Maxwellian invo­
lutive structures in the sense of Debever l7

; the two-dimen­
sional abelian group generated by a I and a2 is invertible, with 
a' 3 as involution. 

The conclusion of this paper is that the concept of Max­
well fields invariant up to a duality rotation is not only math­
ematically interesting, but also particularly fruitful for un­
derstanding some of the properties of solutions to Einstein­
Maxwell equations with a group of motions. 
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APPENDIX A 

We consider in this appendix how the formulas of the 
first section need to be changed when the isomorphism h 
does not preserve the orientation of space-time. 

As is known, F * is defined in an arbitrary frame ( UJa J as 
the two-form 

(AI) 

Here c[UJ] is + 1 or - 1 according to whether the frame 
( UJa ) has the "right" orientation or not. 

From (AI), one infers 

h *F* = Eh(h *F)*, (A2) 

where Eh = + 1 if the isomorphism h preserves the orienta­
tion of space-time and - 1 in the opposite case. 
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Formula (A2) implies 

h *F* = Eh( - sin a(h)F + cos a(h )F*) (A3) 

from which it follows that the composition law reads 

a(hl h2) = Eh,a(h 1) + a(h2)' (A4) 

This leads to 

a(h -I) = - Eha(h) (AS) 

and 

a(h I-Ih 2-lhlh2) = a(h2) + Eh,a(h l) - Eh,a(h2) - a(hl)' (A6) 

These relations show that the mapping a: H __ SO(2) is 
in general not a group homomorphism when H possesses 
elements which do not preserve the orientation. 

If H is the direct product of an orientation-preserving, 
connected, Lie subgroup G with an involutive "refiexion" 
*s = - 1, S2 = e), formula (A6) implies that a(G) = (0). 
Indeed, one easily infers from (A6) with h2 = h E G, hI = S, 

0= 2a(h). 

Accordingly, a(h ) is either the identity or half a revolution. 
But that second possibility is excluded by the assumption 
that G is a connected Lie group (and the continuity of a). 

APPENDIX B 

Let us assume that the isometry group H is multiply 
transitive on its surfaces of transitivity. In this appendix, H 
may not be transitive on the space-time manifold. Let K ( P) 
be the isotropy group at P, and let 5a be the corresponding 
Killing vectors [we assume thatK ( P) is at least a one-dimen­
sional Lie group; discrete isotropy subgroups are not consid­
ered]. As is well known, the vector fields 5a vanish at P, but 
5al'.p ( P) #0, and the 5a 's induce a group K * of transform a­
tions of the tangent space at P which is isomorphic to a sub­
group of the Lorentz group. 

Theorem: If one of the ka 's does not vanish, i.e., if K ( P) 
does not belong to the kernel of the homomorphism a: 
H--SO(2), then, Fis a null two-form. 

Proof The symmetry equation!f suFt = ikaFt reads 

atP 

(BI) 

w here A P a [5 a ] is the infinitesimal generator of the one­
parameter subgroup of K * induced by 5a' In a suitable orth­
onormal frame, A [5 a ] can be taken to be 

A [5.J ~(~ l J 0-:) (B2) 

We can also assume m = 0 when TJa(3A (3p is non-null, or 
n = 0, Iml = lal when it is null, but, in order to treat both 
cases simultaneously, we shall not use these simplifications 
here. 

With (B2), formula (BI) becomes 

ikF61 - mF63 = 0, 

ikF62 - aFr2 + nF63 = 0, 

ikF63 - aFr3 + mF61 - nF62 = 0, (B3) 
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ikFt2 - aF62 - mFI2 + nFt3 = 0, 

ikFL - aF63 - nFt2 = 0, 

ikFI3 + mFL = 0, 

where we have dropped the index a in ka . 
The system (B3) possesses a nonzero solution F only 

when its determinant, easily evaluated by the Laplace meth­
od, vanishes: 

k 4 + 2k 2(a2 _ m2 _ n2) + a4 + m4 + n4 
_ 2m2a2 

(B4) 

Sincek 2 isreal, the discriminant of the quadratic (ink 2)equa­
tion (B4) must be positive. 

(BS) 

Thus, either a vanishes-in which case (B2) describes a pure 
rotation and one can also take n = O--or n is equal to zero. 
But in that latter case, it follows from (B4) that 

(B6) 

andhence,lml > lal(k :;f0). Thus, by an appropriate Lorentz 
rotation, one can assume that a vanishes too, and the equa­
tions (B3) reduce in both cases to 

(B7) 

which implies that the electromagnetic field is indeed null. 
An alternative derivation of this theorem, somewhat 

simpler, starts from the equations 

(B8) 

for the two invariants FJ..p-FJ..P-=I. and FJ..p-F*J..P-=I2. These 
equations clearly show that the electromagnetic field is ever­
ywhere null on a surface oftransitivity ifit is null at one point 
of that surface. Moreover, since the generators Sa of the iso­
tropy group at P vanish at P, and since I. and 12 are scalars, 
both .c£ sJ. = asJ. and .c£ sJ2 = asJ2 vanish at P, which 
implies 

(B9) 

If ka :;fO, one infers 12 = I. = 0, i.e., the electromagnetic 
field is null. 

As a consequence of this theorem, it follows that all the 
ka 's associated with isotropy subgroups are zero when the 
electromagnetic field is everywhere non-null. Ft can then be 
written as 

(BIO) 

where frt is strictly invariant and where the function 0" (de­
fined on space-time, not on the group manifold!) obeys 
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.c£ SAO" = kA • (BII) 

This is not true when some of the ka 's differ from zero. 
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We present a noniterative method of executing a large class of Kinnersley-Chitre transformations 
in both the vacuum and the electrovac case. By solving the homogeneous Hilbert problem in the 
Hauser-Ernst formalism, we generate new many-parameter solutions of the Einstein equations. 
In the vacuum case, the solution is a natural generalization of the N-fold Neugebauer solution, 
while, in the electrovac case, we have a natural generalization of the N-fold Cosgrove solution 
worked out by Wang, Guo, and Wu. 
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I. INTRODUCTION 

In recent years many authors have employed Backlund 
transformations l

-
3 and Kinnersley-Chitre (K-C) transfor­

mations4-1O in order to generate new solutions of the vacuum 
and electrovac Einstein field equations. Usually the transfor­
mation selected is quite simple and involves only a few pa­
rameters, but, by iterating such transformations, solutions 
with an arbitrary number of parameters can be generated. 

In the present paper an alternative approach will be 
described, in which the K-C transformation selected has an 
arbitrary number of parameters, and it is applied only once. 
Starting with Minkowski space as the seed space-time, we 
first consider the generation of vacuum space-times, and 
then we turn our attention to the generation of electrovac 
space-times. In the vacuum case, our new many-parameter 
solution is a natural generalization of the N-fold Neugebauer 
solution, Z while in the electrovac case we have a natural gen­
eralization of the N-fold Cosgrove solution worked out by 
Wang, Guo, and WU.IO 

Our method possesses the following features: 
(I) The parameters characterizing the transformation 

are directly related to the coefficients of polynomials in the 
numerator and denominator of the transformed Ernst po­
tential evaluated on the symmetry axis. 

(2) In its simplest vacuum exemplar, our method unifies 
the Ehlers transformation, II Harrison's Backlund transfor­
mation,I,3 two types of Hauser transformation,8,9 and an 
HKX transformation,5 while in the electrovac case it unifies 
the Ehlers transformation, the Cosgrove transformation, 3 

and a charged HKX transformation. 6 

(3) By using this method one can more directly obtain a 
complete symmetry in the parameters characterizing the 
generated space-time, for one can build it into the characteri­
zation of the K-C group element itself. In the iterative meth­
od the parameters enter in an ordered way, some with each 
iteration. The generated space-time does not involve these 
parameters in a symmetrical fashion, and it is a nontrivial 
problem to redefine the parameters in such a way as to res­
tore symmetry in the final result. 

01 Research supported in part by National Science Foundation Grant PHY-
82-05608. 

blThe author will submit to the Illinois Institute of Technology a Ph. D. 
thesis based in part upon material contained in this paper. 

Our new method, in addition, may provide a way to 
employ a sequence of exact solutions which in some sense 
approaches a solution which cannot itself be obtained in 
closed form because of difficulties in solving the associated 
homogeneous Hilbert problem (HHP). 7 

II. VACUUM TRANSFORMATION 

In the Hauser-Ernst formalism6
,7 vacuum K-C trans­

formations are represented by 2 X 2 matrix functions u(t ) of a 
complex parameter t, such that 

det u(t) = I, 

ut(t)€u(t) = €: = (- ~ ~), 
where 

C~t ~)U(t (~ ~) 

(2.1) 

(2.2) 

is holomorphic in an open neighborhood of t = 00. [Note 
that in Eq. (2.2) ut(t) stands for the Hermitian conjugate of 
u(t *). Because ofEq. (2.1), condition (2.2) may be replaced by 
the statement that the matrix u(t ) is real for real values of the 
parameter t. We shall when speaking of u(t) always use the 
word "real" in this sense.] 

Following Cosgrove,3 we shall introduce a real matrix 
u(t) such that 

u(t)= [detu(t)]-I/zu(t). (2.3) 

Specifically, we shall choose u(t) of the form 

u(t) = (a(t) /3(t)) 
r(t) 8(t) , 

(2.4) 

wherea(t ),/3 (t)t -I, r(t )t,and8 (t ) are real polynomials in the 
variable t - I . We assume that a( 00 )8 ( 00 ) - /3 ( 00 )y( 00 ) =1= O. 
Explicitly, we may write 

a(t) = ao + a_It -I + ... + a _ n t - n, 

/3(t) =/3lt+/30+'" +/3_n t -n, 

r(t) = r_It- 1 + ... +r _nt -n, 

8(t) =80 +8_ l t-
1 + ... +8_ n t -no 

(2.5) 

Situations in which the four polynomials terminate at differ­
ent terms will be treated as degenerate cases. 
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It should be noted that when the seed space-time is Min­
kowski space the coefficients of the polynomials have a di-

I 

reet interpretation in terms of the new Ernst potential '1l' 
evaluated on the symmetry axis (z axis), 12 where 

'1l' = (iao - Pil + (ia_ 1 - Po)(2z) + (ia_2 - P_I)(2z)Z + ... . 
(y -I + i80 ) + (y -2 + io_ I)(2z) + (y -3 + i8_z}{2z)2 + .. . 

(2.6) 

The case n = 1, where 

Plt+PO+P_lt-l) 
00 + O_lt -I ' 

(2.7) 

includes five well-known transformations, the Ehlers transformation, II 

u(t) = (y_~; -I ~:), (2.8) 

the Harrison transformation, 1.3 

u(t) = (y _~; -I !:), (2.9) 

two types of Hauser transformation,8.9 

u(t) = ((a2m l - m2ail + !(a l - a2)t-
1 

(ml - m2 )t- 1 

a la 2(m2 - milt ) 
(azmz - almil + !(a l - a 2)t -I ' 

(2.10) 

where al> a 2, m l , and m2 are real parameters, and 

u(t) = i((a*m - am*) + !(a - a*)t -I aa*(m* - mit ) 
(m - m*)t -I (a*m* - am) + ~(a - a*)t -I ' 

(2.11) 

where a and m are complex parameters, and an HKX trans­
formation,S which corresponds to the special case when 

(a_Ioo + aoD_I - PoY _1)2 

= 4(aoDo - PlY _l)(a _10 -I - P -Ir -I) (2.12) 

is satisfied. 
The homogeneous Hilbert problem consists of finding 

2 X 2 matrix potentials F '(t ) and X _ (t ) satisfying 

F'(t)u(t)F(t)-1 = [det u(t)]l/ZX_, (2.13) 

such that regarded as functions of the complex parameter t, 
these matrices possess, respectively, the space-time-depen­
dent singularities of F (t ) (the F-potential of the seed space­
time) and the fixed singularities of u(t ). It is further required 
that F'(O) = F(O) = iE. 

Because of the polynomial form assumed for u(t) it can 
be shown that 

F'(t )u(t )F(t)-I = Ao +A_It -I + ... +A _nt -n, 
(2.14) 

where the constant matrix coefficients A; (i = 1, ... ,n) remain 
to be determined. Indeed, A _ n is easily found to be given by 

A_n=limF'(t)u(t)tnF(t)-I= -n . ( 0 
(---+0 - P _ n 

The new F-potential can be obtained from 

F'(t) = (Ao +A_It -I + ... +A _nt -n) 

XF(t)( 8(t) 
- y(t) 

- P(t)) 
aft) 

-r-n) . 
a -n 

(2.15) 

I 
The equation 

aft )8(t) - P(t )y(t) = a (2.17) 

has 2n roots. We shall denote them by t = t l, t2, ... , t2n , and 
temporarily we shall assume they are all distinct. None is at 
t = 00. The condition that F '(t ) not have any of the fixed 
singularities associated with u(t) implies that 

(Ao +A_It ;-1 + ... +A -n l ;-n) 

for i = 1,2, ... ,2n. By using the relation 

-P(I;)) 
) 

= a (i = 1,2, ... ,2n), 
aft; 

(2.18) 

(2.19) 

we can express Eq. (2.18) in the following alternate form: 

[(Aob3 + (A_Ib3t ;-1 + ... + (A -(n-l)b3t ;-(n-II] T j 

+ (Aob4 + (A _ il34t j- I + ... + (A _ (n _ I) b4t j- (n - II 

= - 8 _nt j-nTj + r _Nt j-n, 

(2.20) 
[(AO)43 + (A-il43t ;-1 + ... + (A -(n-I))43t j-(n-II] T; 

+ (AO)44 + (A_il44t ;-1 + ... + (A -In-II)44t j-(n-I) 

= P _ n t ;- nTj - a _ n t j- n, 

where 

X [aft )8(t) - P(t )y(t)] -I. (2.16) are known quantities. 
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The solution of Eqs. (2.20) can be expressed in the form 

(A _ j h3 = .::i ~3 / .::i, (A _ j h4 = .::i ~4 / .::i . 
j . (j = O,l, ... ,n - 1), 

(A _ j )43 = .::i 43/.::i, (A _ j )44 = .::i ~ / .::i 
(2.22) 

where 

TI tl-ITI t 1- (j-IITI - t 1- n(8 _ n TI - r _ n) ... t 1- (n - IITI t -I t I-(n-II 
I 

.::i~3 = 
T 2n t 2~ IT2n t 2~ (j - IIT2n - t 2~ n(8 _ n T 2n - r _ n ) .. ·t 2~ (n - IIT2n t -I t -(n-II 

2n 2n 
TI tl-ITI t I-(n-IIT

I 1 t -I ... tl-(j-II - t 1- n(8 _ n TI - r _ n ) t -(n-II I 

.::i~4 = 
I 

T 2n t 2~ IT2n t 2~ (n - I)T2n t -I .. ·t 2~ (j - II - t 2~ n(8 _ n T 2n - r _ n) t -In - II 2n 2n 
TI tl-ITI t 1- (j- IITI t 1- n( /3 _ n TI - a _ n ) ... t 1- (n - IITI t -I t -In -II 

I I 

.::i{3 = 

T 2n t 2~ IT2n t 2~ (j - I)T2n t 2n n( /3 _ n T 2n - a _ n ) .. ·t 2~ (n - I)T2n t -I t -(n-II 
2n 2n 

TI fl-ITI t I-(n -IIT
I f -I 

I 
.. ·f 1- (j - II f 1- n( /3 _ n TI - a _ n ) t -(n-II 

I 

.::i~= 
T 2n t 2~ IT2n f 2~ (n - IIT2n t -I 

2n .. ·f 2~ (j- II t 2~ n( /3 _ n T 2n - a _ n) t -(n-II 
2n 

and 

.::i _I TI tl-ITI tl-(n-IITI t l-
I tl(n-III 

T 2n t2~IT2n t2~(n-IIT2n t2~1 t2~(n-11 . 

From the new F-potential we can easily obtain the new H-potential using the formula 

H' = dF'(t) I . 
dt 1=0 

(2.23) 

Thus we obtain 

H'= [A H A n_n(a_(n-II /3_(n_I I)](a_ n 

-n + -(n-II 8 
r - (n - II - (n - II r - n 

/3-n)-1 

8 ' -n 
(2.24) 

where H is the H-potential of the seed space-time, and 

n: = i€ = ( _ ~ ~). 
As an example, we shall work out the case n = 1 explicitly. In this case the determinants are given by 

(2.25) 

and.::i = TI - T 2, where 

T j = [F33(tj )8(tj ) - F34(tj )r(tj )] [F43(t j )8(tj ) - F44(tj )r(tj )] -I (i = 1,2). (2.26) 

The A matrices are given by 

1 (8_ I (t 2- IT2 - t I-ITI ) + r -I(t I-I - t 2-
1
) 

A----
0- TI _ T2 - /3-I(t 2-IT2 - t I-ITI ) - a_l(t I-I - t 2- 1) 

T I T 28_ I(t 1- 1_ t 2- I) + r _1(Tlt 2- 1_ T2tlt 1-- I) ) 

- TIT fl_l(t I-I - t 2-
1

) - a_I(Tlt 21 - T2tlt I-I) 

(2.27) 

and 

(2.28) 

2286 J. Math. Phys., Vol. 25, No.7, July 1984 
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(a08o -/3lr _1)t
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+ (a_ 18_ 1 -/3-lr -Il = 0 
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the roots t I and t2 are easily obtained. 
Let us now see how the Harrison transformation can be 

treated as a degenerate case of the above. In this case u(t) is 
given by Eq. (2.9). Let a_ I ,/3_ 1,/31, Yo, and 15_ 1-0. Then 
the quadratic equation (2.28) becomes 

aoDot Z - PoY _It = O. (2.30) 

Hence the roots are 

tl = PoY _ JaoDo, tz = o. (2.31) 

After taking the limits we get 

(
Do - iffJ'y -I Y _It I-I - TI(Do - iffJ'y -I)), 

Ao= 
-Po PoTI 

(2.32) 

-Y-I) 
o ' 

where ffJ' is the Ernst potential of the seed space-time. Hence 
the new F-potential is 

F'(t) 

= (Do - iffJ'Y_I 

-Po 

Y -I (t I-I - t -I) - TI(Do - iffJ'y -I)) 

PoTI 

XF(t)( DO_I 
-Y_It 

- Po) [jO a t - I ] - I a(yo - /JOY-I . 
ao 

(2.33) 

This result is in agreement with the result quoted in the pa­
per of Cosgrove,3 provided we choose ao = Do = 1. 

III. ELECTROVAC TRANSFORMATION 

The K -C group element can be defined as a 3 X 3 matrix 
function u(t) of the complex variable t subject to the follow­
ing conditions: 

det u(t) = 1, 

utlt )l<lt)u(t) ~ I<lt), ~ ( -! 
where 

o 

o 

o 
1 

o ~) 

o o ) o , 
- it 12 o 

is holomorphic in an open neighborhood of t = 00. 

(3.1) 

Because of the large number of constraints imposed 
upon u(t) by Eqs. (3.1), it is not immediately obvious how to 
generalize the procedure which we employed in the vacuum 
case. Following Hauser and Ernst,6.7 we find that it is advan­
tageous to switch from the t-plane to the so-called 1'-plane 
representation of the K-C group. We have 

vt(1')i@v(1') = i@, det v(1') = 1, 

where 

and 

2287 
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(3.2) 

~T),~nt 

l' = 1/2t. 

o 

o 

o 

o 

V(1') must be holomorphic in an open neighborhood of l' = O. 
Now, following Cosgrove,3 we shall introduce a v such 

that 

v(1')I[det V(1')] 1/3 = v(1'). (3.3) 

One then automatically satisfies det v(1') = 1, while 

vt (1')i@v(1') = i@[det v(1')] 1/3[det V(1'*)] 1/3*. (3.4) 

We shall consider the case in which v(1') is a polynomial in 1', 
i.e., 

V(1') = Vo + VI1' + vzr + ... + Vn 7". 

We shall also stipulate that 

V6 i@Vo=/oi@, 

(3.5) 

(3.6) 

where Vo, VI' ... , Vn are 3 X 3 constant matrices and the real 
constant/o#O. Then the holomorphy requirement for v(1') at 
l' = 0 is satisfied automatically. 

We can see from the left side ofEq. (3.4) that 

[det v(1')F/3[det V(1')] 1/3* =/(1') (3.7) 

must be a real polynomial in 1': 

/(1') =/0 +/11' + /2r + ... + /Znrn (10#0). (3.8) 

Equations (3.7) and (3.8) show that/(1') has 2n nonvanishing 
roots, either complex conjugate pairs or doubly repeated real 
roots. 

Combining Eqs. (3.4), (3.7), and (3.8), we obtain the fol­
lowing relations involving Vo, VI' ... , vn: 

V6 i@Vo = /oi@ (/0#0), 

vTi@vo + V6 i@VI =/Ii@, 

L v;i@vj = /k i@, 
i+j=k 

v!i@vn =/Zn i@. 

(3.9) 

These equations are completely equivalent to the single 
equation 

vt (1')i@v(1') = i@/(1'). (3.10) 

We developed a technique involving projection matri­
ces which can be used to solve the general case. We shall now 
describe this projection matrix technique. 

Let m and m* be a pair of complex conjugate roots of 
/(1') = O. Then we have 

vt(m)i@v(m) = 0, 
(3.11) 

vt(m*)i@v(m*) = o. 

We can always find projection matrices Pm and Pm. , and 
nonsingular matrices W m and W m.' such that 

Dong-sheng Guo 2287 



                                                                                                                                    

(3.12) 
Pm. Wm• = v(m*), Pm.V(m*) = v(m*). 

It follows from Eqs. (3.11) and (3.12) that we can find Pm and 
Pm. satisfying the following equations: 

P~.i@:Pm = 0, 

P~ =Pm, 

P~. = Pm·' 

(3.13) 

We are dealing with a three-dimensional linear space. Some 
solutions of Eqs. (3.13) can be written according to the fol­
lowing types: 

(2) 

(3) 

(3.14) 
Pm. =I-hlhTi@:; 

Pm = hlh ii@:, 
(3.15) 

Pm. = hlh ii@:; 

Pm = hlh ii@:, 
(3.16) 

Pm· = h Ih i I@: + h3h 1 i@:, or Pm. = h3h 3+ i@:; 

(4) Pm =hlhTi@:, hTi@:h l = 1, 
(3.17) 

Pm. = h2h ii@:, h ii@:h2 = 1, h ii@:h l = 0. 

hI' h2' and h3 are column matrices. For type 2 and type 3 they 
satisfy 

For type 2 one can use the pair of conditions 

(Pm - I)v(m) = 0, 
(3.18) 

(Pm - I)v(m*) = 0, 

and analogous equations corresponding to other roots, to 
solve for VI' V2, "', vn • One finds that solutions exist when 
m = m *. We shall defer the discussion of such repeated real 
roots until later. We shall at this time concentrate upon the 
case of type 1 projection matrices with nonreal roots, where 

(3.19) 

and Pm and Pm. are given by Eqs. (3.14). 
Equations (3.12) and (3.19) give us 

Pm.v(m) = 0, 
(3.20) 

and, therefore, 

Pm.v(m) +Pmv(m*) = O. (3.21) 

2288 J. Math. Phys., Vol. 25, No.7, July 1984 

Let us define a matrix 

E: = (lIm)I + iggti@:, (3.22) 

where 

g: = hI [j(m* - m)lmm*] 112. (3.23) 

It follows from the previously assumed normalization of hI 
that 

gti@:g = i(lIm - l/m*). 

Equation (3.21) may be replaced by 

En~1 +En~2 E VI v2+ .. ·+ Vn~1 +vn = -Envo, 

(3.24) 

where E P means the pth power of E. 
If we have n pairs of nonreal roots, 

we can introduce n matrices 

Ei = (l/mJI + igigri@: (i = 1,2, ... ,n), (3.25) 

where gi satisfies 

g;i@:gi = i(l/mi - l/mr) (i = 1,2, ... ,n). (3.26) 

In this way we obtain 

E~~lvl+E7~2v2+"'+Vn= -E7vo, 

(3.27) 

or 

c-' E7~2 EI 

JV,) C) E~~I E~~2 E2 
I ~2 = ~2 , 

En~J En~2 En I Vn Qn n n 
(3.28) 

where Qi = - E tvo (i = 1,2, .. ,n). By direct calculation we 
know that 

ml' - m*P 1 
Ef=(Ei-(l/mi)I) I I +-1. 

(mrmiY'~ I(mi - mr) mf 
(3.29) 

Equation (3.28) can be solved by several methods, namely, 
the determinant method, inverse matrix method, and Gaus­
sian elimination. 

The solution of Eq. (3.28) can be written in the form 

:: JU} 
(3.30) 

It turns out that the result is even valid in the case of 
repeated real roots, although the method of proof is differ­
ent. From Eqs. (3.19) and (3.20) we know that the matrix 
vIm) - v(m*) is a rank 3 matrix which has an inverse. We 
may write 
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vim) - v(m*) 

2 0
2 (n on) = (m - m*)vI + (m - m )V2 + ... + m - m Vn • 

(3.31) 

Hence, the matrix 

[vim) - v(m*)JI(m - m*) = VI + (m + m*)v2 + ... 
also has an inverse. Since v(r) is a polynomial, holomorphic 
at r = m, b(m): = dv(r)ldrIT=m does not depend on the di­
rection of approach as one takes the limit 

vim) - v(m*) . 
lim = vim) (m real). (3.32) 

1m - mO)--<l m - m* 

This shows that, for real m, b(m) has an inverse. 
From Eq. (3.10) we know that for real m the following 

equations should be satisfied: 

v(m)ti~v(m) = 0, 

b(m)ti@;v(m) + v(m)ti~b(m) = 0. 

Define a 3 X 3 matrix 

r: = v(m)b(m)-I, 

i.e., 

rii(m) = vim). 

Then r obeys the following equations: 

rti~ + i~r = 0, 

r=O. 
The complete solution ofEqs. (3.35) is 

r = ih'h 'ti@;, 

h 'ti~h' = 0, 

where h ' is an arbitrary column matrix. 
As in the complex case, we define 

E = (lim)! + iggti~. 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

Here g: = h '1m. Then Eq. (3.34) is equivalent to 

E"-lVI +E"-2V2 +···+Ev"_1 +v" = -Envo' 

and g still satisfies the relation 

gri~g; = i(lIm; - lImr) (i = 1,2,oo,n). 

In this way we generalize Eqs. (3.25), (3.26), and (3.28) so that 
the roots may be real or complex (or even infinite, as we shall 
see later). 

Our final result is given by 

v(r) = Vo - (rI,rI,oo.,r"I) 

E~-2 c-' En-l E~-2 X 2 

E,,-l En-2 n n 

I)_1(E7) 
: ;; 'w (3.37) 

whereE; = (lIm;)I + ig;gJi~,gJi@;g; = i(lIm; - limn As 
an example, for n = I we have 

v(r) = [I - r((lIm)! + iggti@;)]vo, 

where g satisfies 

gti@;g=i(lIm - lIm*). 
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(3.38) 

m can be complex, real, or infinite. When m is complex, we 
get the Cosgrove transformation. 3 His original form is equi­
valent to 

vir) = [ - mI + (m - m*)hh ti~] + Jr, h ti~h = 1, (3.39) 

which corresponds to choosing 

Vo = - ((lim)! + iggti~)-I. 
When m is real, we get a charged HKX transformation.6 

When m is infinite, we get a degenerate case of the HKX 
transformation. 

Here we shall show how to treat a simple degenerate 
case. Let us consider the case of one infinite root, say mn 
= 00. Then, we have 

En =igng~i~, g!i~gn =0, E~ =E~ =···=E~ =0. 

Equations (3.27) reduce to the following: 

E7-1vI+ .. ·+EIVn_1 +vn = -E7vo, 

E~=:VI+···+En_1Vn_l +vn = -E~_lVO' 

EnV,,_l +v" =0. 

In particular, for n = 2, one has 

Elv1 + V2 = - Eivo, 

E2v1 +v2=0. 

The solution of Eqs. (3.42) is given by 

VI = (E2-E1)-lEivo, 

V2 = E2(EI - E2)-lEivo' 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Thus we obtain a transformation with nontrivial structure: 

v(r) = [I + (I - E2r)(E2 - EI)-IEir] Vo. (3.44) 

One may check that this result indeed satisfies Eqs. (3.9) and 
(3.10). 

We shaH solve the HHP in the r-plane. We assume that 

,~cr ! ~.(r : ~) ~ ': (3.45) 

exists. In the event this condition is not satisfied, one can 
perform a simple Ehlers transformation to make it true. 
After solving the HHP, we can use the inverse Ehlers trans­
formation to construct the solution for the desired case. 

In the nondegenerate case Vn- 1 is the Ehlers transforma-
tion 

v!i~vn =f2ni~ Ihn #=0), 

vir)' = v(r)vn- 1 = v~ + v; r + ... + Ir". 

In the degenerate case 

v!i~vn = 0. 
(i) Suppose vn can be diagonalized, so that 
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(3.46) 

(3.47) 

(3.48) 

(3.49) 
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Then 

(: l}! i~".lh .h~.) 
(

A TAlh r i~hl 
= A !AI~!i~hl 

If AI #0 and A2#0, then 

(
h! i~hl 

h ii~hl 

Thus 

A TA2h !i~h2 

A !A2h Ii~h2 

o 

di~ 1}~lh'h~') ~ 0, 

(3.50) 

which contradicts the assumption that (hlh2h3) is nonsingu­
lar. Hence at least one of AI and A2 must vanish. We can 
always arrange it so that A I = O. If A2 #0, then h i i~h2 = O. 
In the linear subspace spanned by h I and h3, we can always 
choose h ; and h ; such that 

h ;ti~h; = 0, h ;ti~h 3 = l 
After normalizing, we can always choose a basis h ;', h ;, h 3 
such that 

(h") h ~t '~(h ;'h;h 3) = i~, 
h 3t 

(3.51) 

vnh;' = O. 

Therefore, 

vn(h ;'h;h 3) = (Oh;h 3) = v~ (3.52) 

and 

(

1121" 0 

lim 0 1 
T~<x> 0 0 

O} (21" 0 o ~ 0 1 
1 0 0 

exists. 
(ii) Supposing Vn can be expressed in the canonical form 

". ~ Ih.h~.{~ 
Then 

1 

A 
o 

vnh l = Ah l, vnh2 = hi + Ah2, vnh3 = O. (3.53) 

It follows that 

~) , 
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If A #0, then 

h ! i~h I = h r i~h2 = h i i~h I = h i i~h2 = 0, 

which contradicts the assumption that (hlh2h3) is nonsingu­
lar. Therefore, we conclude that A = 0 and h r i~h I = O. 

As in the first case, we can construct an (h \>h2 ,h3 ) which 
satisfies 

(: 1)~lh.h'h') ~ .~ 
The Ehlers transformation (h l,h2,h3) results in 

Vn(hlh2h3) = (OhIO) = v~. (3.54) 

It then follows that 

lim(l~1" ~ ~)v~(~ ~ ~1) = v~. 
T~oo 0 0 1 0 0 

(iii) Suppose Vn can be expressed in the canonical form 

(3.55) 

Then 

G 1}!i~".lh.h'h') ~ G ~ 
If A = 0, we get the same case as in (ii). If A #0, then 
h ! i~h3 = O. We can always choose h; = ah3, h ;, and h 3 
such that 

and 

(~ ~~;~(h; h;h i) = i~, hit! 

(

1121" 

lim 0 
T~oo 0 

o 0) (21" 0 o v~ 0 1 
1 0 0 o 

exists. 

(3.56) 

Assuming condition (3.45), we shall attempt to solve the 
HHP, which has the following form in the 1"-plane: 

P'(r)v(1")P(r)-1 = [det v(1")l l13 y +(1"), (3.57) 

where 

Plr) ~FII{~ 
0 

~). 1 
t=-, 

0 
21" 

(3.58) 

and 

P'lr) ~ F'II(~ 
0 

B 1 

0 

(3.59) 
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are the P potential of the seed space-time and the trans­
formed space-time, respectively. At r = 00 the limiting form 
of the P-potential is given by 

lim p'(r)(~ ~ ~) = n: = ( - ~ ~ ~). (3.60) 
T~oo 0 0 1 0 0 1 

The right-hand side of Eq. (3.57) is holomorphic in a neigh­
borhood of r = O. Therefore, we may write 

P'(r)v(r)P(r)-1 = Co + Clr + C2r + ... + CnT' + .... 
(3.61) 

However, when we take the limit 

lim P'(r)v(r)P(r)-1 = nv"n 
T' n 

(3.62) 

under the assumption (3.45), we know the expansion (3.61) 
has to terminate at the nth term. Thus, 

P'(r)v(r)P(r)-1 = Co + Clr+ •.• + CnT', 

where 

(3.63) 

Cn = nv;n. (3.64) 

By using Eq. (3.10), we can express the new P potential in the 
form 

P'(r) = (Co + Clr + ... + CnT')P(r)(i~)-lvt(r)i~//(r). 
(3.65) 

The P-potential given by Eq. (3.65) should not have poles 
where the roots of/(r) are located. When m, m· are nonreal 
roots, we have 

(Co + Clm + '" + Cnmn)B(m) = 0, 

(Co + Clm· + ... + Cnm·")B(m·) = 0, 

where 

B(r): = P(r)(i~)-Ivt(r). 

Equivalently, one may write 

(3.66) 

(3.67) 

CoSo(m) + CISI(m) + ... + Cn _ 1 Sn _ 1 (m) = - CnSn (m), 
(3.68) 

where 

Sdm) = mkB (m) - m·kB (m·). 

For the case of repeated real roots m, we have 

(CI + 2C2m + ... nCnmn-1)B(m) 

(3.69) 

+ (Co + Clm + ... + Cnmn)B(m) = O. (3.70) 

If for real m we define 

Sdm): = kmk-1B(m) + mkB(m), (3.71) 

then Eq. (3.68) again follows. 
In summation, for any selected pair of roots m, m·, we 

have 

CoSo(m l ) + C1S1(mJ! + ... + Cn_1Sn_ dmJ! 

= - CnSn(m l ), 

CoSo(mn) + C1S1(mn) + ... + Cn_1Sn_ 1 (mn) 

= - CnSn(mn), 
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(3.72) 

where 

(when m is not real) 

(when m is real). 
(3.73) 

where 

Rk = - CnSn(mk) (k = 1, ... ,n). (3.75) 

As we did when we identified the group element, we can 
solve the above linear system in several ways. The element 
(Cdpq (p,q = 3,4,5) ofthe matrix Ck (k = 1, ... ,n - 1) can be 
written 

(Ck)pq = Dkpq/D, (3.76) 

So(m l ) 

D=de 

(3.77) 

... Sk_l(mn)) 

... Rkpq(mn) 
, 

Sn_1 (mn) 

where R kpq (m; ) is defined as a 3 X 3 matrix having the same 
elements as Sk (m;) except that the qth row of Sk (m;) is re­
placed by the pth row of R;. 

We can also express the solution in the form 

(COCI,,,Cn -I) = - (CnSn(mJ!",CnSn(mn)) 

( 

So(mJ! So(mn) )_1 
X Sn_I!m l ) Sn_I!mn) 

The final result for the transformed P potential is 

P'I') ~ [ -IC"S"lm,)",C"S"lm"1i 

( 

So(ml) So(mn) )_1 

X Sn_l(m l ) Sn_I!mn) 

X( ~ ) + CnT'jP(r)V(r)_I, 
IT'-I 

where 

(3.78) 

(3.79) 

{
mkB (m) - m·kB (m.) 

Sk(m)= kmk-1B(m)+mkB(m) 
(when m is not real) 

(when m is real) 
B (m) = P(m)(i~)-Ivt(m). 
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The new F potential can be obtained by using the rela­
tion (3.64). In the Hauser-Ernst formalism,6 the H potential 
which characterizes the space-time, and the cp potential 
which characterizes the electromagnetic field, are related to 
the F potential by 

FO): = dF I = ( H cp) (3.80) 
dt ,=0 2lL 2iK' 

Thus, for the new space-time, we have 

F'(l)=(H' cp') 
2iL' 2iK' 

= [2Cn_ I n + CnFO) - 2nnu -In-I) ]V~-I, 
(3.81) 

where v~ is given by Eq. (3.45), the constant matrix Cn and 
the t-independent matrix Cn _ I are given by Eqs. (3.64) and 
(3.76), and u _ In _ I) is a constant matrix given by 

u _ In _ I) = lim d [u(t)t n] 
,-.{) dt 

= lim!!.... [(~ 0 
,-.{) dt 0 0 

0) (lit ~ v( ;t) ~ 
o 
1 

o 
(3.82) 

In this way Eq. (3.81) yields the Ernst potentials correspond­
ing to a new solution of the Einstein equations. 

What we have presented in this paper is a general proce­
dure for solving a quite large class of problems. By using this 
general technique, one should be able to work out explicitly 
the Ernst potentials, the metric components, and the electro-
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magnetic field quantities for any given case which is of inter­
est. 

Although we worked out the n = 1 electrovac transfor­
mation explicitly, neither we nor Cosgrove have yet discov­
ered a K-C transformation which generates directly the 
charged Kerr-NUT solution with a2 + e2 < m 2

• 
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Pure radiation fields admitting nontrivial null symmetries 
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The sixteen types of geometrical symmetries corresponding to the continuous groups of 
collineations and motions generated by a null vector n are considered. The common propagation 
vector of a pure electromagnetic radiation field and a pure gravitational radiation field is chosen 
to be n. For such radiation fields all the sixteen symmetries are expressed in terms of the 
Newman-Penrose (NP) spin coefficients and then it is shown that when n is a gradient field there 
are only five independent symmetries. The existence of these five nontrivial null symmetries is 
established by finding exact solutions of Einstein-Maxwell field equations when n satisfies 
freedom conditions and when I of the NP null tetrad (I, m, iii, n) is shear-free. Thus a class of space­
times of pure radiation fields that admit (i) a Ricci collineation which is not a curvature 
collineation (CC), (ii) a CC which is not a special curvature collineation (SCC), (iii) a SCC which is 
not an affine collineation (AC), (iv) an AC which is not a motion, and (v) a motion is determined. 

PACS numbers: 04.20.Jb, 04.40. + c 

1. INTRODUCTION 

In the general theory of relativity, all the symmetries of 
the stress tensor need not be shared by the metric tensor. 
Hence, a dynamical symmetry need not necessarily be a geo­
metrical symmetry. For instance in a non-null electrovac 
universe, the electromagnetic field tensor has four symme­
tries while the metric tensor has only three. I In this context 
Katzin et al.2 have introduced the concept of collineations 
for a systematic study of the various types of geometrical 
symmetries admitted by the gravitational fields due to distri­
butions of matter in motion. Out of the sixteen symmetries, 
which consist of motions and collineations, the curvature 
tensor representing the permanent gravitational field expli­
citly enters in collineations. The role of continuous groups of 
collineations to generate conservation laws of a dynamical 
system in the general theory of relativity has been described 
by Davis and his collaborators in a series of papers. 2-4 This 
work is analogous to Petrov's classification of gravitational 
field based on the continuous groups of motions. 5 

The sixteen geometrical symmetries2
,3 under investiga­

tion are enumerated in Sec. 3. Curvature collineations (CC) 
in the absence of free gravitational field (conformally flat 
spaces) have been studied by Levine and Katzin,4 while CC's 
in the absence of a matter field (empty spaces) have been 
investigated by Collinson.6 Tariq and Tupper7 have shown 
that every CC admitted by null source-free Einstein-Max­
well fields ia a conformal motion except when the Weyl ten­
sor is of Petro v type Nor O. Mclntosh8 has surveyed the 
work on CC's from the point of view of generating exact 
solutions of Einstein's field equations and opined that there 
exist very few space-times compatible with these symmetries 
since a CC is almost always a conformal motion. Halford et 
aU have investigated Petrov-type N vacuum metrics which 
admit nontrivial CC's. Pure gravitational-radiation fields 
amenable for motions and conformal motions in Einstein 
spaces are considered by Leroy. 10 Lukacs et al. II have con­
fined themselves to null motions in electrovacuum. Ho­
mothetic motions in vacuum and perfect fluid space-times 
have been analyzed by McIntosh. 12 For a thermodynamical 

magnetofluid admitting a RC with respect to the flow vector, 
Asgekar and Date13 have shown that (a) the stream lines are 
expansion-free if and only if the heat-flux vector is diver­
gence-free, and (b) the stream lines are geodesic if and only if 
the heat-flux vector remains invariant along the system of 
stream lines. Radhakrishna and Rao l4 have established the 
compatibility of RC with respect to irrotational flow in per­
fect fluids collapsing by neutrino emission. Hall 15 has shown 
that a CC is necessarily a homothetic motion in (a) all non­
null as well as (b) all null source free electromagnetic fields 
with Petrov types of gravitational fields except possibly type 
Nor 0, and (c) all perfect fluids except possibly the stiff 
matter. "Actually, in practice, it will be difficult to distin­
guish proper RC, proper CC and proper SCC in given situa­
tions where the explicit form of the symmetry vector is not 
determined. ,,16 

In this paper we consider the free gravitational field to 
be the transverse gravitational wave zone which can be iden­
tified as Petrov-type N (Ref. 17) or as a self-conjugate gravita­
tional field IS or as a pure radiation field. 19 Thus we confine 
our attention to the interaction of the pure electromagnetic­
radiation field and the pure gravitational-radiation field 
with the common propagation vector n. For brevity these 
two interacting radiation felds are referred as the PR fields. 
Such PR fields have been discussed by McIntosh and Hal­
ford20 and also Hall. 15 However, they do not obtain exact 
solutions of Einstein field equations and they are concerned 
with the one symmetry-the curvature collineation. The 
aim of this paper is to transcribe all the tensor relations char­
acterizing the sixteen symmetries into the "amazingly use­
ful" Newman-Penrose formalism in the case of pure electro­
magnetic radiation fields with pure gravitaional-radiation 
fields and to identify the nontrivial ones. The infinitesimal 
generator of each one of the sixteen symmetries is chosen to 
be n ofthe Newman-Penrose (NP) null tetrad va, ma, iiia , 
na ).21 

Section 2 deals with the relations governing the symme­
tries of the PR fields. The enumeration of commutative rela­
tions, NP equations as well as Bianchi identities gives the 
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complete mathematical characterization of the interaction 
of a pure gravitational-radiation field with a pure electro­
magnetic-radiation field. Section 3 contains the NP spin­
coefficient characterization of all the symmetries for the PR 
fields. It also demonstrates the reduction of the sixteen sym­
metries to five independent symmetries for the fields in ques­
tion and thus the nontrivial null symmetries are identified 
when the symmetric vector is a gradient field. Section 4 de­
termines the space-times corresponding to these five nontri­
vial null symmetries, under certain conditions. The New­
man-Penrose expressions for na 

;cb are given in an appendix. 
Katzin et al. 2 call a RC which does not degenerate to 

CC as a proper RC, while Halford, et al., 9 call such a RC as a 
nontrivial RC. In this paper we follow the nomenclature of 
Halford, et al. 

2. RELATIONS GOVERNING THE PR FIELDS 

The electromagnetic radiation fields 

In NP formalism, the Maxwell scalar characterizing 
the null electromagnetic field with the propagation vector n 
is 

¢I = ¢2 = 0, ¢ =¢0#0, 

and the electromagnetic field tensor22 is 

Fab = - ¢n[amb I - ¢n[amb I' (2.1) 
where 2n[anb 1= namb - nbma' In the absence of the 
charge-current vector (f' = 0), the Maxwell equations for 
the null electromagnetic field are 

v=A =0, 

~¢ = (2y - ft)¢, 

8¢ = (2a - 1T)¢. 

From (2.2b) we have 

~ (¢¢) = [2(y + r) - (ft + il)]¢¢· 

The pure gravitational radiation fields 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

The Weyl scalar t/J characterizing a pure gravitational­
radiation field with the propagation vector n is given by 

t/JI = t/J2 = t/J3 = t/J4 = 0, t/J=t/Jo#O. 

The Bianchi identities for PR fields 

We designate the Bianchi identities asBI, B2 , ... ,B11' the 
enumeration follows the sequence of equations given in Fla­
herty.23 The nontrivial Bianchi identities B3, B9 and B2 , BI 
for PR fields yield, respectively, 

ft =0, 

~t/J=4yt/J, 

(2.3a) 

(2.3b) 

8t/J - XtJ(¢¢ ) = (4a - 1T)t/J + (1T - 2a - 213 )X¢¢, (2.3c) 

where X = - 81TG /c4 is a universal constant, and the Ricci 
scalars for an electromagnetic field are 

¢AB = X¢A¢B (A,B = 0,1,2). 
Remarks: From the definition of the optical scalars for 

n (after scaling n: y + r = 0), viz., 
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divergence: na;a = (ft + il), 
twist: i[ 2n[a;b Ina;b ] 1/2 = - V-t - Jil, 
shear: ~ [2n(a;blna;b - (na;a f] 1/2 = AX, 

where 

na;b = vmalb - Amamb - ftmamb + 1Tmanb + vmalb 

- Xma mb - pma mb + irma nb 

- (y + r)nalb + (a + p)namb 

+(a+f3)na mb -(€+€)nanb' 
(2.4) 

we infer that all the optical scalars for the PR fields vanish by 
virtue of(2.2a) and (2.3a), and so we have the reduced expres­
sion 

na;b = 1Tmanb + irmanb + (a + p)namb 

+ (a + f3)namb - (€ + €)nanb' 

Ricci identities for the PR fields 

The NP equations which are equivalent to the Ricci 
identities with the conditions (2.la) and (2.3a) are 

Dp - 8K = p2 + uu + (€ + €)p - KT 

-K(3a +P -1T) + X¢¢, 

Du- tJK = (p +p)u+ (3€ - €)u 

- (T -if + a + 3f3)K + t/J, 

DT - ~K = (T + if)P + (7 + 1T)U 

+ (€ - €)T - (3y + r)K, 

Da - 8€ = (p + € - 2€)a + f3u - p€ 

(2.5a) 

(2.5b) 

(2.5c) 

- KY + (€ + p)1T, (2.5d) 

Df3 - tJ€ = (a + 1T)U + (p - €)13 - yK - (a - if)€, (2.5e) 

Dy - ~€ = (T + if)a + (7 + 1T)/3 - (€ + €)y 

- (y + r)€ + T1T, 

81T = - ~ - (a - P)1T, 

tJ1T = - 1Tif + 7T(a - 13 ), 

~1T = - (y - r)1T, 

tJp - 8u = pIa + 13) - at3a - P) + (p - p)T, 

tJa - 813 = aa + f3P - 2af3 + y(p - p), 

tJy - ~f3 = (T - a -f3)y - f3(y - Yl. 
tJT - ~u = (T + 13 - a)T - (3y - r)u, 

~p - 8T = (fJ - a - 7)T + (y + r)P, 

~a - 8y = ra + (fJ - 7)Y. 

The commutation relations are 

(2.5t) 

(2.5g) 

(2.5h) 

(2.5i) 

(2.5j) 

(2.5k) 

(2.51) 

(2.5m) 

(2.5n) 

(2.50) 

[~,D ] = (y + r)D + (€ + €).:1 - (T + if)8 - (7 + 1T)tJ, (2.6a) 

[tJ,D] = (a + f3 -if)D + K~ - u8 - (p + € - €)tJ, (2.6b) 

[tJA ] = (T - a - f3)~ + (r - y)tJ, (2.6c) 

[8,tJ] = (p - p).:1- (a - f3)8 - (fJ - a)tJ. (2.6d) 

The Weyl conformal tensor characterizing the trans­
verse gravitational field is 
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Cdeb a = - 2 Re(t/lUde Ub a), 

where the bivector is 

Ude = 2m[d ne]· 

(2.7) 

The Ricci tensor for the source-free null electromagnetic 
field with the propagation vector n is 

Rab = - k¢J¢manb. (2.8) 

For the PR fields the curvature tensor is given by 

R deb a = - 2 Re(t/lUde Ub a) -lx¢J~ (Ude Ub a + Ude Ub a). 
(2.9) 

Similarly one can obtain the Weyl projective curvature ten-
sor 

(2.10) 

by using (2.8) and (2.9). We observe that for the PR fields 

Fabna = Rabna = 0, (2.11) 

R deb and = Cdeb and = Cdeb a nb = o. 
Equation (2.11) implies that n is the common propagation 
vector for the gravitational-radiation field as well as the elec­
tromagnetic-radiation field. 

3. NULL SYMMETRIES IN TERMS OF SPIN 
COEFFICIENTS 

(i) Ricci Collineation (RC) 

A space-time is said to admit RC ifthere exists a vector 
field sa , such that 

(3.1) 
I 

where .!f 5 denotes the Lie derivative with respect to Sa. 
Singh, Radhakrishna, and Sharan24 have studied these rela­
tions (3.1) for cylindrically-symmetric space-times permeat­
ed by a source-free non-null electromagnetic field and have 
shown that these are all purely electric. For studying the PR 
fields we choose the symmetry vector Sa = na. Using the 
expression na;b (2.4) and (2.2a), (2.3a), we get from (2.8) 

.!f nRab = - !X[A (¢J~) - 2( r + r)¢J~ ]nanb. (3.2) 

Now by virtue of the Maxwell equation (2.2d) we have 

.!f nRab = 0 (3.3) 

identically. Thus we infer 
Theorem 1: The PR fields always admit a RC with re­

spect to n. 

(II) Curvature Collineatlon (CC) 

The CC with respect to the vector field n is defined by 
the condition 

.!f nRdeb a = O. 

The curvature tensor R deb a by definition consists of two 
parts viz., the free-gravitational part 

R deb a = Cdeba, 
(F) 

and the matter part 

For the PR fields in question, we obtain 

(3.4a) 

(3.4b) 

by using (2.2a), (2.3a), and (2.3b), (2.6), and (2.8). Then we get from (3.4a) and (3.4b) 

.!f nRdeb a = .!f nR deb a + .!f n R deb a, 
(F) (M) 

= - 2[(r + rH t/lm[d ne] + !x¢J~m[d nedmb na - !(1T + a +,8)t/I + !xW + a +P)¢J~ jm[d ne]nbna] 

- [c.c.]. 
(3.5) 

Here the symbol [c.c.] denotes the complex conjugate of the terms of the preceding bracket. Thus 

I 
.!f n R deb a = 0 henceforth impose the condition that n is a gradient field, 

if and only if 

r+r=O, 

(1T + a +,8)t/I + !xW + a + P)t/J~ = o. 

Gradient field n 

(3.6a) 

(3.6b) 

The evaluation and analysis of SCC and AC is very 
cumbersome, as is evident from the expression given in Ap­
pendices I, and II, even in the inevitable case 1T = o. We 
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i.e., 

v = J.L + fi = 0, 

r + r = 1T - (a + ,8) = O. 

(3.7a) 

(3.7b) 

We note that (3.7a) is already taken care of by (2.2a), and 
(2.3a). 

Now for the case ofCC Eq. (3.6b) yields by 1T = a +,8, 
tr¢ + !X1T¢J~ = o. (3.8) 
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This equation admits two types of solutions, herein termed 
as free curvature collineation (i.e., 1T = 0) and matter curva­
ture collineation (i.e., 1T#0). 

(a) Free Curvature col/ineation (Free CC) 

By virtue of (3. 7b), we have from 3.4a) and (3.4b) 

.!t' nR deb a = 0 and .!t' n R deb a = 0 
~) 1M) 

when 

1T=0. (3.9) 

Thus we get 

.!t' nRdeb a = O. 

This case is referred by us as free CC since this symmetry is 
induced by the Weyl conformal tensor, ie., the symmetry of 
the curvature field due to the nonlocal matter. 

(b) Matter Curvature Col/ineation (Matter CC) 

This symmetry is induced by the matter part of the cur­
vature tensor, when 1T#0. In fact in RC (3.3), 1T is unrestrict­
ed. Now Eq. (3.8) implies 

¢ = - Ax<P¢ WI1T), (3.1Oa) 

and so 

(3. lOb) 

This satisfies Maxwell equation (2.2b) and Bianchi iden­
tities (2.3b). However, Eqs. (2.2c) and (2.3c) with (3. lOa) give, 
by using NP equations (2.Sg), and (2.Sh). 

1T¢ (01,6 - 2<PfJ) + A 1T<P (~¢ - 2¢P) = 0, 

which is of the formA + {A" = 0, where A is complex. Con­
sequently we infer that 

(3.1Oc) 

for 1T#0. 
Remarks: If 1m 1T = 0 (i.e., 1T = 1T), 1T# 0, it follows 

from (3.8) that the Weyl scalar ¢ is real, i.e., 

¢ = - ~x<P¢. (3.11) 

Since 1T is real, the NP equations (2.Sg), and (2.Sh) yield 
a - P = 0 and hence, (2.2c) and (2.3c) give 1T<P¢ = ° which 
implies 1,6 = 0. This is incompatible with the existence of the 
source-free null electromagnetic field. Thus equations (3.8), 
(3.9), and (3.10) yield the following: 

Theorem 2. The PR fields having n as a gradient field, 
admit (a) a free CC iff 1T = ° and (b) a matter CC iff 01,6 = 2<PfJ· 

(III) Weyl conformal collineation (WCC) and its 
degeneracy 

The Weyl conformal collineation with respect to n is 
defined 

As a sequel to (2.7) and (3.4a), we get for the PR fields 

.!t' n C deb a = ° 
if and only if 

r + r = 0, 1T + a + P = 0. 
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(3.12) 

(3.13) 

For a gradient n, we have 

1T=a +P= 0. (3.14) 

Thus, WCC is a trivial symmetry, since it degenerates to CC 
(3.9). 

(iv) Special Curvature Collineation 

A space-time is said to admit a SCC generated by 5" if 
and only if 

(3.1S) 

where r ~e is the Christoffel symbol of the second kind and 

.!t' sr~e = 5 ";eb + RdebaS
d 

• 

With the choice 5" = na for the PR fields these equations 
(3.1S) reduce to 

n
a 

;ebd = ° (3.16) 

since R deb and = 0. On covariantly differentiating n a 
;eb given 

in the Appendix and using the NP expressions [vide Ref. 
22b)] for the covariant derivatives of the tetrad vectors, we 
infer after a tedious but straightforward computation that 
(3.16) are equivalent to 36 complex equations. If the symme­
try vector n is a gradient field (3.7) these 36 equations for 
SCC reduce to 

1T=a +P= 0, 

.J (E + E) = O(E + E) = oD (E + E) = 0, 

DF-3F{E+E)=0, 

where 

F= -D{E+E)+2{E+E)2. 

(3.17a) 

(3.17b) 

(3.17c) 

Thus, PR fields admitting SCC are nontrivial. It should be 
noted that we have used, in getting (3.17), the condition 
o (E + E) = 0, obtainable from NP equations (2.Sd) and (2.Se). 

(v) Affine collineation 

A space-time is said to admit an AC if there exists a 
vector field 5" , such that 

.!t' 5r~e = 5" ;eb + R deb a Sd = 0. (3.18) 

For the PR fields, we choose 5" = na and so (3.18) becomes 

(3.19) 

by virtue of{2.11). Now the translation of(19) in the NP spin 
coefficients gives eight complex equations including 1T = 0, 
which is the coefficient of the term fa nbne (vide Appendix I). 
By (3.7) these eight equations reduce to 

1T=a +P= 0, 

Li (E + E) = O(E + E) = 0, 

D (E + E) - 2{E + E)2 = O. 

(3.20a) 

(3.20b) 

(3.20c) 

Thus AC is nontrivial for the PR fields and exists when (3.20) 
is valid. 

(vi) Degeneracy of Projective Collineation to AC 

A projective collineation with respect to n is defined by 

.!t'nr~e =ObaA;e +OeaA;b' (3.21) 

where A is an arbitrary function and A;e can be written as 
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A.e~.jgej = DAne + LiAle - DAme - 8Ame. (3.22) 

Since R deb 0 nd = 0, for the PR fields, we have 

na ;eb = Db a A;e + Dc a A;b' (3.23) 

Now these tensor equations are equivalent to 

1T = a + P = 0, (3.24a) 

DA = LiA = DA = 8A = 0, (3.24b) 

Li (E + E') = 8(E + E') = 0, (3.24c) 

D (E + E') - 2(E + E')2 = 0 (3.24d) 

by (3.7) and (3.22). The condition (3.24b) implies that A is 
constant, and it follows from (3.24a)-(3.24d) that the projec­
tive collineation for the PR fields degenerates to AC. Simi­
larly one can show the degeneracy of the following five col­
lineations to AC: 

(vII) Special Projective Collin eat Ion 

.!.t'nF:C = DbaA;e + DeoA;b' A;be = O. 

(vIII) Conformal Collineation 

.!.t'nF~e = DbaB;e + DeoB;b -gbe~dB;d' 

where B is an arbitrary function. 

(Ix) Special Conformal Collineation 

(x) Null Geodesic Collineation 

.!.t' nF~e = gbe~dE;d' 
where E is an arbitrary function. 

(xi) Special Null Geodesic Collineatlon 

.!.t' nF:C = gbc~dE;d' E;de = O. 

(xii) Motion 

A motion with respect to n is described by 

.!.t' ngob = 0, i.e., na;b + nb;a = O. (3.25) 

For the PR fields with (2.2a) and (2.3a), the translation of 
(3.25) in terms of the spin coefficients is, by using (2.4), 

1T + a + P = E + E' = r + y = O. (3.26) 

Thus with (3.7) we have 

.!.t' ngab = 0 iff 1T = a + P = E + E' = O. (3.27) 

Now it is interesting to note that 

(xiii) Conformal motion 

.!.t' ngab = hgab , h is a scalar. 

(xiv) Special conformal motion 

.!.t' ngab = hgab , h;ab = O. 

(xv) Homothetic motion 

.!.t' ngab = hgab , h is constant 

all degenerate to motion. 

(xvi) Weyl projective collineation (WPC) and its degeneracy 

For the PR fields, we get from (2.10) 

.!.t' n Wdeba = 2[(r + y)",m[d ne)mbna - !X¢~( r + r)m[dne)mbna + ("'(1T + a + P) + !x(1T + ii + f3)¢~ Jm[d ne)nb nQ ] 

+ [c.c.] -1X¢~ [(1T + a +p)m(dnb) + (tT + ii +f3)m(dnb) - (E + E')ndnb - (r + y)m(dmb,]nC na , 

by virtue of(2.2a), (2.2d), (2.3a), and (2.3b). Consequently the 
Weyl projective collineation with respect to n described by 

.!.t' n Wdcb 0 = 0 

is equivalent to 

1T + a + P = E + E' = r + y = O. 

(3.29) 

Thus WPC is trivial since it degenerates to motion (vide 3.26 
and 3.27). 

Now we conclude that for the PR fields the sixteen geo­
metrical symmetries are not all independent when n is a gra­
dient field. They reduce to five nontrivial symmetries viz., 
RC, CC, SCC, AC, and M. Here we summarize them in a 
tabular form 

Symmetry 1T a+p E+E' 

(i) RC 
(ii) MatterCC (3.lOc) 

FreeCC 0 0 
(iii) SCC 0 0 (3. 17b), (3. 17c) 
(iv) AC 0 0 (3.20b), (3.2Oc) 
(v) M 0 0 0 
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(3.28) 
I 
where' -' denotes unrestricted. The table shows how the 
symmetries become stronger and stronger. In order to estab­
lish their existence, we determine a corresponding class of 
space-times explicitly under certain conditions in the follow­
ing section. 

4. METRICS CORRESPONDING TO THE NONTRIVIAL 
SYMMETRIES 

Since the field equations (2.2b), (2.2c), (2.3b), (2.3c), and 
(2.5a)-(2.50) are too cumbersome for analytical work, we as­
sume that I is a shear-free and that n satisfies freedom condi­
tions. In terms of NP scalars. 

(a) the real null vector I is shear-free: 

l7 = 0, (4.1a) 
(b) the complex null tetrad Zaa = (la, ma, rna, naJ is 

parallelly propagated22 along n: 

V=r=T=O. (4.1b) 
(c) n is a gradient field23

: 

1T = a + P, f.l = ji. (4.1c) 

However, (4.1c) are already taken care of in equation (3.7). 
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The null tetrad 

Since we consider the real null vector n to be an infinite­
simal generator in the study of symmetries, we choose the 
complex null tetrad Za a as follows: 

(

1 U 
o W 

Za= 
a 0 7ii 

o 1 

X 2 

52 
t2 

° 
(4.2) 

where w, 5i 
, U, and X (i = 2,3) are six arbitrary functions of 

coordinates. The intrinsic derivative operators D, 0, b, ..1 
take the following forms: 

D=~+ ua + xja, 
au ar ax! 

0- wa 5ja 
- ar + ax!' 

b = 7iia + 5ja
, 

ar ax] 

a 
..1 =-, 

ar 

(4.3) 

wherej = 2,3. (Note: The operators DA correspond respec­
tively to..1, D of the NP formalism2!). Then the completeness 
relation is 

(4.4) 

Metric Equations 

Under the conditions (4.1) we obtain the so-called met­
ric equations by using (4.2) in the commutation relation (D-4) 
of Ref. 25 as follows: 

..1 U = - 1TW - 1T7ii + (€ + E), 

..1X i = -1T5i - 1Tt i, 

..1w = 1T, 

..15 i =0, 

oU - Dw = K - (p + € - E)W, 

oX i _ Dt i = - (p + € - E)t i, 

ow - bw = rlJ - a)w + (a - /3)7ii + (p - pI, 
ot i -liSi = rlJ - a)ti + (a - /3)t i

• 

(i) A class of metrics admitting RC 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

(4.5f) 

(4.5g) 

(4.5h) 

For solving Bianchi identities (2.3b), (2.3c), the Max­
well's Eqs. (2.2b), (2.2c), the NP Eqs. (2.5a)-(2.50), and the 
metric Eqs. (4.5a)-(4.5h) under the conditions (2.2a), (2.3a) 
and (4.1a)-(4.1c) we follow the method described by New­
man and Tamburino,26 and Collinson and Morris.27 The so­
lution of these equations is 

2298 

v = r = T = (7 = A = f-l = 0, 

/3 = /30' 
a = a o = Po + iF (log P ),2 , 

1T = 1To = 2{Jo + 2F(log P),2 

P = Po = _I exp [f(.!!lL)dZ] , 
flu) 2P 
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(4.6) 

K = Ko - r1T exp[f (;;)az );f(U), 

€ = €o - r(1To£lo + 1TJ30), 

U = Uo + r(€o + Eo) - 4r1T01To' 

X 2 = -r(1ToP+1T;fi), X 3 = -ir(1ToP-1T;fi), 

w=r1To,t
2 = -it 3 =P, (4.7) 

X~ =X~ =wo=O, 

¢J = ¢Jo = PA (u), (4.8a) 

if; = if;o = 2(/30 - paloz)(2PU O;z - Uo1To), (4.8b) 

where A,f are functions of u only, a subscript 0 denotes 
independence with respect to rand 

P = P (u,x2 ,.x3), Z = x 2 + ix\ 

Ko = 2PU 0,. - Uo1To' (4.9) 

Hence the components of the metric (4.4) determining the 
RC which is not a CC are 

glO = gO! = I, gZ3 = gOO = g02 = g03 = 0, 

gl1 = 2[ Uo + r(€o + Eo) - 4r1T01To], 

gl2 = _ 2r(1To + 1To)¢JoI A, 

gl3 = _ 2ir(1To - 1To)¢JoIA, (4.10) 

gZ2 = g33 = _ 2(¢JoI A )2, (A "sO). 

Here ¢Jo characterizes the pure electromagnetic-radiation 
field and Uo is related to the pure gravitational-radiation 
field by (4.8a) and (4.8b). 

(ii) Space-time admitting nontrivial Matter CC 

The metric determining matter CC is the same as in RC 
except for the relations [vide (3.lOc) and (2.3c) with (2.2c) and 
(3.lOc), respectively] 

¢J = Q exp f( ~o)az, 
if;=~p3H, 

where Q, H are functions of u alone. 

(iii) Metrics admitting Free-CC, SCC, AC 

(4.lla) 

(4.1Ib) 

Using the tetrad rotation26 rna' = rna exp(iO), where e 
is real and independent of r, we set 

p=p 

such that we infer from (4.5f) 

€=E. 

Then as a sequel to (4.5d), (4.5e), and (4.13), we obtain 

(4.12) 

(4.13) 

€ = €(u), (4.14) 

where € is an arbitrary function of u only. Therefore, the 
components of the metric tensor determining free CC which 
is not a SCC, have the form 

glO = gOI = 1, gil = 2( Uo + 2r€), gOO = g02 = g03 = 0, 

gl2 = gl3 = gZ3 = 0, gZ2 = g33 = - 2(<fJoiA f, (4.15) 

where Uo is related to the pure gravitational-radiation field 
as follows: 

if;o = - 4(p 2 Uo .• \.z (4.16) 
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and the electromagnetic field is given by (4.8a). Then the 
nontrivial nature of the metrics corrresponding to the three 
collineations (3.9), (3.17), and (3.20) can be distinguished as 
follows: 

Free CC: E is an arbitrary function of u. (4.17) 

SCC: E" - 14EE' + 2~ = 0, E'#4c. (4.18) 

AC:E'-4C=O, or E= -B(4uB+1)-t, (4.19) 

where E' = dE/du and B is a nonzero constant. It may be 
noted that, when B = 0, AC will degenerate to motion. 

(Iv) Metric admitting motion 

We observe from (3.27) that the salient feature ofmo­
tion is 

E=O, (4.20) 

and the line element is 

ds2 = - 2 UO(dU)2 - 2 du dr - ! (A / tPO)2 { (dX2)2 + (dX3)2 J , 
(4.21) 

where Uo' A, tPo, t/Jo are the same as in AC (vide 4.19). 

5. DISCUSSION 

The choice of PR fields in this paper is in consonance 
with the Tariq and Tupper's theorem,? "The only curvature 
collineations admitted by null source-free Einstein-Maxwell 
fields, not of Petrov-type Nor 0, are conformal motions." 

APPENDIX I 

However, they did not aim at getting exact solutions of Ein­
stein-Maxwell field equations. We have obtained nontrivial 
metrics describing the PR fields propagating along the real 
null vector n. 

If one considers the real null vector I of the complex null 
tetrad Za a as a symmetry vector instead of n in the above 
investigation, the corresponding pure radiation fields are 
characterized by the two scalars t/J 4 # ° and tP2 # 0, since I will 
then be the common propagation vector of both the radi­
ation fields. Accordingly instead of K, E, 1T, p, a, [3, a we have 
to consider the nonzero spin coefficients, v, y, T, fl, a, [3, A in 
the case of I. However, it may be noted that the form of the 
nontrivial metrics given in Sec. 4 is essentially unaltered. 

For an isolated system, the gravitational-radiation field 
(with the propagation vector n) is given21 by 

t/J=t/Jo = 0 (r- 5
). 

Since t/J is independent of r [vide Eq. (2.3b)), we infer that the 
metrics obtained in this paper do not represent self-gravitat­
ing systems. 
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The Newman-Penrose concomitant of na ;cb under the conditions v = A = fl = ° are given below: 

na ;cb = 21T1W nbnc + [.a (y + y)/blc + {2(E + E)(Y + y) -.a (E + E) - 1TT -iTr - (a + fJ)T - (a + [3)1'J/bnc 

+ {D (y + y) + (a + fJ)1T + (a + [3)1TJnblc + {.a (a + fJ) + 2'Y{a + [3) -r(y + y)J/bmc 

+ {.a (a + [3) + 2y(a + [3) - T(y + y)J/bme - t5(y + y)mb1c - 8(y + y)mb1e 

+ { - 8(a + fJ) + 2{J(a +fJ) + (y + yWJmbmc + { - t5(a + [3) + 2{3(a +[3) + (y + y)aJmbmc 

+ { - 8(a +[3) + 2(a +[3)a +p(y+ y)Jmbmc 

+ { - t5(a +fJ) + 2(a +fJ)a +p(y+ y)Jmbme + {D(a +[3) 

- 2E(a + [3) -iT(E + E) - K(Y + y)Jnbme + {D(a + fJ) - 2E(a + fJ) 

-11'(E + E) - K(Y + y) J nb me + {8(E + E) - 2(E + E)(a + fJ ) + 1Tp + iTO' + pIa + fJ ) 

+ (a +[3WJmbne + {t5(E + E) - 2(E + E)(a +[3) + iTp + 1Ta +p(a +[3) + (a +fJ)aJmbnc 

+ { - D (E + E) + 2(E + E)2 - (a + [3 )K - (a + fJ)K 

-iTK -1TKJnbnc ]na + [{D1T -11'(3E + E)Jnbnc + {.a1T - 21fYJ/bne + 1T(Y + y)nb1c 

+ { - t51T + 1T(a + [3 )jmbne + { - 81T + 21TfJ Jmbne 

+ {~+(a+fJ)1TJnbmc + {1TiT+ 21T(a +[3)jnbme]m a + [c.c.], 

where the symbol [c. c.] denotes the complex conjugate of the terms of the preceeding bracket. 

APPENDIX II 

NP equivalent of ,.,s ;cbd = ° 
Under the condition v = fl = A = 0, we get that 

n
a 

;ebd = ° 
are equivalent to 
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1T= 0, 

DA + A (E + €) = 0, 

.aA + A (y + y) = 0, 

t5A +A (a +[3) = 0, 

DC- C(E+E) -LK-IK=o, 
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.JC- C(y+ y) -L7-Ir=0, 

8C - C (a + {3) - Lp - Iu = 0, 

bC - C (a + {3) - Lo- - Lp = 0, 

DL + L (E - €) - AK = 0, 

.JL +L (y- y) -Ar = 0, 

8L - L (j3 - a) - Au = 0, 

bL - L (a - 13) - Ap = 0, 

DB - B (€ + E) - EK - EK = 0, 

.JB -B(y+ y) -Er-Er= 0, 
8B - B (a + 13) - Ep - EO- = 0, 

bB - B (a + {3 ) - EO' - Ep = 0, 

DE=E(€- E) -AK= 0, 

.JE+E(y- y) -A7=0, 

8E - E (a - {3) - Ap = 0, 

bE - E (f3 - a) - Ao- = 0, 

DI -I(3€+ E) - CK-HK- GK = 0, 

.JI - I (3y + y) - Cr - Hr - G7 = 0, 

M -I(a + 3{3) - Cu-Hu- Gp = 0, 

bI - I (f3 + 3a) - Cp - Hp - GO- = 0, 

DG+ G(€- 3E) - (I +E)K = 0, 

.JG + G(y- 3y) - (I +E)7= 0, 

8G + G (3a - {3 ) - (I + E)p = 0, 

bG - G(313 - a) - (L +E)o- = 0, 

DH - H (€ + E) - IK - EK = 0, 

.JH - H(y + y) - Ir - Er = 0, 

8H - H (a + {3) - Iu - Ep = 0, 

bH - H (a + 13 ) - Ip - EO- = 0, 

DF- 3F(€+ E) - {I +J)K- (I +/)K = 0, 

.JF- 3F(y+ y) - fl + J)r- (I +/)7 = 0, 

8F - 3F (a + {3) - (i + J)u - (I + 1 lP = 0, 

bF - 3F (a + 13) - (i + J)p - (I + 1)0- = 0, 

where 
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A =.J (y + y), C = D (y + y), L = - 8 (y + y) 

B = -.J (€ + E) + 2(€ + E)(Y + y) 

- (a + 13 )r - (a + {3 )7, 

E=.J (a +13) + 2y(a +13) -7(Y+ y), 
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G = b(a + 13) + 2/3 (a + 13) + (y + y)o-, 

H = - 8(a +{3) + 2a(a +{3) +p(y + y), 

I=D(a +{3) - 2€(a +{3) - (y + Y)K, 

J = b(€ + E) - 2(€ + E)(a + 13 ) 

+ pta + 13) + (a + f3 )0-, 

F = - D (€ + E) + 2(€ + E)2 - (a + {3)K - (a + 13 )K. 
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Taking a Riemannian submersion as our starting point, we obtain some formulas derived from 
O'Neill's fundamental equations of a submersion and compare them with the basic equations of 
Bergmann's approach to Kaluza-Klein theory in five dimensions. Having imposed Hermann's 
sufficient conditions for the submersion to be a principal fiber bundle, we study the conclusions 
that can be drawn from the derived formulas. 

PACS numbers: 04.50 + h, 02.40.Ky 

1. INTRODUCTION 

The use of principal fiber bundles possessing Rieman­
nian metrics for studying the Kaluza-Klein 1-3 approach to 
the Einstein-Maxwell theory, and its generalization to the 
Einstein-Yang-Mills theory, was initiated by Trautman,4.5 
worked through by Kemer6 and Cho,7 and further studied 
and developed by Kopczynski,S Bradfield and Kantowski,9 
Cho and Freund, 10 and others. In all of these cases the bun­
dle considered resembled a Riemannian submersion. We 
note that if M and B are Coo Riemannian manifolds, then a 
Riemannian submersion is a Coo map 1T: M-+B having the 
properties that (i) 1T is of maximal rank and (ii) 1T * preserves 
the lengths of horizontal vectors, i.e., vectors orthogonal to 
the fiber 1T-

I (b) for b E B. Here 1T * is the derivative map 
induced by 1T. 

The purpose of the present paper is to study Kaluza­
Klein theory taking a Riemannian submersion as starting 
point. In Sec. 2 we establish some consequences of the funda­
mental equations of a submersion developed by O'Neill. II 
This is followed in Sec. 3 by a comparison with Bergmann's3 
approach to Kaluza-Klein theory in the special case of five 
dimensions. In Sec. 4 we invoke the theorem of Hermann, 12 
giving sufficient conditions for the submersion to be a fiber 
bundle, and study the consequences of the equations ob­
tained in Sec. 2. The paper ends with a discussion in Sec. 5. 

2. DEDUCTIONS FROM THE FUNDAMENTAL 
EQUATIONS 

The fibers of a submersion 1T: M-+B, denoted 1T- I (b) for 
b E B, are submanifolds of M of dimension dim M - dim B 
as a consequence of property (i) of a submersion. II Vector 
fields on M which are tangent to the fibers will be called 
"vertical" while vector fields orthogonal to the fibers are 
"horizontal." If E is a vector field on M, it may be decom­
posed into its horizontal and vertical parts, which we write 
as 

E = YrE + 'YE. 

O'Neill11 defines the tensors A and T by 

TEF= YrD'FE'YF + 'YDrEYrF, 

AEF= 'YDYrEYrF + YrDYrE'YF, 

(2.1) 

(2.2a) 

(2.2b) 

where E and F are vector fields on M and D is the Rieman­
nian connection on M. Both T and A are tensors of type (1,2). 
If V, Ware vertical vector fields, then II 

(2.3) 

showing that Tis the second fundamental tensor (cf. Ref. 13, 
p. 75) of the fibers while if X and Yare horizontal vector 
fields I I 

(2.4) 

indicating that A is the integrability tensor of the horizontal 
distribution Yr on M. Many useful properties of the tensors 
T and A are derived in Ref. 11. 

Denoting by ( ,) the Riemannian metric on M, the Rie­
mann-Christoffel curvature tensor R is given by 

R (E,F,P,L) = (E,RPL(F), (2.5) 

with 

RPL(F) = D1P.L JF-DpDLF+DLDpF, (2.6) 

where E, F, P, and L are vector fields on M. O'Neill'sll fun­
damental equations of a submersion consist of the compo­
nents of the curvature tensor R expressed in terms of the 
tensors T and A and their covariant derivatives. If X, Y, Z, 
and H are horizontal vector fields and U, V, W, and Fare 
vertical vector fields, then he finds that 

R (F,W,U,V) = (F,Ruv(W) - (TuW,TvF) 

+ (TvW,TuF), (2.7a) 

R (X,W,U,v) = «(DvT)uW,x) - «(DuT)vW,x), 
(2.7b) 

R (H,Z,x,Y) = (H,R ~h(Z) 

-2(Ax Y,A zH) 

+ (AyZ,AxH) + (A z X,A yH),(2.7c) 

R (V,Z,x,Y) = «(DzA )xy,v) + (AxY,TvZ) 

- (AyZ,TvX) - (AzX,TvY), (2.7d) 

R (W,y,x,V) = «(DxT)vW,Y) + «(DvA )xY,W) 

- (TvX,Tw Y ) + (AxV,AyW). 
(2.7e) 

In (2.7a) the first term on the right-hand side is the curvature 
tensor of the fiber metric while the first term on the right­
hand side of (2. 7c) is the horizontal lift of the curvature ten­
sor of B. The covariant derivative of T and A appearing in 
(2.7b), (2.7d), and (2.7e) is given, for example, by 

(DvT)uW=Dv(Tu W ) - TDvU(W) - Tu(Dv W ). 
(2.8) 

We shall find it convenient to specify basis vector fields 
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on M as follows: Suppose dim B = n, dim 1T-'(b ) = m for 
b E B; then dim M = m + n. Let Greek indices take values 
1,2,3, ... ,n and Latin indices take values 1,2,3, ... m. Let! ejJ be 
a set of m linearly independent vertical vector fields and let 
! eJl J be a set of n linearly independent horizontal vector 
fields which are 1T-related to a set of n linearly independent 
vector fields on B. Such horizontal vector fields on Mare 
called basic vector fields by O'Neill. If! () j,() Jl J is a dual basis 
of I-form fields on M, then the metric tensor g = ( , ) on M 
may be written 

g = gij() j ® ()j + gJlv()Jl ® () v, 

withgij = (ej,e), gJlV = (eJl,ev ). 

(2.9) 

The vector fieldsA e ev are vertical and so we may write 
" 

(2.10) 

with F
j
Jlv = - F

j
vJl following from (2.4). The vector fields 

Ae e j are horizontal and thus we have ,. 
(2.11) 

We can show that F
j
Jlv = W

j
JlV ' where indices are raised and 

lowered with the use of the metric (2.9). This follows using 
(2.2b) and the fact that D is Riemannian, i.e., torsion-free and 
compatible with the metric (2.9), since 

FjJlV = - 2(ej ,De"ev)' 

and also 

(2.12) 

JfjJlV = 2 (ev,De" e) = - 2 (De" eV,ej ) = FjJlv' (2.13) 

For future reference we note that since! eJl J are basic, if 
V is vertical then 

(2. 14a) 

and, since1T * V = 0, [V,eJl ] is vertical and thus, in particular, 

dV[e,.,eJl] =0. (2. 14b) 

We can now prove the following: 
Lemma J: If the submersion 1T: M~B has totally geo­

desic fibers, then the Ricci scalar of M may be written 

R = R * + R -lIIFI1 2, (2.15) 

where R * is the Ricci scalar of B lifted to M via 1T, R is the 
Ricci scalar of the fibers, and 

(2.16) 

Proof Since the fibers are totally geodesic (cf. Ref. 14, p. 
180), the tensor T vanishes and thus (2.7) gives the following 
components of the curvature tensor on the basis! e,.,eJl J: 

A 

Rijkl = Rijkl' (2.17a) 

RJlijk = 0, (2.17b) 

RJlvpu = R !vpu - 2(Aepeu,AeveJl) 

+ (Ae"ev,AepeJl) + (Aevep,Ae"eJl ), (2.17c) 

(2.17d) 

Rjv'P.'; = «(DeA )e ev,ej ) + (Ae e)·,Ae ej ), (2.17e) 
J } p P v 

where RABCD = R (eA ,eB,eC,eD), with capital letters taking 
values 1,2,3, ... ,n + m. From (2.10), (2. 17a), and (2.17c) 

R = R * - i 11F112 + 2gVPgijRjvpj + R. (2.18) 

In (2.17e) the first term on the right-hand side is skew-sym-
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metric in p, v (this is a consequence of Lemma 6 of Ref. 11) 
and so 

gijgVPRjvpj =gijgVP(Aepej,Aevej) 

=11IF I1
2
, (2.19) 

using (2.11) and (2.13). Thus, combining (2.18) and (2.19), we 
find that the Ricci scalar of M is given by (2.15) which has the 
general/orm of the Lagrangian density appearing in the Ka­
luza-Klein approach to the Einstein-Yang-Mills theory.7-9 

We end this section by giving two further lemmas. The 
first is O'Neill's" Lemma 7 which we state without proof: 

Lemma 2: If V is vertical and @ denotes the cyclic sum 
over the horizontal vector fields X, Y, and Z, then 

@«(DzA )xY,V) = @(AxY,TvZ). (2.20) 

We shall see in what follows that this equation coincides 
with the Bianchi identities satisfied by the Yang-Mills field 
when we make the necessary specializations. 

Lemma 3: If X, Yare basic and V, Ware vertical vector 
fields, then 

(Dv(AxY),W) + (Dw(AxY),V) 

(2.21) 

Proof The proof follows from the observation of 
O'Neill" that identities involving the derivatives of Tand A 
can be obtained from (2.7) using the symmetries of the curva­
ture tensor. We begin, however, with the identity 

«(DvA )xY,W) = (Dv(AxY),W) - (ADvX(Y)'W) 

- (Ax(DvY),W). (2.22) 

Using the properties of A, the fact that D is Riemannian, and 
also that JV[X, W] = 0 = dV[Y, W] since X, Yare basic, we 
have 

(AD x(Y),W) = - (Ay(DvX),W) v 

= - (Ay(DxV),W) 

= - (AyAx V,W) 

= (AxV,AyW). 

Thus (2.22) may be written 

(2.23) 

«(DvA )xY,W) = (Dv(AxY),W) - (AxV,AyW) 

+ (AyV,AxW). (2.24) 

From the symmetry of the curvature tensor 

R (V,x,Y,W) =R (W,y,x, V), 

together with (2.24) and 

«(DyT)wV,x) = «(DyT)vW,x) 

(cf. Ref. 11, Lemma 6), we arrive at (2.21) above. 

(2.25) 

(2.26) 

If we denote covariant differentiation in the fibers by a 
caret, i.e., if V, Ware vertical vector fields, 

(2.27) 

we see that the left-hand side of (2.21) may be written 

(Dv(AxY),W) + (Dw(AxY),V). 

Hence, if the fibers are totally geodesic the right-hand side of 
(2.21) vanishes and we obtain Killing's equations (cf. Ref. 15, 
p. 88) satisfied by A x Y, i.e., A x Y is a Killing vector field 0/ 
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the fiber metric. This result is due to Bishop, 16 who gave an 
elegant geometrical proof. 

3. BERGMANN'S FIVE-DIMENSIONAL THEORY 

In his approach to the five-dimensional Kaluza-Klein 
theory, Bergmann3 first developed some useful formulas for 
the study of a unit vector field in a five-dimensional Rieman­
nian space. Making use of the notation of Sec. 2, we take 
m = 1, n = 4, choose a local coordinate system ! ~ J with 
A = 1,2,3,4,5, and write 

B a 
el=A n' ax 

(3.1) 

and assume that (el,e l ) = 1. We raise and lower capital in­
dices using the metric tensor components 

gAB = (a~' a~B)' (3.2) 

and define 

ABC =ABiC -ACIB' BA =AAIBA B, (3.3) 

with the stroke indicating covariant differentiation with re­
spect to the metric (3.2). Bergmann3 obtains the following 
formulas [his Eqs. (17.15), (17.24), (17.29), and (17.51), re­
spectively]: 

e';e~g/lV,AAA=ABiC +AcIB -ABBc -AcBB' (3.4a) 

f/J/lv.BAB=~t!!,(BAIB -BBIA)' (3.4b) 

ep(f/J/lvl + ev(f/Jp/l) + e/l(f/Jvp) 

=~e~e;(BAAcB +BBAAC + BcABA ), (3.4c) 

R = R * -A DlcADIC - (A D/D)2 + BDBD 

- 2(A DID)ICA C + 2B D
ID . (3.4d) 

Hereg/lv = (e/l,ev) with Greek indices being raised and 
lowered with this metric. Partial differentiation is indicated 
by a comma. Also 

(3.5) 

and these quantities are related to Maxwell's electromagnet­
ic tensor in this theory. In deriving (3.4c) we have to assume 
Yi1e/l ,ev] = O. This is equivalent to Bergmann's Eq. (17.28) 
and can always be guaranteed to hold at a point, which is 
sufficient for our purposes. In (3.4d) R is the Ricci scalar of 
the metric gAB' The scalar R * (denoted 8~ gklRikl n in Berg­
mann's Eq. (17.51), in which the opposite sign convention to 
ours in (2.6) is used) is interpreted from the submersion view­
point following (3.20). 

We will now assume that we are working on the space 
M of the submersion discussed in Sec. 2 and study the valid­
ity and interpretation offormulas (3.4) in that case. 

With i = 1 and ell and e l given by (3.1), Eq. (2. 14b) can 
be written in the form 

B A A - A B -A (3 6) e/lIA evB - IA~p'evB' . 

Multiplying by e~ and eIiJ and using e~evD = gCD - ACAD 
yields 

eliJe/-tCIAAA=AcID -BDAc -BcAD' 

A direct calculation gives 
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(3.7) 

e';e~ g/lV.AA A = eliJe/lC IAA A - e';e/lD IAA A A D Ac 

+ ~e/-tBIAA A - ~e/-tDIAA AA DAB' 
(3.8) 

Substitution of(3.7) into this and use of BcA C = 0 results in 
(3.4a). However, (2. 14a) implies in the present case 

0= el(g/lv) =g/-tv,AA A, 

and so AB must satisfy 

ABlc +AcIB -ABBc -ACBB = O. 

(3.9) 

(3.10) 

This means that the integral curves of AB constitute a rigid 
congruence. 

We next look at (3.4b). That this question is a special 
case of(2.21) can be seen as follows: Putting V = W = e l , 

X = e/-t' and Y = ev and using (2.10), the left-hand side of 
(2.21) becomes 

- (De,(F!vel),et) = -el(F!v) = -ABFI/-tv,B' 
(3.11) 

Using (2.4), (2.10), (3.3), and (3.5), we find 

FI/lV = - ~e~AAB = - f/J/lv' (3.12) 

From the definition (2.2a) of the tensor T, 

Te,e/l = -BA~ e p Tel el =BA~e!-t" (3.13) 

Substituting into the right-hand side of(2.21) and using (2.8), 
we obtain the right-hand side of (3.4b). 

Consider now (3.4c). This is a special case of (2.20) for 
using (2.10), (3.3), (3.12) and the first of (3.13), we have 

(Ae,.ey,Telep) = - ~ ~e~e;AABBc. (3.14) 

Hence, if @ denotes the cyclic sum over fl, v, and p, we find 

®(Ae,.ev,Telep) = ~~e~e;(BAAcB + BBAAC + BcABA)' 
(3.15) 

On the other hand, assuming Yi1e/l ,ev] = 0, 

®«(De A)e ey,ep) = ®(De (Ae ev),e l ) p IJ P I-J. 

= -! !ep(FI/lv) + ev(Flp/-t) + el'(Flvp)j. 
(3.16) 

The first equality here is established in Ref. 11, Lemma 7. 
Substituting (3.12), (3.15), and (3.16) into (2.22) yields (3.4c). 

Finally, turning to (3.4d), the fundamental equations 
(2.7) together with (2.10) yield, in this five-dimensional case, 

R = R * -ailE 1/ 2 + 2g1-'YR/l 11V ' (3.17) 

with IIF 112 = F l/-tyF I /lV' However, using (2.8) and (3.13), we 
have 
gl-'vR/-tlIV 
=gI-'V«(De,.T)e,et,ey) -gI-'y(Te,e/l,Te,ev ) + llIFII2 

=gI-'V«(De,.T)e,el,eV) _BABA +l11FII2 

= BAIA +! IIFII2, (3.18) 

and so (3.17) becomes 

R =R * -l11FII2 + 2B A
IA . (3.19) 

On the other hand, (3.10) and (3.12) can be used to show that 
illFII2=AD,cAD,c-BABA' (3.20) 

and, when this is substituted into (3.19), we obtain agreement 
with (3.4d) on account of (3.10). From the submersion point 
of view, we see that R * in (3.4d) is the Ricci scalar of B lifted 
to Mvia 1T. 
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To obtain the Kaluza-Klein theory from this formal­
ism, Bergmann3 begins by assuming thatA B is a Killing vec­
torandthusBA = o and (3.10) is satisfied. We see from (3.13) 
that from the submersion point of view Bergmann's assump­
tion is equivalent to the vanishing of the tensor T, i.e., the 
fibers are totally geodesic. In this case (3.19) has the form of 
the Lagrangian density appearing in the Einstein-Maxwell 
theory and, of course, it is a special case of Lemma 1 in Sec. 2. 
In addition, with BA = 0, (3.4b) facilitates the introduction 
of a special coordinate system3 in which f{JJ.L" is independent 
of the fifth coordinate. The relationship between (3.4c) and 
the Bianchi identities for Maxwell's electromagnetic tensor 
emerges as a special case from the argument of Sec. 4. 

4. THE BUNDLE VIEWPOINT 

Sufficient conditions for a Riemannian submersion to 
be a fiber bundle are given in the following theorem due to 
Hermann l2

: 

Theorem: If M is complete as a Riemannian space, so is 
B. M is then a locally trivial fiber space. If in addition the 
fibers of 11" are totally geodesic submanifolds of M, then 11": 

M-+B is a fiber bundle with structure group the Lie group of 
isometries of the fiber. 

We shall henceforth assume that the conditions of this 
theorem are satisfied. Thus in Sec. 2 we take the tensor T = 0 
and if ! e; J are a basis for the Lie algebra of the structure 
group we may take! ei J to be the corresponding fundamen­
tal vector fields on M. Thus in addition to having [ejJej ] 

vertical, we now have 

[ei,ej]=C\ek' (4.1) 

where C k ij are the structure constants of the Lie algebra of 
the structure group with respect to the basis! e; J. We also 
have, from the theorem above, that! ei J are Killing vector 
fields of the fiber metric. The analytical form of this property 
is given by 

(4.2) 

where the SUbscript parentheses denote symmetrization over 
i andj. 

Defining the Lie algebra-valued I-form field on M,7.8 

W=(}ie;, (4.3) 

one easily shows that 

w(ei ) = ei
x

, !t' ejW = [w,ei
X

], (4.4) 

where the left-hand side of the second equation is the Lie 
derivative of w with respect to the vector field ei and the 
bracket on the right-hand side is the Lie algebra bracket. The 
second equation in (4.4) states, in infinitesimal form, that w is 
type Ad. Thus (4.3) is a (pseudotensorial) connection I-form 
on the bundle. Defining the (tensorial) curvature 2-form of w 
in the usual way 

n = dw + Hw,w] =!n iJ.L"(} I-' 1\ (}"e;, (4.5) 

we have from (4.3) 

d(} i + !C~k(}j 1\ () k =!n iJ.LV(} I-' 1\ () v = n i. (4.6) 

Using the fact that 
d(}i(el-',ev) = - !(}i([ el-',e,,]) 

=~iJ1-V (4.7) 
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[the last equality coming from (2.4) and (2.10)], we have 

(4.8) 

Taking the covariant exterior derivative of the second of 
(4.4), we obtain 

!t' ep = [n,ei
X

], (4.9) 

which can be rewritten in the form 

ej(rl-'v) = CikjFkJ.Lv' (4.10) 

This states, in infinitesimal form, that n is of type Ad. 
When T = 0, we can write (2.20), at a point at which 

K[eJ.L ,e,,] = 0, in the form 

@ep(FiJ.L") = O. (4.11) 

Using (4.6), we find that at a point at which K[eJ.L ,e,,] = Owe 
have 

(4.12) 

and so (4.11) is equivalent to the Bianchi identities 

dni+c~k(}jl\nk=o (4.13) 

(cf. Ref. 14, p. 78). Since this is a tensorial equation, the 
special choice of horizontal vector fields! eJ.L J used to obtain 
it is legitimate. 

When T = 0, (2.21) can be written, using (4.1) and the 
fact that D is Riemannian, in the form 

ei(Fkl-',,)gkj + ej(FkJ.Lv)gik 

+ Fkl-'v! ek (gij) + 2g/(iC ~lk J = O. (4.14) 

Using (4.10), we find 

F\L"ek(gij) = O. (4.15) 

Hence, to have no restriction on FkJ.L'" could take 

ek(gij) = O. (4.16) 

Then gij must be constant along the fiber, and by (4.2), Cijk 
= gil C ~k is skew-symmetric under interchange of any pair 
of indices. 

5. DISCUSSION 

When the conditions of Sec. 4 are satisfied (2.15) be­
comes the Lagrangian density of the Kaluza-Klein theory. 

/'< 

The Ricci scalar R is then calculated with the invariant met-
ric gij and plays the role of a cosmological constant.jt has 
been pointed out by Bradfield and Kantowski9 that R = 0 
for certain Lie algebras and Kopczynski8 has described a 
mechanism for removing it in general. The I-form wand the 
2-form n, pulled back to the base space B via a local cross 
section, are the gauge potential and the Yang-Mills field, 
respectively. 
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The classical nonlinear Schrodinger equation (NLS) is known to have an infinite number of 
polynomial constants. While recursion relations to compute these are available, no general 
expressions in terms of the fields have been found. However, general expressions have been 
obtained in terms of the reflection coefficients. When we tum to the quantum case where the fields 
become operators with conventional commutation relations, the polynomials with suitable 
ordering are still constants. The classical expression for the constants in terms of the reflection 
coefficients strongly suggests what the quantum form should be. This conjecture is proved for the 
repulsive case. The expression is significantly simpler than the classical one. It is 
In = (lI21T)S ~ = (k )n R *(k)R (k )dk. 

PACS numbers: I1.10.Lm, 02.90. + P 

I. INTRODUCTION 

Classically, the nonlinear Schrodinger equation 

il/l, = - 1/1",,,, - 20"KI/I * 1/11/1 (1) 

(0" = + 1 for the attractive case and 0" = - 1 for the repul­
sive case) is known to have an infinite number of polynomial 
constants of motion. 1 Thus, the first five are 

I b=N = f: = 1/1*1/1 dx, 

f
oo a 

I ; =P = 1/1* --;- 1/1 dx, 
-oo I 

Ii=H= f:oo la",l/I*a",I/I-O"KI/I*21/12jdx, 

Ii =i f:oo 11/1* a! 1/1+ 1KO"I/I*2 a", 1/1 2jdx, (2) 

I ~ = f: = II/I!,,,, 1/1",,,, - 20"K( 1/1*2)", (1/1 2)", - O"KI/I*2( 1/1",)2 

_ O"K\ 1/1 !,)21/1 2 + ~ [ 1/1*31/13 + 1/1*21/11/1*1/1 2] j dx. 

(Of course classically the order in which the 1/1* and 1/1 are 
written is unimportant. However, it will be seen that the 
order given will be useful later when the I/I's are operators.) 

We present some remarks. 
(1) These constants are in involution. 
(2) They can be obtained from the coefficients in the 

Laurent expansion of a(t) (defined below). 
(3) While recursion relations permit us to calculate 

these polynomials successively, no general closed form 
expression for these seems to be available. However, a rela­
tively simple closed form expression does exist in terms of 
reflection coefficients. 

(4) Comments on the construction of I ~,n > 4, are given 
in Appendix B. 

Here we wish to investigate the quantum case.2
-4 Thus, 

1/1, 1/1* are assumed to be operators satisfying 

[1/I(x),I[I(x')] = 0 = [1[I*(x),I/I*(x')], (3) 

and 

[ 1/1 (x),I/I*(x')] = b(x - x'). 

It is known that I b, I ; , and I i are again constants. 
Further, when expressed4 in terms of the reflection operators 
R (k ), R *(k ) they have the form 

I b = _1_ Ioo R *(k )R (k )dk, 
21T - = 

I; = _1_ Ioo kR *(k )R (k )dk, 
21T - = 

(4) 

Ii = _I_Ioo k 2R *(k)R (k )dk. 
21T - = 

Our purpose is the following: From the commutation 
relations of the reflection coefficients it is readily shown that 
if we define In by 

In = _1_ Ioo k n R *(k )R (k )dk, 
21T - 00 

(5) 

then 

(6) 

Thus, we have an infinite set of commuting constants of mo­
tion. Here we will show that the In defined by Eq. (5) are 
precisely the quantum analog of the classical polynomial 
constants, i.e., when expressed in the field variables they are 
polynomials. 

It will be seen that the following hold. 
(i) When a(t ) is expanded in powers of 1/ t, we obtain in 

each successive term a new constant. 
(ii) The quantum form of the constants when expressed 

in terms of the reflection operators are significantly simpler 
than the classical form. 

The program to be followed is so. In Sec. II, we briefly 
summarize well-known results to have them in the notation 
we want to use. Section III recalls what is a dispersion rela­
tion for the Zakharov-Shabat function ¢. (Here we are re­
stricted to 0" = - 1.) Passing to the limit X"'-+ - 00, gives a 
singular integral equation for a(t ) in terms of the reflection 
coefficients. In the classical case, this is solved in closed 
form. Expanding In a in terms of lit gives the well-known 
result.5 From this we can readily conjecture what the quan­
tum result should be. However, to treat the quantum case 
rigorously, we solve the integral equation by a Neumann 
series. The constants are then obtained by further expanding 
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in lis. An essential simplification occurs. Only a finite num­
ber of terms of the Neumann series contribute to the coeffi­
cient of a given power of lis. As we go from the coefficient of 
S - n to that of S - n - I, we obtain precisely one new constant 
In. The other terms in the coefficient are merely polynomials 
in the lower-order constants. 

It is then shown that the (quantum) I ~ of Eqs. (2) give 
precisely the same result when acting on a large class of 
states as do the In in Eqs. (5). For the repulsive case these 
states are complete. Hence, we have the identification. 

II. SUMMARY OF NEEDED FORMULAS 

To the quantized nonlinear Schr6dinger equation, we 
associate an operator Zakharov-Shabat eigenvalue problem 

Vlx - (is /2)vI = K1/2v21j/, 
(7) 

v2x + (is /2)V2 = - UKtl21j/*VI. 

Conventionally, one defines four different solutions by 
boundary conditions at ± 00. Thus, tP is defined by 

lim tPe - isx/2 = (~), 
X--+ - 00 

(8) 

lim ¢e + isx/2 = ( 0), 
X~-oo -1 

(9) 

t/tby 

lim t/teisx/2 = (0), 
x_ + 00 1 

(10) 

and ¢by 

lim ¢e - isx/2 = 
x-oo (~). (11) 

The boundary conditions and the differential equation 
can be combined in the integral equations 

tPI(X) = eisx/2 + KI/2 J: 00 e + isix - x'l/2tP21j/ dx', 

tP2(X) = - UKI/2 J: 00 e- is (X-X'I/2Ij/*tPI dx', 

¢I(X) = KI/2 J: 00 eis (X-X'1/2¢2(X')Ij/(x')dx', 

(12) 

(13) 

¢2(X) = - e- iSclC/2 - UKI/2 J: 00 e- is (x-X'1/21j/*(x')¢1 dx', 

t/t1(X) = - KI/2 Ixoo eis (X-X'1/2t/t2(X')Ij/(x')dx', 
L (14) 

t/t2(X) = e - isx/2 + UKI/2loo e - is (x - x'1/21j/ *(x')t/tl(x')dx', 

¢I(X) = eisx/2 _ KI/2loo eis(x - X'1/2¢2(X')1j/ (x')dx', 

¢2(X) = UKI/2 Loo e - is (x - x'1/21j/ *(x')¢I(x')dx'. 
(15) 

From these integral equations and the commutation re­
lations ofEqs. (3), we readily find the following. 

(1) At the same x the solutions of Eqs. (7) defined with 
boundary conditions at - 00 commute with those defined 
by conditions at + 00, e.g., 
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[ tPi (x),t/tj (x) ] = o. (16) 

(2) 

[tPI(X),Ij/(x)] = 0 = [tP2(X),Ij/*(x)], (17) 

[tP2(X),Ij/(x)] = (UKI/2/2)tPI(X), (18) 

[tPI(X),Ij/*(x)] = (K I/2/2)tP2(X), (19) 

[t/tI(X),Ij/(x)] = 0 = [t/t2(X),Ij/*(x)], (20) 

[t/tI(X),Ij/*(x)] = ( - Ktl2/2)t/t2(X), (21) 

[t/t2(X),Ij/(x)] = (- UKtl2/2)t/tI(X), (22) 

[¢I(X),Ij/(x)] = 0 = [¢2(X),Ij/*(x)]. (23) 

[¢I (x), Ij/ *(x)] = ( - Ktl2/2)¢2(X), (24) 

[¢2(X),Ij/(x)] = (- UKtl2/2)¢I(X). (25) 

Comments about the derivation of these results are given in 
Appendix C. The scattering data a,b are defined by 

lim tP I (x,s )e - isx/2 = a(s ), (26) 

(27) 
X~OO 

It follows that 

(28) 

and 

(29) 

where a = a*, b = ub *, and * denotes the complex conjugate 
classically and Hermitian conjugate quantum mechanically. 

More generally we have 

a(s) = tPI(X,S)t/t2(X,S) - tP2(X,S)t/tI(X,S), (30) 
from which we can also obtain a formula that will be very 
useful 

a(s)= lim t/t2(x,s)eisX/2. (31) 
x_- 00 

Similarly, we have 

b (s) = tP2(X,S )¢I(X,S) - tPI(X,S )¢2(X,S)' (32) 

Given Eqs. (30) and (32) and the commutation relations 
of Eqs. (16)-(25), one readily computes the commutation re­
lations of the scattering data with Ij/ and Ij/ *. These are con­
veniently summarized as follows. 

Let v,v' be commuting solutions of Eq. (7). Then the 
three-vector X constructed as 

XI = V2V2' 

X2 = - v;v l , 

X3 = (V;V2 + v2vd/2, 

satisfies the equations 

axXI + isX, = - 2uKI/2 1j/*X3' 

(33) 

- axX2 + iSX2 = 2K1/2X31j/, (34) 

axX3 = KI/2XlIj/ + UKI12 Ij/*X2' 

Then for A = a,b,a,b we can associate a X (A I such that 

[A,Ij/(x)] = UKI/2XhAI(x), 

K. M. Case 
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and 

[X~A )(x), 1[1 (x)] 

= [X~A )(x), 1[1 *(x)] = [X~A )(x), 1[1 (x)] 

= [X~A)(X),I[I*(x)] = O. 

Further 

[X~A),I[I] = (o"KI/2/2)A, 

and 

[X~A),I[I*] = (K I/2/2)A. 

(36) 

(37) 

It is amusing to note that in virtue of these commuta­
tion relations, the Eqs. (34) for X (A) are quite insensitive to 
ordering. Indeed if a + f3 = 1, we see that 

axX~A) + iSX~A) = - 20"KI/2(al[l*x~A) +f3X~A)I[I*), 

- axX~A) + iSX~A) = 2KI/Z(axjA)1[I + f3I[1X~A I), (38) 

axxiJ1) = KI!2(ax\A)1[I + f3I[1X~A)) 
+ o"K1/2(al[l *X~A) + f3X~A)1[I *). 

Explicitly we have 

¢z(x,s )¢z(x,s ) 

(39) 

- H ¢I(X,S )¢z(x,s) + ¢z(x,s )¢I(X,S)j 
Other important commutation relations obtained in the 

referenced workZ
-4 (for the case 0" = - 1) are the following. 

Let 
R *(S) = (i/jJ()b(s)a-l(s), 

then 

R (s)R (s') = s -I(S,S ')R (s ')R (s), 

(40) 

R *(s)R *(s') =S-I(s,s')R *(s')R *(5), (41) 

R (s)R *(s ') = s (s,s ')R *(s ')R (s) + 2m5(s - S '). 

Here S (S,S ') is a c-number whose only properties we need 
here are 

s -I(S,S') = s (s ',s) = s *(s,s '), 

andS(s,s) = - 1. 

III. THE INTEGRAL EQUATION 

(42) 

In Ref. 3, a dispersion relation for the repulsive case has 
been obtained. With the present notation this is 

e-itx/Z¢= (1) + jJ( foo R*(s')¢(x,s')e-it'x/2ds' 
o 21T - 00 s' - s - iE 

(43) 

Since in the case 0" = - 1, we have 

- (¢!) 
¢= ¢f' (44) 
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the Eqs. (43) are 

e - itXI2¢!(x,s ) 

= I + jJ( foo R *(s ')¢I(X,S ')e - iG'
x12ds' 

21T - 00 s' - 5 - iE 

e - itXI2¢f(x,s) 

= jJ( foo R *(5 ')¢z(x,s ')e - iG'X12ds ' 

21T - 00 s' - s - iE 

(45) 

Taking the limit x- - 00 and noting the expression of 
Eq. (31) for a(s) gives 

_ K fOC R *(s ')a(s ')R (s ')ds' 
a(s)-I- -

21Ti - "" s' - s + iE 
(46) 

We now plan to solve this for a(s ) as a function of R *,R. 
It is well known that a(s ) is a constant for all S. (Below this 
will be seen to follow as one of a set of relations.) In particu­
lar, then ifweexpanda(5) [or any function ofa(s)] in a Laur­
ent series in 5, each coefficient will be a constant. 

IV. 'THE CLASSICAL SOLUTION 

Nothing in the derivation of Eq. (46) is changed if all 
quantities are treated classically, i.e., they commute. It is 
interesting to treat this case to see that this singular integral 
equation does indeed have a solution. In addition, this leads 
to a rather convincing (if heuristic) "proof" of our general 
result. 

The solution is as follows. Since all quantities are now 
classical, we can write Eq. (46) as 

a(s) = 1 _ ~ foo I(s ')a(S ')ds ' 
21Ti - 00 s' - (s - iE)' 

where 

I(s ') = R *(s ')R (s '). 

Let 

N (z) = 1 _ ~ foo I(s ')a(s ')dS ' 
2m - 00 s' - z 

(47) 

(48) 

(49) 

then (i) N (z) is analytic in the complex z plane cut along the 
real axis; (ii) N (z)-1 as JzJ- 00; (iii) the boundary value 
(N _ (S )) as z approaches the real axis from below is 

N_(s)=1 - ~foo l(s/)a(s'Jds'. 
2m' - 00 s' - (s - iE)' 

and (iv) The difference of the boundary values of N is 

N + (s ) - N - (s) = - Ka(slf(s)· 

Thus, Eq. (47) says that 

N + - (1 - KI)N _ = O. 

Let 

X( ) - { 1 f"" In[l-K/(s')]ds '} z -exp - - , 
21Ti - 00 S' - z 

then X (z) is analytic and nonzero in the cut plane, and 
X (z)_1 as JzJ-oo. Further X _(s)lX +(S) = 1 - K/(s)· 
Equation (50) reads X +N + - X _N _ = o. 

(50) 

.. . M (z) = X (z)N (z) is analytic everywhere and goes to 1 at 00. 

We conclude M(z) = 1 and thus N (z) = l/X(z). ButEq. (47) 
then tells us that a(s) = N -(5). We conclude that 
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Ina(s) = - _1 J<£> In[l-K!(5')]dS' 
21Ti - <£> 5' - (5 - iE) 

(51) 

If we write In a(5) = - l:.: = od,,/S n + I, expand the right 
side ofEq. (51) in powers of 1/5, and equate coefficients we 
obtain 

dn = - ~f<£> (S'nn[l- KR *(S')R (t')]dS'·(52) 
21Tl - 00 

What should the quantum form for these constants be? 
A reasonable conjecture is that it should be Eq. (52) with 
normal ordering, i.e., all R to the right of all R *. Then Eq. 
(52) becomes 

dn = ~f<£> (5T{KR*R + til R*2R2 
2m - 00 2 

+ ~ R *3 R 3 + ... } dS" 

However, the commutation rules ofEqs. (41) and (42) tell us 
that R *2(5') = 0 = R 2(t '). Therefore, we expect the 
quantum constants dn to be dn = (K/i)(1I21T) 

The general term is obviously 

x f: <£> (t ,)n R *(5 ')R (5 ')ds '. We verify this in the next sec­
tion. 

V. THE QUANTUM SOLUTION 

We now want to solve Eq. (46) when a, R, and R * are 
operators. The simple approach using the theory of func­
tions of a complex variable does not seem to be applicable. 
However, formally we can obtain a solution by a Neumann 
series. Thus, we imagine K being replaced by EK and iterative­
ly obtain a power series in E. Aside from the possible compli­
cated structure of the solution so obtained, we have to con­
sider whether the series so found for quantities of interest 
converges as E-+1. We write 

<£> 

a(s) = I antS)· (53) 
n=O 

Choose ao(t) = 1, and obtain from Eq. (46) the recursion re­
lation 

an(s)= (~)nf<£> ffdkl ... dknR*(kn) ... R*(kilR(kl) ... R(kn). 
21Ti - <£> njn,,:-/ (kj+ 1 - kj - iE)(t - kn - tE) 

(54) 

If we expand in powers of 115, we obtain 
<£> C 

a(S)=I+ ~ _m , 
£.J 12"m+ 1 
m=O~ 

where [using Eqs. (53) and (54)] 

with 

Here 

<£> 
C = ~ c(n) 

m ""'" m' 
n=1 

Fn = R *(kn ) ... R *(kl)R (kil···R (kn). 

VI.PROPERTIES OF THE 0;:' 

(55) 

(56) 

(57) 

Notice that Fn is a symmetric function. Indeed inter­
changing two R * gives a factor just inverse to that obtained 
by interchanging the corresponding two R 'So Further Fn = 0 
when any two arguments are equal since 

R 2(k) = 0 = R *2(k). (58) 

Two immediate consequences are that the iE can be 
omitted and the singularities can be interpreted as principal 
values. Also orders of integration can be arbitrarily inter­
changed. 

From this a basic theorem follows. It is 

C~) = 0 ifn>m + 1. (59) 

Thus, the question of convergence of the series for em is 
answered. It is the sum of a finite number of terms. Some 
other consequences are as follows. 
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(i) c~)= ~f<£> kmR*(k)R(k)dk=~Im' (60) 
2m - <£> I 

(Here the second line is a definition of 1m.) 
(ii) For n > 1, c~) is a sum of products ofC~), where 

l:.jm j <m - 1. In particular then when we go fro~ m to 
m + 1, we obtain the one new constant 1m + 1 • 

(iii) For m>n - 1, 

C~) = (2:Jn L,<£> f f dkl· .. dkn 

XFn(kl, .. ·,kn)Sm(kl,· .. ,kn)' (61) 

whereSm is a homogeneous symmetric polynomial of degree 
m - (n - 1). For example, 

Sn_1 = lin!, 

n k. 
S=I~ 

n ;= 1 nt' 

S _ (l:.j = dk j)2 + l:.i<jkikj J 
n+1 - n! . 

The proofs of these properties are somewhat tedious if 
straightforward. Accordingly, we relegate them to an Ap­
pendix. However, they are essentially based on the simple 
lemma. 

Lemma: If g(kl, ... ,kn) is symmetric and vanishes when 
any two arguments are equal, then 

J-.J<£> dkl .. ·dkn g(kl,· .. ,kn ) = O. (62) 
- <£> nj,,:-/(kj+ 1 - kj ) 

Proof Let the integrand in Eq. (62) be { J I' With our 
assumptions relabel withj-+j + 1, n-+1. The integrand is 
then 
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Next do the same permutation on I l2' We obtain 

l3 = k3 - k2 I L. 
kl-kn 

Do this n - 1 times and average the n equivalent integrands. 
Then 

VII. EXPLICIT EXPRESSIONS FOR THE em 
With the properties obtained we have for lowest-order 

constants: for m = 0, 

C lll = ..!!.....-f'" F dk· 
o 21Ti _ '" I 1> 

for m = I 

(11_ K f'" k C I - -. klFld I' 

2m - '" 

C\2) = (~)2 f'" I dk l dk2 F2; 
2m - '" 

form = 2 

C~II= ~f'" kiFldkl, 
21Tl - '" 

C~) = (~)2 If'" dk l dk2 k2F2, 
2m - '" 

C~) = (~)3 ~ If'" I dk l dk2 dk3 F3; 
2m 3. - '" 

and for m = 3 

C 11) = ..!!.....- f'" k 3 dk F 
3 21Ti _ '" I I I> 

c(2) = (..!!.....-)2 If'" dk dk {k2 + klk2} F 
3 21Ti _ '" I 2 2 2 2' 

C~) = (2:J I I: ",I dk l dk2 dk3 k3F3, 

C~41 = (2:J4 I I I: ",I dk 1 dk2 dk3 dk4 F4 • 

The commutation relations (Eqs. 41) show that 
R *(kl)R (kJ!R (k1) = R (k1)R *(kl)R (kJ! 
- 2m5(kl - k2)R (k l ). From this it follows that 

Fl = R (k2)R (k2)R *(kJ!R (k 1) - 21TO(kl - k2)R *(kl)R (k l ) 

and 

2310 

F3 = R *(k3)R (k3)R *(k1)R (k1)R *(kJ!R (kd 
- 21TR *(k3)R (k3)R *(kdR (kl)O(k3 - k2) 

- 21TR *(k3)R (k3)R *(k2)R (k2)O(k3 - kd 

- 21TR *(k3)R (k3)R *(kdR (kl)O(k2 - k l ) 

+ (21TfR *(k3)R (k3)O(kl - k3)O(k2 - k3) 

+ (21TfR *(k3)R (k3)O(kl - k2)O(kl - k3)' 

Inserting these expressions into the C~) then yields 

Co = (Kli)/o, 
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C = '!..I + ('!..)2 10(10 - 1) 
I iii 2' 

C = '!..I + ('!..)21 (1 _ 1) + ('!..)3 10(10 - 1)(10 - 2) 
2 i 2 i I a i 3! ' 

C3 = ~/3+ (~r !/2(/0 -l)+!(Ii -11)J 

+ (~r 11(10 - i(/o - 2) 

+ ('!..)4 10(/0 - 1)(10 - 2)(/0 - 3). 
i 4! 

[Remember: Our definition is In = (1!21T)S"" '" kn 
XR *(k)R (k )dk.J 

VIII. IDENTIFICATION OF THE In and I~ 

We want to identify the In just introduced with the 
"polynomials" described in the Introduction. To do so, first 
let us see the effect of the In on a complete set of states. For 
the repulsive case such a set are the vacuum 10) and 

Ikl··okm )=R *(kl)·ooR *(kn)IO), 

m = 1,2, ... , - 00 <ki < 00. (63) 

From the commutation relations of Eqs. (41), we see 
that 

[In,R *(ki)] = (k;)nR *(ki), (64) 

and [using R (k )10) = 0] that 

InlkJ"o.km) = (~I (kir) Ikloookm)· (65) 

What is the result of applying the 1 ~ of the Introduction 
to these states? To find this, we need the commutators 

[ R *(ki ),1 ~ ] , 

i.e., in virtue of the definition ofEq. (40), we need 
[A,I ~ ], for A = a,b. 

We maintain that the fundamental relation 
[A (s),1~] = sn!X~AI(s)J "" '" (66) 

holds. Since the X~A 1 are combinations of rp, 71, t/J, and If we 
know the limits at ± 00. In particular, 

X~a)( 00 ,5 ) = X~al( - 00,5) = a(s )/2, (67) 

and 

X~b)(OO,S) = - X~)( - 00,5) = - b(s)/2. (68) 

Therefore, 

[ a(s ),1 ~] = 0, (69) 

and 

[ b (5 ),1 ~] = - 5 nb (5 ). (70) 

From Eq. (69) with n = 2 we conclude that a(s) is a 
constant for all S. For general n we then see that 

[lm,l ~] = 0, all n,m. 

Combining Eqs. (69) and (70) yields 

[/~,R *(ki)] = (kirR *(ki), 

and thus 

1~lkloookm) = (~I (kir) Ikloookm)· 

K. M. Case 
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Remark: This result holds for both the repulsive and 
attractive case. However, only in the repulsive case are the 
states Ikl···km ) complete. Thus, only in the repulsive case 
can we conclude that 

(74) 

IX. JUSTIFICATION OF THE FUNDAMENTAL RELATION 

To verify Eq. (66) one can proceed so: Note that in the 
classical case (commutators replaced by Poisson brackets) 
the equation is easily proved. Thus, one shows the analog of 
Eq. (66) holds for n = a and using a recursion relation for the 
I~ that 

{A(s),1~J =s{A(s),I~_d· (75) 

The analog ofEq. (66) is thus obtained by induction. 
In the quantum case one would expect there are polyno­

mial constants of the classical form with some suitable order­
ing. This is how the quantum constants I ~ of Eqs. (2) were 
constructed. Thus with the ordering given they satisfy 

[A (s ),1 b] = {X~A l(x,S ) J ~ ~ ~ :; (76) 

and 

[A (S),1 ~] = S [A (S),1 ~ - d . (77) 

Let us see how this comes about. We have 

[A,Ib] = I:"" [A,tfI*(x)tfI(x)]dx 

= I:"" {tfI*(x)[A,tfI(x)] + [A,tfI*(x)] tfI(xlldx. 

Using the commutation relations ofEqs. (35) this becomes 

[A,1 b] = I: 00 {tfl *O"KI/2X~A 1+ KI/2X\A Itfl Jdx. (78) 

The last of Eq. (34) then shows that 

[A,I b] = I: "" axx~A Idx = X~A '(x,s)1 ~ "" . (79) 

Next consider 

[A,1;] = I:"" [A,tfI* a; tfI] dx 

= I:JtfI* a; [A,tfI] _(a; [A,tfI*])tfI}dX 

The first two of Eqs. (34) then show that 

[A,I; ] = I:"" {tfl * l7Ki
l

/

2 
(iSX~A 1_ 2K1/2X!{' ItfI) 

_ KI/2 } 
X --2- (- iSX\AI- 2l7KI/2tf1*X~AI)tfI dx 

= s I-"" "" {tfl *l7KI/2X~A I + KI/2X~A Itfl Jdx. 

Comparing this with Eq. (78) indeed shows that 

[A,I;] =s[A,1b]. 

Consider one more example: 
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(81) 

[A,I;]== I:"" [A,ax tfI* ax tfI - l7KtfI*2tf1 2]dx. 

(a) [A, I:"" ax tfI* ax tfI dX] 

= I:"" {axtfl*ax[A,tfI] + (ax [A,tfI*])axtflJdx 

= I:"" {axtfl*l7KI/2axx~AI+KI/2(axx\AI)axtflJdx 

= I:"" {axtfl*l7KI/2(isx~AI_l7KI/2x~AltfI) 
+ KI/2( - iSX\A I - 2l7KI/2tf1*X~A I)ax tfI Jdx, 

where Eqs. (34) have been used. 
Integrating by parts we obtain 

[A, I:"" axtfl*axtfldx] 

= sf"" {tfI* l7K.I/2 axx~AI- KI:2 (axX\AI)tfI} dx 
- "" I I 

+ 2l7K l"""" tfI* axb tfl. 

Comparing with Eq. (80) we see that 

[A, I:"" axtfl*axtfldx] 

= s [A,1;] + 2l7K I:"" tfI* axx~Altfldx. (82) 

Also, 

(b) [A, I:"" tfI*2 tf1 2dX] 

= I:"" I tfI*2[A,tfl 2] + [A,tfI*2] tfl2Jdx 

=2 I:"" tfI*{aKI/2tf1*X~I+KI/2X\AltflJtfldx 

= 2 I:"" tfI * axx~A Itfl dx. (83) 

Combining Eqs. (82) and (83) we then see 

[A,1;)=s[A,I;]. (84) 

Similarly, one shows that 

[A,1;] =s[A,I;]. (85) 

Thus, we have shown that the classical polynomial con­
stants I b, I; , I; and I; (when fields are replaced by opera­
tors and properly ordered) are operators which satisfy Eqs. 
(66). It may be noted that the ordering is that which one 
might have guessed. The order is normal, i.e., all creation 
operators are to the left of all annihilation operators. This 
does not persist to higher order as seen in the last term of I ~ 
in Eqs. (2). 

It can be shown that with the choice given 

[A,1~] =s[A,1;]. (86) 

Note: The calculation is a little delicate. One must regard the 
field operators as tempered distributions. 

The main point is that for the higher-order polynomi­
als, non-normal ordered terms arise in the commutator 

K. M. Case 2311 



                                                                                                                                    

[ A ,1 ~ ] from the commutator with normal ordered terms in 
1 ~ with sufficiently high numbers of derivations. However, 
it can be shown that by suitably arranging the order of terms 
with fewer derivatives in 1 ~ these can be canceled. For ex­
ample: In the commutator of 1 ~ with A the commutator of 

- UK I:", {2(111*2)x(.p2)x + .p*2.p; + (.p:)2.p2}dx, 

with A gives rise to non-normal ordered terms which are 
canceled by the commutator of A with the non-normal terms 
in 1 ~ which have no derivatives. Again suitable delicacy is 
needed. 

X. CONCLUSION 

It has been shown that the polynomial constants of the 
classical nonlinear Schrodinger equation become quantum 
constants when the fields are promoted to operators and are 
appropriately ordered. 

As in the classical case these constants have a particu­
larly simple general form when expressed in terms of reflec­
tion coefficients. Indeed the classical expression strongly 
suggests the quantum form, Surprisingly, the quantum form 
is much simpler than the classical one, 

ACKNOWLEDGMENTS 

This work was partially supported by the Department 
of Energy under Contract No. DE-AC02-81ER10807. 

APPENDIX A: PROOF OF PROPERTIES OF C~) 

In Sec. VI various properties of the C ~I were listed. 
Here it is shown how these can be derived. 

The general integral we encounter is 

J~I = I .. ,f'" (kn)m gn(kl,k3'1 .. ·,kn)dkl .. ,dkn , (AI) 
- '" II;~I (kH I - kj ) 

where gn is a symmetric function of its arguments which 
vanishes when any two are equal. 

The most important result is the following theorem. 
Theorem: 
J~I = 0, n > m + 1. (A2) 

Proof This proceeds by induction. 
(1) The lemma of Sec. VI (Eq. 62) tells us that 

J~I = 0, n> 1. (A3) 

(2) We show that for n > m + 1, J~I can be expressed in 
terms of J~:I with n' > m' + 1, n > n', m > m'. Therefore, the 
integrals can be successively reduced to Jbni and are thus 
zero. 

To show the reduction property, we write 

_ (nl_ If"" dkl, .. dkn(kntgn KI-J - , 
m -00 IIr.=-/(kHI -kj ) 

n times. Thus, 

K2=KI = If'" dkl .. ,dkn[(kn)m_(kn_It]gn 

- 00 II( ) 

+ If"" dkl .. ·dkn(kn - 1 tgn , 
- 00 II() 

If"" dkJ' .. dkn [(kn)m - (kn_ tlm]gn 
K3 K I = 

- 00 II( ) 

+ ff"" dkl, .. dkn(kn_l)m_(k,,_z)"gn, 

- 00 II( ) 

+ If"" dkI .. ·dkn(kn - 2)mg" , 
- oc II() 

(A4) 

Kn = If'" dkI, .. dkn{[(knt-(kn_I)]rn+ [lkn_ I )m_(kn_ 2t]l 

- '" II( ) 

Now average the n expressions for K I , i.e., 

J~I = J... i K;. (A5) 
n ;= 1 

Four types of terms appear in Eq. (A5): 

TI = ffoo dkI .. ·dkn i (k;tgn, (A6) 
- 00 ; = 1 II( ) 

T = ff'" dk , .. dk [(kn t - (kn - I )m ]gn (A 7) 
2 _ '" I n II() , 

T = If'" dk , .. dk [(k2t - (kdm]gn (A8) 
3 _ '" 1 n II() , 

and (ifn>4) 

T4 = f f: '" dkl, .. dkn 

n - 1>1>3. 

[(k/)m - (k/_ I )m]gn 

II( ) 
(A9) 

By the lemma TI = O. To treat T2 , we eliminate the 
common factor k n - k n _ I in the numerator and denomina­
tor. Then 

T2 = f dkl",dkn n n-2 n-I gn. 
m I If'" (k )m - 1 - r(k )r 

r=O -'" IIj=l(kHI -kj ) 
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~I------------------------------------
The generic term is 

ff
oo (k )m - t - r(k )rg 

dk t",dkn n n _ 2 n - 1 n 
-00 IIj=t(kHI -kj ) 

_ ff"" dk dk (kn - 1 )rgn - t 
- I'" n-I 2 ' 

- 00 II;~I (kj + I - kj ) 

where gn _ t = S: 00 dkn (kn t - 1 - rgn , Thus, the expression 
is of the form J~n - II where r<m - 1, i.e" this is J~), where 
n' = n - 1 < n, m' = r < m. Here T3 is clearly the same as T2 
with relabeling. 

Weare left with T4 • If we divide out the common factor 
of k - k/_ I, T4then becomes 

T4 = rto r·J: '" dkl .. ·dkn 

(k/)m - 1- r(k/_ 1 j'gn 
X , 

II;:i(kHI -kj)II;~II(kj+1 -kj ) 

with n>4, n - 1>1>3. 
This is of the general form 

m-I 

T4 = 1: J~- IIJI::, = ;~l}. 
r=O 
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We now use the induction argument to show that at 
least one of the two factors in each of the terms in the sum are 
zero. 

Thus, consider J~ - II. This is of the form J~) where 
n' < n, m' < m. Therefore, it is zero unless n' - m'.;;;; 1, i.e., 
1- 1 - r< 1 or 1= r + 2 - a, where a;;> 0. The second factor 
J':" -=-It_l, is ofthe form J;:;., where n" < n, m" < m. But 
n" - m" = n + 1 - (r + 2 - a) - (m - 1 - r) = n - m 

+ a> 1 + a. Thus, J':" -=-/1+_\ is zero. 
The nonzero J ~I: As indicated in the main text, general 

results can be obtained. However, it is probably more infor­
mative to see how simply these can be computed for the 
small m values. Thus we have the following. 

For m = 0, the only nonzero integral is 

Jgl = J: 00 dk1 gl(kd· 

For m = 1, there are two nonzero integrals 

J\II = J: 00 kl dk l gl(kd, 

and 

i.e., 

We write 

J~ZI= ff"" (k~ -ki + ki)gzdk 1 dkz 
- 00 k2 - kl 

= J J: 00 (kz + k l)g2 dk 1 dk2 - Jh21, 

.. . Jh
z, 

= J J: "" kzg2 dk 1 dk2· 

[Here we have interchanged some dummy labels and used 
the symmetry g2(kl,k2) = gz(k2,k.).] 

The evaluation of J~I is most instructive since it illus­
trates the full range of tricks needed in the general case. We 
write J ~I in three equivalent forms: 

J~I = ff"" f k ~g3 dk l dk2 dk3 , 
- "" (k3 - k2)(k2 - k.) 
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ff
"" f [(ki + q + k~)]g3 = 0, 

- "" (k3 - k2)(kz - k 1) 

in virtue of our Lemma. Therefore, 

J~)= -.!..ff"" f 2(k~ -q)+(k~ -ki)g3dkldkzdk3 
3 - "" (k3 - kz)(kz - k l) 

= -.!..ff"" f (2(k3 + k2) + (k2 + k 1)) 

3 - "" kz - k I (k3 - kz) 
xg3 dk 1 dkz dk3· 

The terms proportional to k3 and kl are zero in virtue of the 
anti symmetry of the denominator. 

Interchanging the labels 1 and 3 in the second term we 
see it is of the same form as the first (with a minus sign). 
Therefore, 

J~) = -.!.. ff"" f k2 g3 dk 1 dk1 dk3 
3 - "" kl - kl 

= -.!..ff"" f k2 - kl + kl dk dk dk 
3 k k 

g3 I 2 3 
-00 2- I 

= + J J: ""J g3 dk l dkz dk3 - J~), 

".J~I = ~ ff"" fg3 dk 1 dk2 dk3· 
3. - "" 

The calculation of the nonzero J~) for higher m pro­
ceeds in exactly the same fashion, e.g., for m = 3 we have the 
four nonzero integrals: 

J~II = J: "" (klg1 dk .. 

JI21 = ff"" (k2 + klk2) g dk dk 
1 _ "" 2 2 2 I 2' 

J~I = + J f: ""J k~3 dk l dk2 dk3, 

J~41 = ~! f f f: ",5 g4 dk 1 dkz dk3 dk4· 

APPENDIX B: THE HIGHER-ORDER I~ 

We give a heuristic procedure to calculate these. 
First introduce 't. (These are essentially the classical 

constants put in normal ordered form.) Define 

Qlnl = (.2"rQlo), (Bl) 

where 

QIOI = (qt* ) 
- ul/l ' 

(B2) 

and 
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!/ (:~) 
. (ax <PI + 2UKI/I* ax-I(<PII/I) + 2K1/I* ax-

I(I/I*<P2) ) 

= 1 _ ax <P2 - 2UK [ax- I( 1/1 *<P2)] 1/1- 2K [ax- I(<PII/I)] 1/1 . 

Then we compute In from 

Q ~nl = [In' 1/1 *] , 
II -Q 2n = U [ In' 1/1 ] . 

(B3) 

(B4) 

The I ~ are then to be obtained from the In by reorder­
ing. The rules are the following. 

(1) At least one annihilation operator appears at the ex­
treme right in all terms. (This guarantees I ~ 10) = 0.) In par­
ticular, the term of highest order in the derivatives is unique­
ly determined by this requirement. 

(2) Choose the ordering of the remaining terms such 
that [A,I ~] = 5 [A,I ~ _ I ] . It is very tedious, but possible, 
to show this. 

APPENDIX C: COMMENTS ON THE COMMUTATION 
RELATIONS BETWEEN FIELD OPERATORS AND ZS 
FUNCTIONS 

A "conventional,,3 derivation of these runs so: Consid­
er, for example, [tPl(X), 1/1 *(x)]. Using Eqs. (12) and (3), we 
obtain 

= KI/2 J: ao e + is Ix - x' l12tP2(x') 

X [1/1 (x'), 1/1 *(x) ]dx 

= KI/2 J: ao eis(x - x'1/2tP2(X')8(x' - x)dx' 

= (KI/2/2)tP2(X). (CI) 

Here we have used: (i) the fact that tP2(X') involves only 1/1,1/1* 
for arguments less than x and so [tP2(X'),1/I *(x)] = 0; and (ii) 
the convention that 
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[ 8(x)dx= J... 
-ao 2 

(C2) 

While this seems very reasonable, a purist might ask for 
a further justification. There are two approaches. 

The first, using the theory of tempered distributions is 
very technical, rigorous, and tedious. 

The second is slightly heuristic but very convincing. 
Thus, we note that the only use of the commutation relations 
of 1/1,1/1* with the ZS functions is to obtain Eqs. (35)-(37). 

Note that the commutation relations ofEq. (3) are ob­
tained from the classical Poisson brackets via the correspon­
dence principle. Hence we might expect the same for other 
commutators. 

Consider the classical form of Eq. (12) and take the 
Poisson bracket with 1/1 *(x). We obtain 

! tPl(X), 1/1 *(x) J 

= KI/2 J: ao eislx - X')l2tP2(X'l! 1/1 (x'), 1/1 *(x) Jdx 

= -iKI/2 J:ao eislx-x'1/2tP2(X')8(x' -x)dx'. 

Now using the convention ofEq. (C2) this gives 

! tPl(X), 1/1 *(x)j = ( - iK I/2/2)tP2(X). 

(C3) 

(C4) 

Similarly, using the same convention, we obtain the classical 
analog of our commutators with the other ZS functions. 
Combining these, we then obtain the classical analog of Eqs. 
(35)-(37). However, in Ref. 6 these relations are obtained 
completely rigorously with no use of Eq. (C2). 

IV. E. ZakharovandA. B. Shabat, Zh. Eksp. Teor. Fiz. 61,118 (1971) [Sov. 
Phys, JETP 34,62 (1972)]. 

2E. Sklyanin and L. D. Faddeev, Dok!. Acad. Nauk. SSSR243, 1470(1978) 
[SOy, Phys. DokI. 23, 902 (1978)]. 

3H. B. Thacker and David Wilkinson, Phys. Rev. 0 19, 3660 (1979); D. B. 
Creamer, H. B. Thacker, and D. Wilkinson, Phys. Rev. 021,1573 (1980). 

4B. Davies, J. Phys. A: Math.Gen. 14,2631 (1981). 
50. J. Kaup, J. Math. Phys. 16,2036 (1975). 
6M. D. Arthur and K. M. Case, J. Math. Phys. 23, 1771 (1982). 

K. M. Case 2314 



                                                                                                                                    

Conformally invariant wave equations for massless particles 
James A. McLennan 
Department of Physics. Lehigh University. Bethlehem. Pennsylvania 18015 

(Received 1 February 1983; accepted for publication 9 March 1984) 

The invariance of wave equations for massless particles under conformal transformations of 
space-time is briefly summarized. Particular attention is given to a recent paper by Bracken and 
Jessup in which it is claimed that results obtained by the author are in error. Their paper contains 
several misleading statements based on a misreading of the author's paper, and in addition an 
argument of theirs, intended to show error, is itself invalid. Their claims of error on the author's 
part are therefore unfounded. 

PACS numbers: lUD.Qr, I1.3D.Ly 

I. INTRODUCTION 

It was demonstrated long ago that the scalar wave equa­
tion, I Maxwell's equations,2 and the Dirac equation with 
zero mass3 are invariant under the conformal transforma­
tions of space-time. The conformal invariance in these cases 
was clearly related to the absence of mass, and the question 
arose whether other equations for massless particles were 
also conformally invariant. This question was investigated 
by the author,4 the equations considered being those con­
structed by Garding5 for massless particles of arbitrary spin. 

Recently Bracken and Jessup6 have claimed that CI is 
in error in several respects. However they have not accurate­
ly represented the content of CI, and an argument which 
they employ is lacking in precision and therefore unable to 
demonstrate their point. Consequently they have not in fact 
found errors in CI. The purpose of this note is to rectify the 
inaccuracies in the paper of Bracken and Jessup, and to sum­
marize in elementary terms the situation regarding the con­
formal invariance of the equations in question. 

II. REPRESENTATIONS OF THE CONFORMAL GROUP 

The method used in CI was to extend the standard 
spin or representations ofthe Lorentz group to the conformal 
group, and then to apply the resulting transformations on a 
case-by-case basis to the equations at hand. The method of 
construction of representations of the conformal group can 
be described as follows. Let C denote the conformal group 
(on space-time) andL the homogeneous Lorentz group; their 
parts connected to the identity will be denoted by Co and La. 
Under a conformal transformation x-x' [where 
x = (xo, XI' x2, x 3 ) and we use a metric with signature 
+ - - -] the interval is changed by 

dX'2 = f-l2 dx2. (1) 

The scale factor f-l is related to the Jacobian J of the transfor­
mation by IJ I = I d 4X' / d 4X I = f-l4. If we write 

dx; = f-lQ/ dx), (2) 

then Q is a Lorentz matrix. Thus the transformations in­
duced by C on differential forms at x differ by only a scale 
factor from Lorentz transformations and the same is then 
true of the transformations induced on the tangent space at 
x. (This was noted in the early work of Bateman and Cun­
ningham.2) Hence we can immediately apply the theory of 
representations of the Lorentz group7 in the following way. 

The standard expression of a point in Minkowski space 
as a matrix on C 2 (complex two-space) is _ to + X3 X I - i X2) X- . 

1+ i X2 Xo - X3 
(3) 

From the fact that Q is a Lorentz matrix it follows that, for 
every element in Co, there exists a matrix q on C 2 (which is 
determined uniquely except for sign) such that 

dX' =q*dXq. (4) 

Taking determinants we find Idet ql2 = f-l2. For the full 
group C it is necessary to consider transformations from C 2 

to C'- (where the bar denotes the complex conjugate), just as 
for the Lorentz group. By applying two transformations in 
succession, it is readily confirmed that f-l and q satisfy the 
composition laws 

f-l(g', gx) f-l(g, x) = f-l(g'g,x), 

q(g,x)q(g', gx) = q(g'g, x), (5) 

where g, g' are elements of Co. The matrix r which occurs in 
the transformation for tangent vectors satisfies 

rIg, x)q(g, x) = 1, rIg', gx)r(g, x) = r(g'g, x). (6) 

Thus f-l and r are "multipliers" in the sense of Bargmann. 8 

Consider the transformations u-u' = T(g) u on func­
tions u( x) with values in C 2

, 

(T(g)u)(gx) = f-l- r (g, x)r(g, x)u( x). (7) 

These satisfy T(g) T(g') = T(gg')andsoprovidearepresenta­
tion of Co, or rather a family of representations which is 
labeled by the parameter t. (Actually this is a two-valued 
representation, or a representation of the covering group, as 
are also the other representations discussed below for half­
integral spin.) The generalization to any of the finite irreduc­
bile representations D (m,n) of La is immediate. [Here we la­
bel the representations by integers, the relation to Cartan's 
notation being D (m,n) = !iJ mI2.n12' The D (m,n) can be ex­
pressed as a set of transformations on a symmetric spin or 
with m undotted and n dotted indices.] If u carries the repre­
sentation D (m,n) of La, then the corresponding representa­
tion of Co is provided by the transformations which we again 
denote by T(g), 

(T(g)ut/3'(gx) 

= f-l - r (g, x)"" A (g, x) ... rPp (g, x) ... uA .. p ... ( x). (8) 

Here for clarity the spinor indices have been written out and 
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,Pi> is the complex conjugate of rPp. These representations 
will be denoted by C (m,n,t ). 

Except for a factor f-l, , has algebraically the same form 
as its restriction to L o, and so the standard Lorentz scalars 
are conformal scalars modulo a power of f-l. Thus if u'v de­
notes the Lorentz-invariant bilinear form associated with 
the representation D (m, n), then u'·v' = f-l - W U·V, where 
w = m + n + 2t. By choosing t, one can make U·V d 4X a con­
formal invariant, which leads to the construction of confor­
mally invariant action principles.9 

The scale factor f-l corresponding to any element of C 
can be evaluated by calculating the Jacobian. To evaluate" 
let U (Q) denote the standard mapping of Lo to SL(2). Then 
since U is unimodular while, (as normalized above) satisfies 
det, =f-l- I

, we have "g, x) =f-l- 1/2 U(Q), where Q is the 
Lorentz matrix associated with the pair g,x according to 

-I . ax; 
Qij = f-l R ij , R,J = -a . (9) 

Xj 

In CI, , was worked out explicitly for the accelerations (or 
special conformal transformations) and the inversion. The 
results are as follows. The acceleration is 

x;=f-l[xi -aix
2
], f-l=[1-2a.x+a2x 2

]-I, (10) 

and the associated matrix, is given by 

1";. = 8~ + aajIx/J. (11) 

Here XajI denotes the elements of the matrix (3) (e.g., 
Xli = XI - i x 2) and aail is related to a i in the same way. 
[The result (11) is given in CI for infinitesimal a, but has the 
same form for finite a.] The inversion is 

(12) 

This requires a mapping from C 2 to (;1, and the matrix, is 
given by 

'ail = k -1/2XajI' (13) 

For the dilatations x; = f-lXi( f-l = const), we have, = f-l -1/2. 

For integral spin, Eq. (8) can be written as a transformation 
on a tensor, 

(14) 

III. GARDING'S EQUATIONS AND THEIR BEHAVIOR 
UNDER CONFORMAL TRANSFORMATIONS 

Once the above representations were constructed, they 
were used in CI to discuss the conformal invariance of Gard­
ing's equations. These can be described as follows. Let u, as 
above, carry the irreducible representation D (m,n) of Lo, and 
putp; = a/ax;. From the quantities Pi u one can form (by 
multiplying the representations for P; and u, then reducing) 
four objects which transform irreducibly according to the 
representations D (m + 1, n + 1), D (m + 1, n - 1), 
D (m - 1, n + 1), and D (m - 1, n - 1). (There are obvious 
exceptions when m or n vanish.) On setting these four quan­
tities equal to zero, Garding's irreducible equations are ob­
tained. There are slight modifications in the procedure when 
equations invariant under L are desired. (The situation here 
is similar to that in the theory of the neutrino; the equations 
constructed for Lo are also invariant under L if transforma­
tions between u and its complex conjugate are allowed.) 
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The equations which transform asD(m + 1, n + 1) are 
not physically interesting since they do not have plane-wave 
solutions. This is easily seen when m = n = 0 as then the 
equations for the scalar u become Pi u = 0; the prooffor arbi­
trary m,n is not difficult. Hence when m vanishes there is 
only one interesting equation, which transforms as 
D (1, n - 1); a similar situation occurs if n = O. 

Each of Garding's irreducible equations applies to a 
massless particle in the sense that they have solutions which 
are also solutions to the wave equation Du = O. Garding 
then constructed "minimum sets" which have the property 
that every solution to the equations in a minimum set is also a 
solution to the wave equation. It was found that if m or n 
vanishes then any single irreducible equation is a minimum 
set; otherwise any two equations form a minimum set, with 
an exception to be noted below. (Clearly a minimum set 
which is composed of two irreducible equations does not 
itself transform according to an irreducible representation.) 
If the equations without plane-wave solutions are eliminat­
ed, the remaining minimum sets fall into only four classes, 
which we shall proceed to list here. 

In case I either m or n vanishes and a minimum set 
consists of a set of equations which transforms irreducibly 
according to the representation D (1, n - 1), or D (m - 1,1). 
If neither m nor n vanishes, the following additional cases 
occur. In case II the minimum sets consist of two irreducible 
equations transforming according to D (m + 1, n - 1) and 
D (m - 1, n - 1), or according to D (m - 1, n + 1) and 
D (m - 1, n - 1).10 In case III the minimum sets contain 
equations transforming according to D (m + 1, n - 1) and 
D (m - 1, n + 1). However there is an exception when 
m = n, as then these two equations do not form a minimum 
set. These three cases have been described in terms appropri­
ate to Lo. The structure of the minimum sets applicable to L 
is similar, but if m = n there is a special case which will be 
called case IV: a minimum set consists of two equations, one 
of which transforms irreducibly (under L ) as 
D(m + 1, m - I)GlD(m -1, m + 1), and the other as 
D (m - 1, m - 1). In this case it can be shown that u is a 
symmetric tensor with zero trace and the minimum set re­
duces to 

uij = P;Pj· .. l/J, Dl/J = O. (15) 

The scalar wave equation does not occur in Garding's mini­
mum sets except through this reduction. 

The results obtained in CI regarding the conformal in­
variance of Garding's equations and minimum sets can be 
summarized as follows. First, all of the irreducible equations 
are conformally invariant. If the irreducible equation is Lor­
entz invariant when u transforms according to the represen­
tation D (m, n), then it is conformally invariant with the 
transformations corresponding to the representation 
C (m,n,t ) for a particular value of t; the value of t is different 
for each of the irreducible equations which can be written for 
a given u. (These values of t are listed in a table in CI. Note 
that m, n have slightly different meanings there than here.) 
For the minimum sets, conformal invariance was not consid­
ered in those cases which do not have plane-wave solutions. 
It was also not considered for case IV since these minimum 
sets can be reduced to the scalar wave equation and so were 
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not felt to be of interest in themselves. In case I, the confor­
mal in variance is an immediate consequence of that for the 
irreducible equations. In this case m or n vanishes and Table 
I ofCI yields the value t = 1, so the representation which 
yields invariance is C (m,O, 1) or C (O,n, I). In case II the trans­
formation law which results in invariance is different for the 
two irreducible equations (they have different values for t ), 

and so neither transformation law leaves the minimum set 
invariant. However it is invariant with a third transforma­
tion law which corresponds to the representation 
1m + I ® C(O,n,l) [or C(m,O,I) ® In + d, where Ip denotes 
the p-dimensional identity representation. In case III, the 
minimum sets were shown not to be conformally invariant. 
(Here for brevity no distinction has been made between in­
variance under Co and under C. Details on this point are 
available in CI.) 

The reducibility of the representations in case II merits 
further comment. Consider a minimum set composed of 
equations transforming irreducibly under Lo according to 
D (m - I, n + 1) and D (m - 1, n - 1), re~pectively. As 
shown by Giirding, the combination of equations can be 
written as 

/30 a, ... a,j3,···/3n - ° (16) P a,u - . 
This equation does not transform irreducibly under Lo since 
the left-hand side is not symmetric in the dotted indices; the 
irreducible equations can be retrieved by forming symmetric 
parts in the dotted indices. Transformations which leave this 
equation invariant under Co are 

(T (g)u t' ... a,j3,···/3n(gx) 

= /1-I(g, x)ra,,,, (g, x) ..• ram "m (g, X)U",···",j3,···/3n( x). (17) 

Since the indicesPI . ..i3n are not summed over, these trans­
formations correspond to the representation 
C (m,O, 1) ® In + I . Ifn > ° this representation can immediate­
ly be reduced to a direct sum of n + 1 representations 
C(m,O,I). Ifn = 0, theindicesPI···Pn are absent and we have 
case I. If n > 0, then for fixed values of PI"'Pn , Eq. (16) is 
identical to the case I equation, that is, Eq. (16) is a collection 
ofn + 1 independent case I equations. The conformal invar­
iance in case II, with the transformation law (17), is therefore 
an immediate consequence of that in case I. Lorentz invar­
iance of the irreducible equations individually requires u to 
transform (except for a constant factor) according to D (m,n), 
but as is usually the case the invariance properties of the set 
of equations are different from those of its individual equa­
tions or subsets. Thus Eq. (16) is Lorentz invariant if u trans­
forms according to the representation D (m,n) but it is also 
invariant with the reducible representation D (m,O) ® In + I' 

(see Ref. 11) indeed even with D (m,O) ® GL(n + 1), as is 
manifest from the form of the equation. Similar remarks ap­
ply when the roles of m and n are interchanged. In such cases 
the transformation law under Lo is not determined by the 
free-field equations but might become definite if interactions 
were included. 

Weinberg l2 has shown that any free massless field can 
be expressed as a linear combination of certain fundamental 
fields and their derivatives, where the fundamental fields 
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transform under Lo according toD (m,O) or D (O,n). Giirding's 
minimum sets reduce to equations for the fundamental fields 
as follows. In case I the fields already transform as funda­
mental fields. In case II the minimum sets admit the reduc­
ible representations described in the previous paragraph so u 
is a collection of fundamental fields. Case IV has the reduc­
tion (15) to a scalar field. In case III there is a similar reduc­
tion (which was not realized when CI was written): If for 
example n > m, then it can be shown from the case III equa­
tions that u is an mth derivative of a quantity which trans­
forms according to D (O,n - m) and satisfies the case I equa­
tions. Thus one way or another all of Giirding's minimum 
sets lead to case I or to the scalar wave equation, in accor­
dance with Weinberg's theorem. 

IV. DISCUSSION 
Now we turn to the paper by Bracken and Jessup. First 

of all, this paper contains several statements regarding CI 
which are not in accord with the actual content of that refer­
ence. In the abstract they state: " .. .it is confirmed that not all 
Poincare-invariant sets of massless Type-Ia field equations 
are conformal invariant, contrary to some often-quoted re­
sults of McLennan, which are shown to be invalid." Con­
trary to this statement, in CI not all minimum sets were 
considered (even beyond those without plane-wave solu­
tions), and of those treated some were shown not to be con­
formally invariant. That some minimum sets are not confor­
mally invariant is stated explicitly in the Introduction, in the 
section devoted to the minimum sets, and again in the Sum­
mary of CI. (Only minimum sets qualify as massless field 
equations in the sense of the above quotation, as those irre­
ducible equations which are not minimum sets do not imply 
the wave equation.) Then in their Introduction, Bracken and 
Jessup say: "McLennan claimed to prove the invariance of 
each of Giirding's 'irreducible sets' .... " Giirding did not 
have "irreducible sets," and the term is not used in CI. If 
they said instead "irreducible equations" the statement 
would be true; each of the irreducible equations is confor­
mally invariant. If they meant to say "minimum sets," then 
as already noted the statement would be false. 

Particular emphasis is placed by Bracken and Jessup on 
alleged error with regard to case IV, but as stated above 
conformal invariance in this case was not considered. They 
quote the following: (such sets of equations) " ... are equiva­
lent to the scalar or pseudo-scalar wave equations," imply­
ing incorrectly that the statement of equivalence constituted 
a claim of conformal invariance. In CI the reduction (15) is 
given and the sentence immediately following in full quota­
tion is "Thus the minimum sets made up from (3.11) and 
(3.12) are equivalent [in the sense of (3.15)] to the scalar or 
pseudo-scalar wave equation." There Eqs. (3.11) and (3.12) 
constitute the case IV minimum set, and Eq. (3.15) is the 
same as (15) above. Contrary to the implication of the incom­
plete quotation by Bracken and Jessup, it is not stated that 
the case IV minimum sets are conformally invariant. Instead 
they were removed from further consideration once the 
equivalence (15) was established, and Sec. III closes with an 
unambiguous statement to this effect. Bracken and Jessup 
attribute error in this case to misunderstanding of a point 
that Pi is not "conformal covariant." What they mean is not 
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clear; the derivative operator always behaves as a contravar­
iant vector under transformations of the coordinates. How­
ever it is to be emphasized that the results of CI were based 
on specific, detailed calculations rather than on a casual ap­
plication of some unsupported rule of covariance. 

Bracken and Jessup are correct that the case IV mini­
mum sets are not conformally invariant, but this fact seems 
not to have much significance. The natural description of a 
scalar particle is by the scalar wave equation rather than the 
more complicated case IV equations. 

Apparently Bracken and Jessup confirm the results of 
CI in regard to case I, as they state "We detected no errors in 
this part of McLennan's work." However in regard to case 
II, they assert "This contradicts a claim made by McLennan, 
but it is easy to find an error in his analysis." As noted above, 
the conformal invariance in case II is an immediate conse­
quence of that in case I, so there is no additional analysis to 
be in error. Indeed Bracken and Jessup do not, as they claim, 
locate any error in analysis, but instead construct an inde­
pendent argument which leads to what they believe to be a 
contradiction. They note that the generators of infinitesimal 
rotations can be obtained by commuting generators of trans­
lations and accelerations. The acceleration transformations 
given in CI, having the form (17), act trivially on the space 
labeled by the dotted indices, and so will the rotations ob­
tained this way. Contradiction is then claimed because the 
infinitesimal rotations "will affect all dotted and undotted 
indices." This argument makes no contact with the equa­
tions in question, so the claim is not merely that the equa­
tions are not invariant, but that the transformation itself is 
somehow in contradiction. Indeed they say "McLennan's 
proposed transformation law is not consistent if p # 0." 
However it is nothing more than a nonsingular linear trans­
formation on the components of u, which violates no math­
ematical requirements whatsoever. There is no mathemat­
ical necessity for a rotation or a Lorentz transformation to 
affect all Greek indices, dotted or undotted. The indices oc­
cur only as a matter of notation and have no mathematical 
content in themselves, while the transformation law is deter­
mined mathematically by a requirement of invariance. 

A referee has maintained that Bracken and Jessup use a 
different definition of in variance, according to which the be­
havior of u is regarded as "predetermined, being defined by 
the spinor indices present," and furthermore that "these 
equations are not conformal-invariant in the usual sense of 
the term, when applied to a relativistic wave equation for a 
field whose Lorentz transformation properties have already 
been prescribed." The definition of in variance given by 
Bracken and Jessup contains no clear statement to this ef­
fect, and in any case the use of a different definition cannot 
provide grounds for the claim that the analysis of CI is in 
error. However there is evidently need for some discussion of 
the meaning of invariance. 

The traditional definition of invariance can be stated as 
follows. 13 Let Dx be a differential operator. Iffor an inverti­
ble transformation x-+x' = gx on the coordinates there ex­
ists a transformation u-+u' = su such that Dx u = 0 is equi­
valent to D x' u' = 0, then the equation D x u = 0 is said to be 
invariant under g. It is readily confirmed that the set of all 
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such g forms a group G, and one speaks of invariance under 
G. The set of all s also forms a group S, and there is a homo­
morphism from S onto G whose kernel consists of gauge 
transformations. The group S (or more properly, the pair G, 
S) is called the symmetry group of the equation. 

Thus "invariant" has its everyday meaning of "un­
changed"; the equation is invariant ifits form after the trans­
formation is the same as before. The phrase "invariant under 
g" means that there exists a corresponding transformation s 
on u such that the pair g, s leaves the equation invariant; the 
existence of other transformations on u which do not meet 
the requirement does not disprove invariance under g. 

In CI the discussion of the in variance under Co of the 
case II minimum sets is contained entirely in one sentence 
which reads "For the transformation (4.6), the minimum set 
(3.19) is invariant if the wave function transforms like, ... " 
where (4.6) is the infinitesimal acceleration and the equation 
then displayed is the corresponding form of (17) above. This 
plain-English statement has the unambiguous meaning that 
when the transformations are carried out, one recovers the 
original equation, unchanged in form. 

The notion that invariance of an equation entails a "pre­
scribed" or "predetermined" transformation is a confusion 
of concepts, One can stipulate that u transforms in a certain 
way for a variety of reasons, such as to illustrate a notation, 
or to study the transformations themselves, or to construct 
equations which are invariant with a given representation, 
However an equation determines its own symmetry group 
and once the equation is established one has no more free­
dom, The term would lose all useful meaning if an equation 
could be invariant or not depending on the prescription or on 
such fashions as the notation, 

Restrictions on the transformations to be allowed can 
destroy expected group-theoretical properties. The straight­
forward and general demonstration that G and S are groups 
depends on the supposition that all transformations which 
leave the equation invariant are included (otherwise the set 
of transformations might not be closed). Equation (16) has an 
obvious group of gauge transformations which consist oflin­
ear transformations with constant coefficients on the space 
labeled by the indices jJ 1 ••• jJ n' The representation 
D (m, 0) ® In + 1 can be obtained by combining transforma­
tions from D (m, n) with gauge transformations. If it is de­
sired to retain the group property and the gauge transforma­
tions are admitted, then Lorentz invariance according to 
D (m, n) requires the acceptance of D (m, 0) ® 1 n + 1 • The pro­
hibition, for whatever reason, of D (m, 0) ® In + 1 yields a 
subset of S which is not a group. In particular, this subset is 
not homomorphic to Co, whereas the argument by which 
Bracken and Jessup claim to find a contradiction assumes 
the existence of a homomorphism. 

Electromagnetic theory provides a familiar example 
with features similar to the case at issue. The theory using 
Lorentz gauge is Lorentz invariant if the potentials trans­
form as a four-vector, but in Coulomb gauge it is necessary to 
augment the four-vector transformation law with a gauge 
transformation. One cannot claim that the potentials trans­
form as a four-vector merely because they are labeled by a 
four-valued index, 
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One can infer correctly from the invariance under acce­
lerations as stated in CI that Eq. (16) must be Lorentz invar­
iant with the representation D (m, 0) ® In + I but this is evi­
dent from the form of the equation. Furthermore it is 
necessary in order for these minimum sets to conform to 
Weinberg's theorem. 

In the Appendix below detailed calculations are pro­
vided to confirm that the case II minimum sets are confor­
mally invariant. Detailed calculations were not given in CI 
for any of the minimum sets since the computations are simi­
lar to those which were provided for one of the irreducible 
equations. 

In summary, Bracken and Jessup have found no errors 
in CI, and they have misrepresented the content of CI. It is 
hoped that their misunderstanding will not be propagated in 
the literature. 

APPENDIX: PROOF OF CONFORMAL INVARIANCE FOR 
CASE I AND CASE II MINIMUM SETS 

In this Appendix it will be shown that Eq. (I6) is invar­
iant under Co for arbitrary values of m and n. 

We recall some of the rules of spinor analysis. 14 Spinor 
indices are raised and lowered according to a l = az, 
aZ = - a I' This can be expressed by 

(AI) 

where EaA is the antisymmetric symbol with 
EJ2 = - EZI = 1. Wehaveaa

a = - aaa soifaissymmetric 
then aa a = O. In addition we have the identities 

aaAafJA = aAaaAfJ = ~ det a, 

bb AP =8Ab z 
a{3 a' 

baPbAp -bapb PA =bz81dj,. (A2) 

Note that b aPbap = 2b z. The above identities are easily 
proven by writing them out fully, for example, 

aualA = alla ll + aJ2a lz = allazz - a 12aZI = det a. 
(A3) 

We first consider the behavior of the derivative opera­
tor paP = a/axaP under conformal transformations. We 
have 

. aXA p'afJ = __ P_fJAP. 
ax'ap 

For the inversion, 

XaP = - kX ~p/X'2, X'2 = k 2/x2. 

We then obtain 

ax). '. 
--p = - k -I [x28all!. _ X .xafJ]. ax'. A p Ap 

afJ 

Using Eq. (19) we get 

aXA . 
--p- = 1"'p,tJA' 
ax~p 

where r is given by Eq. (13). Hence 

(A4) 

(AS) 

(A6) 

(A7) 

p,aP = 1"'p ,PApAP, (A8) 

which confirms the remarks near the beginning of the paper 
that the derivative operator transforms according to a pro-
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duct of transformations on C 2 (or, in this case, between C 2 

and (72). The accelerations can be obtained from an inver­
sion followed by a translation followed by the inversion 
again: 

x/; = - k [( - kxJxZ) - t;] [( - kx/xZ) - t] -z. (A9) 

This reduces immediately to Eq. (10) with a; = - tJk. Ap­
plying the same sequence of transformations to r, we obtain 
the result (11), with the transformation law for the derivative 
operator having the form 

p/aP = 1"'A,PppAP. (A 10) 

We now proceed with the calculation to show that Eq. 
(16) is invariant under the accelerations with u transforming 
according to Eq. (17). Starting out with Eq. (16) in the primed 
coordinates, we obtain 

P
,Po u,al .. ·a"iJI·"Pn 

al 

Now 

and in addition 

pAp/l-1 = - a"'P + a2X AP. 

The first of the identities (A2) yields 

so we get 

r ral pAPra2 = - II - I aa,p E '2 'I • alA AI A2 r ~ A 

(All) 

(A12) 

(A13) 

(A14) 

(AlS) 

This and similar terms give no contribution in (All) since u 
is symmetric in the superscripts A.I"'A. m • In addition we have 

r pApu-lrGI 
alA. r- Al 

When Eq. (11) for r is used, this expression reduces to zero. 
Thus the last term in Eq. (All) vanishes, and we are left with 

P
'PO u/al' .. a"iJI· .. Pn 

GI 
- I 80 al am Ap AI"'A"iJI",Pn =/l r pralAr AI···r A,.,P U . 

Use ofEq. (A14) yields 

=0. 

(A17) 

(A18) 

This completes the proof of invariance under accelerations. 
The above demonstration applies to Eq. (16), which is 

the same (except for notation) as Eq. (3.17) in CI. A similar 
argument applies to Eq. (3.19) in CI. Invariance under Co 
follows from the (evident) invariance under dilatations, 
translations, and Lorentz transformations. Equation (3.19) 
is also invariant under C, as follows from its invariance un­
der L. The same analysis also applies to the case I equations, 
it only being necessary to suppress the indicesPI .. ·Pn. 
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It may be useful to provide an alternative calculation 
using the more familiar four-vector notation. The simplest 
case which illustrates the point involved is when m = n = 1 
and Eq. (16) becomes 

(A19) 

This is a set of two independent two-component neutrino 
equations, but U can couple to other fields as a four-vector. 
Let ua/3 correspond to U i in the manner ofEq. (3). By a 
straightforward calculation, Eq. (A19) is converted into 

i 0 . m k 0 (A20) P Ui = , pjui - PiUj - ICijkmP U = , 
where Cijkm is the completely antisymmetric symbol with 
COI23 = 1. These two equations are (in a different notation) 
the same as the two irreducible equations which comprise 
the minimum set. That U i satisfies the wave equation follows 
immediately from the two equations; neither equation by 
itself implies the wave equation. Equations (A20) are not 
invariant under L (with linear transformations). The corre­
sponding minimum set which is invariant under L has 
Pi Uj - Pj Ui = 0 in place of the second of Eqs. (A20) and the 
reduction (15) then follows. 

We will demonstrate the invariance of Eqs. (A20) under 
accelerations. The manipulations are lengthier than when 
spinor notation is used, and so for simplicity only infinitesi­
mal accelerations will be considered. Then the transforma­
tion on the coordinates is 

x; = (1 + 2a,x)xi - aix
2

, 

from which we get 

ax 
_' = (1- 2a.x)g .. + 2(a.x. - ax.). ax') I} I} } I 

(A21) 

(A22) 

The transformation law for U i under accelerations can be 
obtained by transcribing Eq. (17) (with m = n = 1) into four­
vector notation, and for infinitesimal a the result is 

u; = (1 - 3a,x)ui + xia·u - aix·u - iCijkmalxkum. 
(A23) 

[This transformation does not have the form (14) since U is 
being transformed as two independent spin-! fields.] We then 
obtain 

pju; = (1 - 5 a,x)pju i + (amx, - aixm)pjum 

+ 2(amxj - ajxm)pm Ui - iC'mnpamXnpjUP + Li'j' 
(A24) 

where 

Li ij = gij a·u - 3ajui - aiuj + iCijmnamUn. (A25) 

It is readily confirmed that 

(A26) 

so Liij drops out when the left-hand sides of Eqs. (A20) are 
formed. For brevity we introduce 

(A27) 

and write Eq. (37) as U = 0, V'j = O. Equation (A24) yields 
immediately 
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U' = (1 - 5 a·x)U - aixlVij . (A28) 

Next we calculate V,~j' using the identities 

Ci}mn cPqrn 
= - I ( ± )8I(8J8'",. 

(A29) 

Here the sum extends over the six permutations of i,j, m, the 
sign being positive or negative depending on whether the 
permutation is even or odd. After a tedious but straightfor­
ward manipulation it is found that 

V;) = (1 - 5 a,x)Vi) + (aix) - a}xi - iCi}mnamXn)u 

(A30) 

Equations (A20) then show that U' = 0, V,'} = 0, which 
completes the proof of invariance. 
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We study the distribution of2-plane elements on which infinitesimal parallel displacement of 
isovectors yields identity. This yields to an algebraic and differential classification and, in the 
generic case, to a quasimetric naturally associated with the field. 

PACS numbers: 11.15. - q, 11.30.Jw 

I. INTRODUCTION 

The mathematical solution of the instanton problem I is 
based on the fundamental remark ofWard2 that for self-dual 
Y ang-Mills fields on flat space-time the parallel transport of 
"iso" vectors is path independent within any totally null 
anti-self-dual 2-plane of flat space. In a different guise, this 
was also noted by Yang,3 who used these planes as coordi­
nate planes in order to simplify the field equations and to 
choose a convenient gauge. In the case of Coleman's plane­
fronted waves,4 and generalizations thereof,5 there is path 
independence within the wave hypersurfaces, permitting a 
choice of gauge that gets rid of the nonlinearities. This sug­
gested6 an investigation of possible integrability properties 
of YM fields in order to find simplifying gauges, and we 
arrived? at a classification scheme which is coarser than the 
ones published (see, e.g., Ref. 8), but, as it stresses a different 
aspect, it might be nevertheless quite useful. In fact, while 
the published schemes aim at separating orbits of field ten­
sors under the action of SU (2) X Lorentz group, our ap­
proach uses neither the space-time metric (~Lorentz group) 
nor the particular structure ofSU (2), but only its dimension­
ality. 

The problem is to find submanifolds in space-time, of 
dimension ;;;.2, on which parallel transport is integrable. In 
general, this problem has no solution, and the aim is to sort 
out cases where there is one. There are three steps in the 
problem: the infinitesimal part, the local part, and the global 
part. We shall have to say nothing about the third part.The 
infinitesimal part is to find, at each space-time point, those 
tangent 2-plane elements on which the YM curvature form 
vanishes. The local problem then is to try and fit plane ele­
ments at different points together to form (local) 2-surfaces. 

In this paper we describe the solution of the infinitesi­
mal problem. After some general geometric remarks in Sec. 
2, we give in Sec. 3 the classification of YM fields that arises 
in the process of solving the infinitesimal problem. In the 
concluding section 4, we give an indication of the work on 
the local problem whose details will appear elsewhere. 

2. GENERAL GEOMETRIC REMARKS 

When an "iso" vector tf(x) at the space-time point x is 
parallelly propagated around a closed infinitesimal loop, its 
change is 

(1) 

where G a are the generators of the representation to which 1/1 
belongs,F~" (a = 1,2,3) are the YM field strengths, and 
PP-" = ulltv") ([ ... ] means antisymmetrization) is the bivector 

associated with the 2-plane element spanned by the tangent 
vectors u, v that define the loop as an infinitesimal parallelo­
gram. Changing u, v within that plane while keeping them 
linearly independent changes PP-" by a nonzero scalar factor. 
The infinitesimal problem, for each x, is thus to find all solu­
tions PP-" = - P "It of the system 

F~"pp-" = 0 (a = 1,2,3), (2) 

together with the condition that PP-" is simple, i.e., can be 
written as pit" = ulltv"): 

pIt"PIt" = O. 

[Here we have defined the dual 

(3) 

Pit,,: = !EIt"afJpufJ, (4) 
and since we are not using any a priori space-time metric, 
EIt"ufJ is just the permutation symbol, so that Pit" is only a 
"relative" covariant tensor, which, however, does not mat­
ter, (3) being homogeneous. Note in the following that most 
of the equality signs are important only up to a nonzero fac­
tor, so that we shall drop the specification "relative tensor of 
weight ... " in most cases and just say "tensor."] If(3) holds, 
the factors u,v are determined, up to linear combinations of 
each other, as solutions of 

(5) 

The algebraic problem posed by Eqs. (2) and (3) is a 
standard problem in line geometry (see, e.g., Ref. 9. Appen­
dix, for an exposition in physicists' notation). We shall de­
scribe its solution in the next section, distinguishing several 
cases. We shall work in the complexified tangent space, al­
though the interpretation of complex p in the sense of (I) 
would require a complexified space-time. Here we make the 
following consideration on it. Puttingpp-" = u[ltv"), we want 
to solve 

F~"ultv" = O. (6) 

for u, v. Fix u and put 

F~(u): = ultF~,,; (7) 

then 

F~v"= 0 (8) 

are three linear equations for v which always possess a solu­
tion. One solution is v = u by the antisymmetry of F~", and 
this solution is unique up to proportionality iff 
rank(F~(u)) = 3, which would make PP-" = 0 trivial. Hence 
we must require rank (F~(u)) < 3. Equating to zero all four 
3 X 3 determinants in F~(u) amounts to writing 

(9) 
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(Again, e'aPy is the permutation symbol that is going to be 
used to form duals of covariant tensors.) The 1 hs is a (gauge 
scalar) vector depending cubically on u, and must therefore 
havetheformg(u,u)ull whereg(u,u) isa scalar quadratic in u, 
i.e.,g(u,u) =gllv ull , UV

• Assuminggllv =gvll' we determine 
gllv by comparing coefficients: 

gllv: = ( - 1!3!)€acbF:apcaPF%v. (10) 

Thus from (9) we get g(u,u) = 0, and the same must hold for 
all linear combinations of u and v, implying 

gllvuIlUV=O, gllvifvv=O, gllvuIlVV=O. (11) 

The solutions pp'v therefore describe 2-plane elements which 
are totally null in the sense of the quasimetric gllv' 

Since (3) also implies that.ollv is simple, i.e., determin­
ing, up to linear combinations of each other, a pair of covec­
tors all' b v' solutions of 

(5') 

so that .ollv = a[llbv J' and since F:vpp'v==.pallv.oIlV due to 
€llvape'vpt7=4<5fao P J' there is a dual calculation starting 
from 

(2') 

that leads to 

~vallav = 0, ~vbllbv = 0, ~Yallbv = 0, (II') 

where 

~v: = ( _ 1!3!)€abCpallaF~pFbPV. (10') 

The same tensors are also encountered in the following 
consideration. There are always nontrivial (possibly com­
plex) coefficients Aa such that the linear combination 
Fllv = AaF:v becomes a simple bivector, puvFllv = 0: 
choose Aa to satisfy 

MabAaAb = 0, M ab: = pallvF!v' (12) 

Then alsoPf'v is simple; plW = S[llt vI, wheres, t are indepen­
dent solutions for rV of 

FIl,f = AaF:vrv = O. (13) 

Regarding this as a system of linear homogeneous equations 
for the nontrivial Aa , we again find that the matrix 
F~ (r) = F:/' must have rank < 3, implying g(r,r) = 0 for 
all vectors r of the plane spanned by s, t. In a dual manner, 
Fllv = c[lldvJ' whereg(c,c) = = 0, g(d,d) = O,g(c,d) = O. 

In the nonsingular5ase, det gllv =10, we can add the fol­
lowing remarks. Since p is characterized uniquely up to a 
factor by .ollvwv = 0 for all vectors w from the plane p, and 
since gllvuf'wv = 0 = gllvifwV, we may take 

all a:.gllvuv,bf' a:. gllv VV to span .oil V = a[llbvl' This leads to 
three conclusions: 

(1) Fromg(a,a) = 0 whenever all =gllvuV and 
g(u,u) = 0 it follows that 

g'"VgllugvP a:.ga{3' i.e., g cx:g- I
, (14) 

using an obvious matrix notation. (If a quadratic form van­
ishes on the set of zeros of another, non degenerate, quadratic 
form, it must be a multiple thereof.) A direct inversion of (10) 
would have been tedious. 

- {3 
(2) We getpllv a:.gllagv{3pa ,or 

pp'va:. Idet g .. 11/2g - Illug - IV{3.oa{3 = :*pp'v, (15) 
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i.e.,p is self-dual in the sense of the "metric" g. Note that this 
statement contains a convention, since from **p=sgn 

(detg .. )p it follows that·p = ± ~sgn(detg .. ) p. Also note 
that the C\:) duality carries contravariant into covariant ten­
sors and vice versa, whereas • duality needs an additional 
metric (up to a nonzero factor; and, strictly speaking, we 
have not provided more than that) and carries contravar­
iants into contravariants, allowing for the concept of self­
duality. 

(3) An identical re~so~ing for the Fllv = AaF:v intro­
duced above leads to * Fa:. F, but this time the opposite sign 
than before has to appear, i.e., the P are anti-self-dual in the 
sense of g. This is because by construction of the p we have 

0 - F- IlV a{3 - .J.Lt V a.B (16) - €llva{3 P - €llva{3"" U IT", 

implying a linear dependence between s, t, u, v, which means 
that all planes p have vectors in common with each of the 
planes P, and vice versa, whereas two self-dual planes with a 
nonzero vector in common would have to coincide, as is easy 
to verify. 
Thus without having used a space-time metric from the 
start, we have constructed a "quasimetric" (10), up to a non­
zero factor, with respect to which the given YM field is (anti-) 
self-dual in the generic case. There are degenerate cases, 
however, which we shall describe in the classification of the 
next section. 

3. INFINITESIMAL CLASSIFICATION 

Case 1. F:v (a = 1,2,3) are linearly independent. Form 
the 3 X3 matrix M ab, Eq. (12), and determine its rank m. 

Case 1.1: m = 3. This is the generic case, for which 
det gllv =10. For real F:v, the signature of gllv is 
+ + + + (elliptic)or + + - - (ultrahyperbolic). For 

elliptic signature, the p and the pa Aa above are complex; for 
ultrahyperbolic signature, both are real. In the complex case, 
there is a one- (complex) parameter count of solutions for p. 

Case 1.2: m = 2. Mab can be written as 

(17) 

where A a,B a are linearly independent and unique up to fac­
tors. Then, for arbitrary L b, there are fixed av , by, uV

, vV
, 

such that 

€abcA aL bF~v = c[Il(L )avl ' 

€abcBaL bF~v = d[Il(L )bvJ! 

c A aL bpcllv = w[Il(L )uvl 
~abc ' 

€abc B aL bpCIlV = ylll(L )vvl. 

(18) 

a, b as well as u, v are independent, unique up to proportion­
ality, and satisfy 

allull = all if = bllull = bllif = O. (19) 

Equations (10) and (10') become 

gllv a:. all bv + avbll , ~v a:. ullVV + uVif. (20) 

Thus the rank of the matrices g, g has dropped down to 2, 
and they satisfy gllA?v = O. The 2-planes we are interested in 
are given in this case by 

pp'v = U[llwvl and pp'v = V[llwvl , (21a) 
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where w is an arbitrary vector satisfying 

bp.IJ.'I'=O, ap.IJ.'I'=O, 
or,dually,by 

Pp.v = alp.cvl and Pp.v = blp.cvl' 

where C is an arbitrary covector satisfying 

(21b) 

.-.. 
(21a) 

vP.Cp. = O. (21b) 

In the real case, a and b may be real or complex conjugate; 
also, u, v will be real or complex conjugate, respectively. In 
the complex case, we have two one-parameter families of 
solutions for p. 

Case 1.3: m = 1. This case is obtained from 1.2 by put­
ting bp. a:. ap.'1f' a:. up.. We get a one-parameter family ofsolu­
tions. 

Case 1.4: m = O. Here either 

t"v = 0, gp.v = ap' av #0; 

the F~v can be written 

F b b 
p.v =clp.avl' ap' ,cp. indep. 

p is determined by 

Pp.v = alp.cv}' cv#O arbitrary (iav); 

or there is the dual case 

gp.v = 0, t"v = uP.uv#O, 

Fap.v = walp.uvl , uV,wvindep., 

(22) 

(23) 

(24) 

~ 

(22) 
"-" 
(23) 
~ 

(24) 

The 2-plane elements p are thus either contained in the hy­
perplane element whose vectors are annihilated by ap" or 
they all pass through a fixed single tangent vector up.. Hence 
we get a two-parameter family of plane elements in each 
case. 

Case 2. The F~v span only a two-dimensional subspace 
of the tensor space and can be more symmetrically written as 

(25) 

where capital indices range and sum over ! 1,2), and where 
t/J ~v are independent. We form the 2 X 2 matrix 

/-lAB: = t/J ~v~ Bp.v = /-lBA (26) 

and determine its rank /-l which equals the rank of 
M ab = /-lAB p~p~, while gp.v =0, t"v=O here. 

Case 2.1:/-l = 2. Here we may pick t/J !v, t/J ;v such as to 
satisfy 

t/J !v~ Ip.v = 0 = t/J ~v~ 2p.v (27) 

by going to suitable linear combinations, i. e., we may pick 
them to be simple: 

(28) 

The solutions for pJl.v are then 

pJl.v = (alu l + .Blvl)lp.(a2u2 + .B2V2t l, (29) 

where the coefficients are arbitrary (not all = 0). This gives a 
two-parameter family of plane elements. In the real case, 
t/J !v and t/J;v are real or complex conjugates. In the latter 
case, our formula (29) with U 2 = UI , v2 = vI ,a2 = a l ,.B2 = PI 
gives pJl.v purely imaginary, but a factor i is irrelevant for the 
reality of the plane element. 
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Case 2.2: /-l = 1. There is only one combination of the 
t/J ~v that can be made to satisfy t/Jp.v~ p.v = O. Take this as 
,/" I • 
'I' p.v' wnte 

;p Ip.v = ulp.vvl, where t/J !vUV = t/J !vvv = 0, (30) 

and pick some independent t/J ;v; then /-l = 1 implies 
t/J !v~ 2p.v = O. The solutions pJl.v can be written 

pJl.v = wlp.(uvlvlP _ VV1uP)wat/J ~P' (31) 

where w is arbitrary but u, v, w independent. This gives a 
two-parameter family of plane elements which is real in the 
real case. 

Case 2.3: /-l = O. Here the t/J ~v can be written 

t/J~v =alp.b~I' ap.,b!,b; indep. (32) 

Putting 

(33) 

the plane elements are given by 

pJl.v = (j'vaPaabp and pJl.v = ulllvvl , (34) 

where b, v are arbitrary (indep. of a, u, resp.) This gives us 
two-parameter families of plane elements (real in the real 
case): those passing through the vector u and those being 
contained in the hyperplane element through u whose vec­
tors are annihilated by an on scalar multiplication. 

Case 3. The F~v span only a one-dimensional space, 

F~v =rFllv' 
Case3.1FllvFllv~O. The conditions 

FllvpJl.v = 0, PIlV~v = 0 define a three-parameter family of 
plane elements, real in the real case. 

Case 3.2; FllvFIlV = O. Here we can find independent 
all ,bll such that 

(35) 

and then pJl.v is given by 

(36) 

where y, {j are arbitrary scalars, cp an arbitrary covector. 
This is again a three-parameter family of plane elements, real 
in the real case. It consists of the 2-plane elements which 
intersect the 2-plane element given by the simple Fp.v along 
any vector and not just at the origin. 

Case 4. This is the trivial case F~v = 0 (a = 1,2,3) 
where pJl.v is arbitrary. 

4. CONCLUDING REMARKS 

We have now determined, at each point, all 2-plane ele­
ments on which the YM curvature vanishes, and have distin­
guished 10 nontrivial qualitatively different cases. The local 
problem is now to try and select, for each x, onep IlV (x) out of 
the family obtained, in such a way that the corresponding 2-
plane elements are tangent to 2-surfaces. Using the Froben­
ius integrability condition and a convenient parametrization 
of the family, one can work out further conditions which 
yield a differential classification of each of the above cases. 
This will be done elsewhere. 
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It would be tempting to speculate on the further phys­
ical significance of the (conformal) metric (10) which we have 
distilled out of the SU (2) gauge field strengths in the generic 
case, with respect to which the gauge field is (anti-) self-dual, 
and which has to be sharply distinguished from any physical 
metric. It will, in general, be conformally curved, its Weyl 
tensor entering the integrability problem mentioned above. 
Apart from this and its properties associated with its very 
origin, we have not found any further significance so far. 
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This paper shows that, starting from any conserved current generated by some given infinitesimal 
symmetry generator, one may use finite dual transformations to induce infinitely many 
infinitesimal symmetry generators. Thus, besides starting from ordinary isotopic and space-time 
translation, this paper also discovers the infinitesimal generators for Backlund transformation, 
for dual symmetry itself and other general cases, and then uses them to generate infinitely many 
local or nonlocal currents, respectively. 

PACS numbers: 11.30. - j, 11.10.Lm 

I. INTRODUCTION 

In this decade, there has been much interest and consid­
erable progress in the nonlinear physical systems and in the 
nonlinear mathematics. The two dimensional chiral mod­
ell~ is one of the nonlinear problems under extensive investi­
gation. The chiral model behaves quite similarly with the 
four-dimensional Yang-Mills field, e.g., both have topologi­
cally nontrivial solutions such as instantons and merons7 

both possess some kind ofBT (Backlund transformation) 
with similar structures. 1,5-10 It is reasonable to expect that 
the thorough investigation of this simpler model will be help­
ful for deeper understanding of the more complicated Yang­
Mills field. As a complete integrable system solvable by in­
verse scattering method, the chiral model possesses a lot of 
rather interesting and mutually connected properties such as 
multisoliton solutions, BT, and sets of infinitely many con­
served currents, either local or nonlocal. 11-19 What is the 
hidden symmetry behind so much conservation laws is a 
crucial question to answer for understanding the structure of 
the solution space of the chiral model. A lot of work already 
shows that this phenomenon is closely related with dual 
symmetry. Results of previous papers 18 show that speaking 
more exactly the infinitesimal operator generating nonlocal 
currents is nothing else but the ordinary isospin generator T 
transformed by DT (dual transformation) U (x;y). The DT 
with parameter y is the origin of the existence of infinitely 
many symmetries. Since a U(X;YI) with a fixed YI gives one 
automorphism in solution space, it maps one known explicit 
symmetry (e.g., constant T) into another hidden symmetry 
U -1(x;y)TU (x;YI) generating a conserved current JI-' (X;YI) 
(cf. Sec. III). From the same Tbut with different parameter Y 
we get different symmetries U - 1 (x;y) TU (x;y) generating dif­
ferent currents JI-' (x;y). In summary, dual symmetry is the 
symmetry which induces infinitely many symmetries and 
maps different currents, but itselfis not the symmetry which 
generates the conserved currents JI-' . 

Accordingly, this paper tries at first to find out the in­
finitesimal variations which leave the Lagrangian un­
changed, then takes the DT and thus gets the corresponding 

al Permanent address: Northwest University, Xian, People's RepUblic of 
China. 

set of infinitely many symmetry operators generating con­
served currents. In this way, after review the results about 
dual transformed T shortly in Sec. III, we give subsequently 
in Sec. IV the current which corresponds to the infinitesimal 
generator of dual symmetry itself. We show that it is a 
Noether current and a dynamical symmetry of the equation 
of motion. The infinitesimal BT plays an important role in 
the soliton equation. In Sec. V we find the infinitesimal BT. 
For chiral model, it is given by the solution of a matrix Ric­
cati equation; we show also the local current is just the relat­
ed Noether current. In Sec. VI, we give the infinitesimal 
generators and Noether currents for more general cases, in­
cluding the ordinary space-time translation and energy mo­
mentum density. 

Since the finite dual transformation is quite well known 
now, the main role of the second section consists in introduc­
ing notations. By the way, deviating from the current con­
ventions, which deal with gauge transformations within the 
isotropic subgroup H only, we discuss somehow in detail the 
gauge transformations in the whole group G, so that the dif­
ferent formulations may be treated as gauge equivalent ex­
pressions and the distinction and relation between the con­
nections, the second fundamental forms, and the invariantly 
conserved currents are clarified. We use the local involutive 
operator N (x) = g(x)ng-I(x) of the symmetric space as the 
dynamical variable, so that our formulation essentially in­
cludes the O(N) nonlinear u-model, the CP(N - I) model, 
the Grassman chiral model, and the principle chiral model. 

II. CHIRAL MODEL IN VARIOUS GAUGES, DUAL 
SYMMETRY 
A. Symmetric space and canonical variable 

The chiral field may be defined as a map from space 
time xl-' (p, = 0, I) onto a symmetric space (G, H, n), i.e., a 
coset space G I H with involutive automorphism n, 

H=[hEG;nhn=hJ, n2 =1, (2.1) 

where G is a connected Lie group with Lie algebra ® and 
H eGis a closed subgroup with Lie algebra ~. In the ad­
joint representation the same matrix n gives involutive auto­
morphism for the Lie algebra also 

[n,~] = 0, [n,Kj = 0, (2.2) 
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where 
~ a> K = ®, 

[~,~] C~, [~,K] C K, [K,K] C ~. (2.3) 

The elements of G / H are represented by canonical var­
iables 

N(x) =g(x)ng-I(x), N(x)2 = 1. (2.4) 

Then, if gland g 2 are in the same coset class, g 1 = g 2 h, hence 
gl ngl-

I = g2 ng2-1, both correspond to the same N. 

B. Gauges with diagonal connections 

The left Maurer Cartan form is divided into vertical 
(connection) and horizontal (second fundamental form) 
parts and pulled back onto x space 

al' (x) = g-I(X) al' g(x) = hll- (x) + kll- (x), (2.5) 

where 

[hll-(x), n] = 0, (2.6) 

{kll-(x), n} = 0, (2.7) 

hI' (x) = ! [ g-I(x) all- g(x) + ng-I(x) al' g(x)n] , (2.8) 

kll- (x) = H g-I(x) all- g(x) - ng-I(x) all- g(x)n] , (2.9) 

in this gauge hll- is diagonal with respect to n. The pure gauge 
all- has zero curvature all-v (x) = all-av - avail- + [all-,av ] 
= 0; it may be divided into the Gauss equation 

Hall-v (x) + nall-v(x)n] = al' hv(x) - av hl'(x) 

+ [hll-(x),hv(x)] + [kll-(x),kv(x)] 

=fl'v(x) + [kll-(x), kv(x)] = a (2.10) 

and the Coddazi equation 

H al'v(x) - nail-v (x)n ] = all- kv(X) + [hI' (x), kv(x)] 

- av kll-(x) - [hv(x), kll-(x)] 

= DIl- kv(x) - Dv kll-(x) = o. 

C. General gauge transformation 

h ~(x) = S -1(x)hll-(x)S(x) + S -I(x)all- SIx), 

k ~ (x) = S -I(x)kll- (x)S (x). 

(2.11) 

(2.12) 

Usually S is restricted in H, then all relations (2.6)-(2.11) 
remains unchanged. Ifwe allow S (x) to be any element in G, 
then only (2.5), (2.7), (2.10), and (2.11) still remain valid, but 
the n therein must be replaced by n'(x) = S -1(x)nS (x); mean­
while, instead of the diagonal of hI' (2.6) and all- n = 0, we 
have a covariant condition 

D ~ n'(x) = all- n'(x) + [h ~ (x), n'(x)] = 0, (2.13) 

i.e., the reducibility condition for h ~ 20: "if there exists on 
the coset bundle Ilx}G /H,G} asectionn'(x) invariant under 
parallel displacement with respect to h ~, then the h ~ are 
reducible to a connection in H." 
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D. Canonical gauge 

Choosing S -I(X) = g(x), it occurs that both expressions 
in (2. 12) are expressed solely by the canonical variable N (x) in 
(2.4); thus 

HIl-(x) = ~N(x) all- N(x), 

KIl-(x) = - ~ N(x) all- N(x). 

(2.14) 

(2.15) 

In summary, we have the flat Gauss Coddazi equation 

Fll-v(x)- all- Hv(X) - av HIl-(x) + [HIl-(x), Hv(x)] 

= - [KIl-(x), Kv(x)] , (2.16) 

£"vDIl- K,,(x) = £"V(al' Kv(x) + [HI' (x), K,,(x)]) = 0, 

E IO = -Eo
1 =1, (2.17) 

the reducibility condition 

DIl- N(x) = all- N(x) + [HIl-(x), N(x)] = 0, N(xf = 1, 
(2.18) 

and the local involutive condition for KI' 

{KIl-(x), N(x)} = 0. (2.19) 

All equations (2.16)-(2.19) are gauge-covariant under (2.12). 
In addition we have chosen the canonical gauge condition 

AI' (x) = HIl- (x) + KIl- (x) = 0; (2.20) 

then, from (2.18) and (2.19), we get the expressions of HIl-' KIl­
in terms of N as (2.14) and (2.15). 

It is interesting to point out that, complementary to the 
diagonal gauge (1.6), now 

\ HI-' (x), N(x)} = O. (2.21) 

Connection HIl- (x) is fixed by gauge condition (2.21), but we 
may further change the canonical gauge without breaking 
(2.21) by using S = exp(iON (x)), where 0 is a constant param­
eter; then K ~(x) = !(cos 20N(x) all- N(x) 
- i sin 20all- N (x)), e.g., 0 = ~ 'IT, K ~ (x) = H ~ (x) 
=! N(x) all- N(x) = ~A ~(x). 

E. Dynamics 

Let Lagrangian 

L (x) = i tr(al-' N(x)auN(x)), N(x)2 = 1 (2.22) 

and with some further constraints. The Euler-Lagrangian 
equation 

[al-' auN(x), N(x)] = 0 

may be expressed in KIl- as 

al-' KIl-(x) =0, 

or rewritten into covariant form 

F. Intermediate OT, KIl- (x) ---+ KIl- (x;r) 

(2.23) 

(2.24) 

Since (2.17) and (2.25) are mutually dual in two-dimen­
sional space-time, it is obvious that (2.16)-(2.19) and (2.25) 
are invariant under DT: 

KIl- (x) ---+ KIl- (x;y) 

=KIl-(x)(y+ y- I)l2 + Ell-V KV(x)(y- y-I)l2, 

= KIl-(x) cosh t/J + Ell-V KV(x) sinh t/J, (2.26) 
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(2.27) 

Thus.!., we hav~}'pv(x;y) = ap i!v(x;y) -_av Hp(x;y) _ 
+ [Hl.tJx;y),~v(x;y)] ~ - [Kp(x;y), Kv(x,y)] as (2.16), 

and (2.17H2.19) and (2.25) EY replacing Kp (x) in (2.17)­
(2.19) and (2.25) in terms of Kp(x;y). Since the explicitly pure 
condition (2.20) has been ~roken, H p, Kp could not be ex­
pressed directly by some N as in (2.14) and (2.15). But from 
Eqs. (2.16) and (2.17),Ap(x;y) =Hp + Kp are pure gauge, so 
we may discover some new N (x;y) which satisfies the dyna­
mical Eq. (2.23) as follows. 

G. Final dual transformation N{x) --+ N{x;y) 

Equations (2.16) and (2.17) show that Ap(x;y) are pure 
gauge; therefore there exists an U (x;y) such that 

or 

U -I(X;Y) ap U (x;y) = Ap (x;y) = Kp (x;y) + Hp (x;y) 
(2.28) 

ap U(x;y) = U(x;y)(Kp(x;y) - Kp(x)). (2.29) 

Ifwe gauge transform Hp (x;y) with S (x) = U -1(X;y), i.e., let 

Hp(x;y) = U(x;y)H(x;y)U-1(x;y) + U(x;y) ap U-1(x;y), 
(2.30) 

Kp(x;y) = U(x;y)K(x;y)U-1(x;y). 

Then, using (2.28), we get 

Ap (x;y) = Hp (x;y) + Kp (x;y) = O. 

(2.31) 

(2.20y) 

Now, gauge covariant equations (2.16H2.19), (2.25) become 
(2. 16y)-(2. 19y), (2.25y) after substituting: 

Hp (x;y) ~ Hp (x;y), i< (x;y) ~ Kp (x,y), 

Qp =Dp ~Dp(y)=ap + [Hp(x;y)], (2.32) 
N (x;y) = N (x) ~ N (x;y), 

where N (x;y) = U (x;y)N (x)U -I(X;Y). In gauge (2.20y), Eq. 
(2.25y), D p (y)K P(x;y) = 0, may be simplified as 

i1'Kp(x;y) = O. (2.24y) 

From (2.20y) and (2.18y) we have 

Hp(x;y) =! N(x;y) apN(x;y), 

Kp (x;y) = -! N (x;y) apN (x;y). 

(2. 14y) 

(2. 15y) 

We may check (2. 14y) and (2.15y) directly by substituting on 
their right-hand sides (2.32) and then use (2.29), (2.19), (2.19), 
(2.30), or (2.31) to attain the left-hand side. Compare (2.32) 
with (2.4); we see that if g(x;y) = U (x;y)g(x), then 
N(x;y) =g(x;y)ng-I(x;y). Finally from (2.24y) and (2.15y) 
we get the dual transformed EL equation (2.23y). (Equations 
labeled with y, are just the same equation, only with N, H p ' 

Kp replaced by N (y), Hp (y), Kp (y).) 
In the latter we shall adopt following abbreviations: 

Hp ==Hp(x), Kp =Kp(x), N=N(x), Kp = Kp(x;y), 

N (y) == N(x;y), Hp (y) = Hp(x;y), 

Kp(Y) = Kp(x;y), U= U(x;y). 
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III. DUAL TRANSFORMATION OF ISOTOPIC 
SYMMETRY OPERATOR 
A. Ordinary generator for conserved current 

Let 

8N(x) = - [N(x), A (x)]8E. (3.1) 

(For simplicity, we omit the infinitesimal constant 8E in the 
future.) Then 

8L = tr(Kp i1' A ). (3.2) 

Define 

.f(x) = ~ 8N = tr(KPA ). 
8ap N 

Its on-shell (2.24) divergence equals 

ap.f = tr(Kp i1'A ) = 8L. 

If we have chosen A (x) such that 

tr(Kp i1'A ) = O. 

Thenjp (x) is conserved 

ap JP(x) = O. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

For example, letA (x) = T, where Tis a constant element in 
g. Then 

Jp = tr(Kp T) (3.7) 

is a conserved current. 

B. Dual transformed current 

Heuristically, in the dual transformed functional space 
with canonical variable N (x;y), let L (x;y) 
= i tr(N (y)N (y»); take 8N (y) = - [N (y),T). We get 

Jp (y) = tr(Kp (y)T), (3.7y), which is conserved because of 
(1.24y). Expanding Jp (y) into series of y; we get an infinite 
series of conserved nonlocal currents. 

C. Dual transformed generator 

Now, return to the original functional space. Tentative­
ly, neglecting the dependence of U -I(X;Y) on T8E via 
Kp (x;y), assume 

8N(x) = U- 1(x;y)8N(x;y)U(x;y) 

= - [N(x),U-1(x;y)TU(x;y)]; (3.8) 

subsequently,jp (x;y) = tr(Kp (x)U -1(x;y)TU (x;y)), but it oc­
curs to us that now its on shell divergence 

ap.f(x;y) =8L =tr(Kp i1'(U- 1TU)) ¥= O. (3.9) 

However, using (2.29), (2.26), and (2.17), one may show that 

8L = - sinh t/J tr(Epv KPK7) 

= -tanht/Jap tr(e"vKpv U-1TU) 

(3.10) 

Put (3.10) together with (3.9); we regain the conserved cur­
rent (3.7y) with some coefficient, i.e., 

Jp (x;y)=jp (x;y) + ip(x;y) = sech¢ tr(Kp U-1TU) 

=sech¢tr(Kp(y)T), (3.11) 

where (2.31) has been used. 
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Thus, we see that just asjf-l (3.7) is related to the symme­
try of rotation DE around the fixed Taxis, JI-' (y) (3.7y) or 
(3.11) is related to the rotation DE around the transformed 
axis U-1TU. 

The variation (3.8) satisfies the condition for invariance 
of EL equation (2.23) under t>N 

DI-' DI-'[N,t>N] = [KI-',[KI-',[N,t>N]l] (3.12) 

or, using (3.1), 

DI-' DI-'A - [KI-',[KI-',A l] 

-N(DI-' DI-'A - [KI-',[KI-',A 1])N=O. (3.13) 

At last, we emphasize that KI-' does not conserve invar­
iantly with respect to local gauge transformation, as a covar­
iant quantity; it conserves only covariantly (2.25) in general 
gauge. The true invariantly conserved currents are always 
gauge-invariant quantities such as projections of K on Tor 
- 1 - 1 I-' 
KI-'0nU- TU,etc.,i.e.,tr(KI-' T)ortr(KI-' U- TU),etc.(cf. 
later sections). 

IV. INFINITESIMAL DUAL TRANSFORMATION 
A. Finite DT 

Under finite DT (2.23), the finite variation of L equals 
zero 

I1L = pr(KI-' (y)KI-'(y) - KI-' KI-') 

= ~ tr(KI-' KI-' -KI-' KI-') = O. 

B. Infinitesimal DT 

(4.1) 

But in order to find out the corresponding conserved 
currents, we must use the infinitesimal DT operator u(x): 

u(x) = (y dU(x;y) U-1(X;Y)) I 
dy y~ 1 

It satisfies 

JI-' u(x) = EI-'v KV(x) 

from (4.2) and (2.24). The covariant form of(4.3) is 

DI-' U= - [KI-"u] +El-'vKv. 

Now let 

t>N = - [N, u]; 

we have 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(Really, KI-' in L has been changed into its dual EI-'v K v.) 
Therefore, 

JI-' = tr(KI-' u) is a conserved current. (4.7) 

c. Dual transformed infinitesimal DT 

Let 

u(x;y) = U-1(x;y)u(x;y)U(x;y), 

where 
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(4.2) 

( . ) IX, K ( ')d I dU u- 1 ux,y=- oXO,x1;y Xl=y- ; 
- 00 dy 

(4.2y) 

they satisfy 

JI-' u(x;y) = EI-'v KV(x;y), (4.3y) 

DI-'(y)u(r) = - [KI-'(Y)'u(y)] +El-'vKV(y), (4.4y) 

DI-' il = - [KI-" il] + EI-'v Kv. (4.4) 

Let 

t>N = - [N, ill. 

Then 

jl-'(x;y) = tr(KI-' (x)il(x;y)), 

JI-'J"(x;y) = t>L = tr(KI-' (J'il) 

(4.5) 

(4.8) 

= sinh ifJ tr( - ~V[KI-',Kv]il +KI-' KI-') 

= - tanh ifJ JI-' tr(~VKv il) = - JI-' il-'(x;y). 
(4.9) 

JI-'(x;y) - jl-'(x;y) + il-'(x;y) = sech ytr(KI-' il) 

= sech ifJ tr(KI-' (y)u(y») 

is conserved. 

(4.10) 

It is easy to check that the EL equation is invariant 
under (4.5) by substituting it into (3.12). 

In the two-dimensional Euclidean space with self-dual 
(anti-dual) solution JI-' N(x) = ± EI-'v N(x)avN(x), we get 
u(x) = ± N (x). All these currents are trivial. 

V. BAcKLUND TRANSFORMATION 
A. Finite BT 

It operates on solution N (x) of (2.23); giving a new solu­
tion 

N/(xly) =N(x)B(xly) =B +(xly)N(x) 

when N, N', B satisfy 

2KI-' - 2K~ N'JI-' N' -NJI-' N=EI-'v JVB, 

B (xly) + B +(xly) = - 2 tanh ifJ· 
Let 

R ~ cosh ifJ (B (xly) - B +(xly)); 

then from (5.1 )-(5.3) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

DI-' R =JI-' R + [HI-" R] = ~V(Kv +RKv R). (5.5) 

It is integrable from (2.16), (2.17), and (2.25). Conversely, 
from R, satisfying (5.5), let 

B (xy) = sec ifJR - tanh ifJ = exp(2(cot- 1 ifJ )R.); (5.6) 

we obtain from (5.1) the new solution N '. The BT (5.1), (5.2) 
satisfies variational Backlund principle, i.e., t>L equals total 
divergence: 

I1L = ~ tr(K ~ KI-" - KI-' KI-') 

= -! sech2 ifJ tr(KI-' KI-' + RKI-' RKI-') 

= ! sech3 ifJJI-' tr(~VKv R ) 

= i csch ifJ trJI-'(KI-' R). 
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B. Infinitesimal BT 

Let 

oN = [N, B- 1 dB I ] 
dy r=1 

= 2[N, - ~ B + cot- I y dR ] I . (5.8) 
(1 + ) ay r= 1 

The contribution of the second term in oL equals 

2 cot-
I 
ytr(Kp iJ' ~~) 

= 2r coC I ytr(Kp KP +RKP RKp)/(1 + r), (5.9) 

which is a total divergence as the rhs of(5. 7). Hence, we omit 
this term, keep the first only. Since we need dual transformed 
operator later, we replace B (x 11) by 

R (x;l) = R (x;l) =B(x;l) R (x), 

where 

R (x;y) = U(x;y)R (x;y)U-1(x;y). (5.10) 

It satisfies 

Dp (y)R (x;y) = Epv(KV(x;y) + R (x;y)KV(x;y)R (x;y)); 
(5.5y) 

thus, we take 

oN (x) = [N(x),B(xll)] = [N(x),R(x)]. 

Since now oL = tr(Kp(x)iJ'R (x)) = 0, the current 
tr(Kp (x)R (x)) are conserved. 

C. Dual transformed BT 

Let 

oN(x;y) = [N(x), R (x;y)], 

we have 

(5.11) 

(5.lly) 

al-'J"(x;y) = oL = tr(KI-' iJ'R) 

- 2 sinh rp tr(KI-' KI-' + KI-' RK~ R), 

- al-' tr(e-'vKv R )tanh rp = - al-' il-'(x;y). 
(5.13) 

Finally, we get the conserved current 

JI-'(x;y) =J"(x;y) + il-'(x;y) = sech <I> tr(KI-' R) 

= sech rp tr(KI-'(x;y)R (x;y)). (5.14) 

The geometrical meaning are rotations around axis R; B (x I y) 
are finite rotations with angle (J = 2 cot- I y, while the 
oN(x;ly) are generated by rotation with infinitesimal con­
stant angle DE. 

VI. GENERAL CASE 

Generally, we must find A (x) such that 

tr(KI-' DI-'A ) = 0. (6.1) 

The most general equation for A is 

DI-'A = a EI-' v KV+{3El-'v AKvA 

+a[A,KI-'] +sEl-'vIA,KvJ; 

it is integrable if a2 
- S2 + a{3 = 1. Let 

oN= [N,A]. 

Then, 

jl-' (x;y) = tr(KI-' A ), 

al-'J"(x;y) 

so 

= oL = tr(KI-' iJ'A ) = - tanh rp tr(e-'vKv DI-' A ) 

= - tanh rp tr al-'(e-'vKp A ) == - ap iP, 

JI-' =jl-'(x;y) + il-'(x;y) = sech rp tr(KI-' A) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

jl-'(x;y) = tr(KI-' R), (5.12) are conserved. This includes all currents discussed above: 
I 

ifa=l, a={3=s=O, A=U-1(x;y)TU(x;y) 

if a = a = 1, {3 = S = 0, A = U 

if a = {3 = 1, a = S = 0, A = R 

in Sec. III; 

in Sec. IV; 

in Sec. V; 

more generally, iftr[ KI-', Dp A ] = al-' iI-', then let 
oN = [N, A ]; we get the conserved current 

JI-' = sech rp (tr(KI-' A ) - il-')' (6.6) 

For example, under infinitesimal translation, 
oN(x;y) = av N(x;y). Let 

oN (x) = U-1oN(x;y)U = u-1av N(x;y)U 

= - U-1[N(x;y),Kv(x;y)]U 

= - [N(x), Kv(x;y)] , (6.7) 

i.e., 

A (x,y) = Kv(x;y). (6.8) 
Then 

tr(KI-' DI-' Kv) = - ~ al-' tr(KI-' KI-') = - al-' il-" (6.9) 

The current (6.6) becomes energy momentum density MI-'v 

JI-' = sech rp tr(KI-' Kv - ~gl-'v K). K).). 
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I 
VII. DISCUSSION 

Thus, we formulate a general way to get infinitely many 
Noether currents from any given Noether current. 

If we expand the generator U - 1 ( y) TU (y) in series of 
the parameter A == (y - 1)1(y + 1), we would obtain the se­
ries of generators of the so-called Kac-Moody algebra.21 

Meanwhile, to get the recurrence formulas for each order, 
one may simply use al-'(U-1TU) 
=AEl-'v(iJ'U-1TU + [H V _Kv, U-1TU]). But the form 
U -I A U shows more apparently the origin of symmetry­
dual transformed isotopic symmetry T, etc.; and the related 
current is constructed explicitly from the dual transformed 
solution N (y) in the same way as the original current from 
original N. All our currents are related to a given symmetry 
of the action. Almost all of them (except the infinitesimal 
BT) keep the equation of motion invariant, while each ele­
ments of the Kac-Moody algebra (except the zero-order one) 
does not generate the symmetry of the original equation. 
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We have found a lot of new Noether currents and relat­
ed generators. It is interesting to point out that the infinitesi­
mal generator u(x) of dual transformation (which is the Lie 
transformation for the related sine-Gordon equation22) is 
just the position vector23 of the so-called soliton surface,24 in 
the case of the 0(3) u-model; it is the well-known pseudo­
spherical surface with N(x) as its normal and as N, a." N as 
its asymptotic directions. Then Eq. (5.2) becomes 2du-2du' 
= cosh ifJ dR, we can identify the Riccati function 

R (y) cosh ifJ as the common tangent of two pseudospherical 
surfaces. 23 Using the covariance of our formulation, we can 
show that tr(KJL (y)R (y») gives the series oflocal conserva­
tion current in the ordinary soliton theory and is related to a 
total geodesic differential along the common tangent direc­
tion. 

Our formulation is easy to generalize to supersymme­
tric cases. 25 Then, from the dual similar of the supersymme­
tric generator, we get infinitely many supersymmetric cur­
rents correspondingly obtaining Kac-Moody algebra with 
both anticommutators and commutators. 
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The integrability of nonlinear Dirac equations is discussed applying recent results in soliton 
theory. Using the Lie point transformation groups of the nonlinear Dirac equations we reduce 
these partial differential equations to systems of ordinary differential equations and study 
whether these systems are integrable. We also discuss whether Lie-Backlund vector fields exist. 
We conclude that the nonlinear Dirac equations are not integrable. 

PACS numbers: 11.30. - j, Il.lO.Lm, 02.20. + b 

I. INTRODUCTION 

Evolution equations which can be solved by the inverse 
scattering transform (1ST) are usually called soliton equa­
tions. Soliton equations have several properties in common: 
(I) the initial value problem can be solved exactly with the 
help ofthe 1ST; (II) they have an infinite number of conserva­
tion laws; (III) they have auto Backlund transformations; 
(IV) besides Lie point vector fields they admit Lie-Backlund 
(LB) vector fields; (V) they describe pseudospherical sur­
faces, i.e., surfaces of constant negative Gaussian curvature; 
and (VI) they can be written as covariant exterior derivative 
of Lie algebra valued differential forms. It is conjectured that 
if property (I) holds, then the properties (I1)-(VI) also hold. If 
one of these conditions is satisfied for an evolution equation, 
then this equation is usually called integrable. 

Recently several authors l
-

7 have investigated the con­
nection between nonlinear evolution equations and the Pain­
leve property. The following conjecture has been made: "Ev­
ery nonlinear ordinary differential equation (ode) resulting 
from a group theoretical reduction of a nonlinear partial 
equation (pde) which can be solved by the 1ST has the Painle­
ve property. " Under the Painleve property of an ode (consid­
ered in the complex domain) we understand the following: 
The only movable singularities of all its solutions are poles. 
We notice that a solution of an ode can have poles, essential 
singularities, and branch points. Consequently, for an ode to 
have the Painleve property we must require that there are no 
movable essential singularities or movable branch points. It 
is assumed that ifan ode (or a system of ode's) has the Painle­
ve property, then this system is integrable. However, we can­
not conclude that, in general, an integrable system has the 
Painleve property. 

In the present paper we investigate the integrability of 
nonlinear Dirac equations. So far efforts have not been suc­
cessful in finding whether nonlinear Dirac equations satisfy 
one of the properties given above (even in one space dimen­
sion). First of all we give the Lie point symmetry groups for a 
class of nonlinear Dirac equations in three space dimensions. 
These groups will be used for reducing the system ofpde's to 
systems of ode's, where we restrict ourselves to one space 
dimension. These systems will be investigated as to their in­
tegrability in order to decide whether the nonlinear Dirac 
equations are integrable or not. If the systems of ode's are not 

integrable, then we can conclude that the system of pde's is 
not integrable. On the other hand, if we find that the systems 
of ode's are integrable, then no conclusion can be made. Fur­
thermore we discuss whether a certain nonlinear Dirac 
equation (in one space dimension) can be written as a covar­
iant derivative of Lie algebra valued differential forms and 
whether LB vector fields exist. 

We also consider the massive Thirring model, because it 
can be solved by IST.8

-
1O We also give the Lie point symme­

try groups and perform group theoretical reductions. We 
show that the massive Thirring model can be written as a 
covariant derivative of Lie algebra valued differential forms. 
Moreover we give a LB vector field of this model. 

II. SYMMETRY GROUPS OF NONLINEAR DIRAC 
EQUATIONS 

Nonlinear Dirac equations for constructing models of 
extended particles have been investigated by various auth­
ors. 11-24 Various types of nonlinearity have been studied. In 
particular the interest has been focused on the scalar interac­
tion, i.e., in the Lagrangian the interaction term is given by 
(¢ t/!)2 (t/! is a four-component Dirac spinor). The Lie point 
symmetry vector fields for this interaction have been given in 
the papers cited above. Let us summarize the results. 

Consider the nonlinear Dirac equations 

3 a a -I -a (Ykt/!)-i-a (Y4t/!) + 12t/!(t/!t/!) =0, (1) 
k=1 Xk x4 

and 

3 a a -
A I -(Ykt/!)-Ai-(Y4t/!) + t/!+A 3Et/J(t/!t/!) =0. (2) 

k= 1 aXk aX4 

Equation (2) contains a mass term, whereas Eq. (1) does not. 
Both the quantities I and A have the dimension of a length. 
Now we give the symmetry groups, i.e., the infinitesimal 
generators (symmetry vector fields). With the help of a Lie 
series we can find the symmetry group. The technique for 
finding the symmetry vector fields has been described by 
several authors (for example, in Ref. 25). In the following we 
use the notation given by Steeb et al. 17 In this notation we put 
t/! j = U j + iv j' where j = 1, ... ,4. Consequently, the quanti­
ties U j and v j are real fields. Thus both Eqs. (1) and (2) are a 
coupled system of eight nonlinear pde's. 
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Theorem 1: The nonlinear Dirac equation (I) is invar­
iant under the Lie point symmetry groups which are generat­
ed by the infinitesimal generators 

a a a a 
X I = -, X 2 = -, X3= -, X 4=-, 

aXI aX2 aX3 aX4 

RI2=X2~ -XI~ _!!J...~ _!!.2~ 
aX I aX2 2 aU I 2 aU2 

_ !!.2 ~ + U4 ~ + !!.1. ~ _ U 2 ~ 
2 aU3 2 aU4 2 aUI 2 aU2 

U3 ~ U4 a 
+ 2 aU3 - 2 au/ 

RI3=X3~ -XI ~ _ U2~ + U I a 
aXI aX3 2 aU I 2 aU2 

_ U4~ + U3~ _ !!.2~ + !!J...~ 
2 aU3 2 aU4 2 aUI 2 aU2 

_ U4 ~ u3 a 
2 aU3 + 2 aU4' 

a a U4 a U3 a 
L I4 =X4 - +x l - + -- +--

aX I aX4 2 aU I 2 auz 

+ U2~ + !!.1.~ + U4 ~ 
2 aU3 2 aU4 2 aU I 

+ !!.2~ + !!.2~ + !!J...~, 
2 aU2 2 aU3 2 aU4 

L24=X4~ +X2~ + U4 ~ - !!.2~ 
aX2 aX4 2 aU1 2 aU2 

2332 

+!!.2~ !!J...~ _ U4~ 
2 aU3 2 aU4 2 aU1 

+ U3~ _ U2~ 
2 aU2 2 aU3 

U 1 a 
+ 2 au4' 

a a u3 a 
L 34 =X4 - +x3 - +--

aX3 aX4 2 aU1 

+ !!.1.~ _ U2 ~ + !!.2~ 
2 aU3 2 aU4 2 aU1 

_U4~+!!J...~ !!.2~ 
2 aU2 2 aU3 2 aU4' 
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(3) 

a a a a 
J 1 =u4 - -u3- -u2 - +u1-

aU 1 aU2 aU3 aU4 

a a a a 
-u4 - +U3- +u2 - -u1-

a 
' 

aU I aU2 aU3 U4 

a a a a 
J 2 =U4 - -U3 - -U2 - +U1-

aU I aU2 aU3 aU4 

a a a a 
+u4 - -u3 - -u2 - +u1-, 

aU1 aU2 aU3 aU4 

s= ± (x~ _.!!..L~ _ Uj~) 
j ~ I ] ax j 2 au j 2 au j • 

Theorem 2: The nonlinear Dirac equation (2) is invar­
iant under the Lie point symmetry groups which are generat­
ed by the infinitesimal generators 

XI' X 2, X 3, X 4, R 12, R 13, R 23, L 14, L 24, L 34, Jo, J I, J2. 

Consequently, if we introduce a mass term, then the 
invariance under the scale change S ceases to exist. 

In the following we consider a special case where "'2 = 0 
and "'3 = O. Moreover, we restrict ourselves to one space 
dimension. With this simplification Eq. (I) takes the form 

(4) 

where K = ui + ui - u~ - u~, X 4 = ct, and E is a real pa­
rameter. Note that in one space dimension the quantity /2 
becomes a dimensionless parameter which we call E. The 
system of pde's (4) admits seven symmetry generators, name­
ly X I,x4,L\4,JO,JI,J2, and S (restricted to the special case 
"'2 = "'3 = 0 and one space dimension). From Eq. (4) we find 
immediately the conservation law (charge) 

a(u
2
\ + u2

\ + U4
2 + U2

4 ) a( + ) ________ + 2 U 1U 4 U\U4 = O. (5) 
aX4 ax\ 

III. SYMMETRY GROUPS OF THE MASSIVE THIRRING 
MODEL 

Let us now consider the one-dimensional massive Thir­
ring model and Lie point symmetry groups. The massive 
Thirring model describes the relativistic two-dimensional 
massive spinor field with current-current interaction. Sever­
al authorss- IO have studied the integrability of the massive 
Thirring model. They found that the massive Thirring mod­
el is integrable. This means, this system of pde's can be 
solved by 1ST. The Gelfand-Levitan integral equations ap­
pear with tedious nonlinearities. Let U1,U2,U\, and U2 be real 
fields. Then the massive Thirring model can be written ass 

(6a) 

(6b) 
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aU2 aU2 _ 2 2 -a + -a -4vl-(u l +VI )V2, 
XI X 4 

(6c) 

aV2 aV2 Z 2 - -a - -a =4u l -(u l +VI)U2· 
XI X 4 

(6d) 

We mention that Eq. (6) can be derived from a Lagrangian. 
With simple algebraic manipulations we find from Eq. (6) the 
conservation law (charge) 

a(ui +vi +u~ +v~) a(-u~ -v~ u~ +v~) 

a + 0. (7) 
X 4 aX I 

Theorem 3: The massive Thirring model (6) is invariant 
under the Lie point symmetry groups which are generated 
by the infinitesimal generators 

X I ,X4 , 

Lf4 =XI~ +X4~ _!!..!~ + uz~ 
aX4 aX I 2 aUI 2 auz 

_!:l~ + V4~, 
2 aVI 2 aV4 

*_ a a a a J -VI - +vz - -u l - -u2 -. 
aU I aU2 aVI aV2 

If the rest mass is equal to zero (m = 0), then Eq. (6) also 
admits the symmetry generator 

S* =XI ~ +X4~ _ !!..!~ _ U2~ 
aXI aX4 2 aU I 2 aU2 

_!:l~ _!2~ 
2 aV I 2 avz· 

IV. GROUP THEORETICAL REDUCTIONS 

(8) 

(9) 

Given Lie point transformation groups which are ad­
mitted by a given system of pde's, there are standard proce­
dures for finding the similarity ansatz and the system of 
ode's (see for example, Refs. 26-30). 

Consider first the nonlinear Dirac equation (4). For re­
ducing the system of pde's (4) we study three cases, namely 
reduction with the help of space-time translation XI + X 4 , 

Lorentz transformation L 14, and scale change S. 
The space-time translation leads to the similarity ansatz 

UI(X I,x4) = ul(n),···, V4(X I,x4) = v4(n), (10) 

where the similarity variable n is given by n = XI + X4. The 
resulting system of ode's is completely integerable. There is a 
sufficiently large number of first integrals. 

The reduction with the Lorentz transformation LI4 
leads to the similarity ansatz 

UI(X I,X4) = [cosh(EI2)]ul(n) + [sinh(El2)]u4(n), 

U4(X I,x4) = [cosh(El2)]u4(n) + [sinh(El2)]ul(n), 

VI(X I,x4) = [cosh(El2)]vl(n) + [sinh(EI2)]v4(n), 

V4(X I,X4) = [cosh(El2)]v4(n) + [sinh(El2)]v l(n), 

where 

E = arctanh(x4IxIl, 

and 
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(11) 

(12) 

(13) 

With this ansatz we obtain 

u; + ul/(2nl + EK(u l, ... , v4) = 0, 

v; + vl/(2n) - EK(u l, ... , v4) = 0, 
(14) 

u~ + u~(2n) - EK(u l, ... , v4) = 0, 

v~ + v4/(2n) + EK(u l , ... , v4) = 0, 

where I = d I dTj. For this nonautonomous system of ode's we 
can give at once two first integrals, namely, 

hl(Tj,u l,···, v4) = nui -nv~, 
(IS) 

As third example, we consider the reduction with the 
help of the scale change S. We find the similarity ansatz 

UI(X I,X4) = X4- 112 ul(n), ... , V4(X I,x4) = X4- II2V4(n), (16) 

where n = x l lx4 • By straightforward calculation we find 
that 

v~ - iV2 -nv; + EK(u l, ... , V4)U I = 0, 

- u~ + uJ2 + nu; + EK(u l, ... , V4)VI = 0, 

- v; + v4/2 + nv~ + EK (u I' ... , V4)U4 = 0, 

u; - u2/2 -nu~ + EK(u l , ... , V4)V4 = 0. 

Two first integrals can be given, namely 

hl(u l , ... , V4) = K (u l, ... , v4)=ui + vi - u~ - v~, 

(17) 

(18) 
h2(n,u l, ... , v4) = ui - vi - u~ + v~ - 2nUIU4 + 2nVIV4. 

To summarize, we find that the group theoretical re­
duction leads to systems of ode's which are integrable. 
Therefore the result cannot help us to decide whether the 
nonlinear Dirac equation (4) is integrable or not. 

When we consider the Thirring model (6) and group 
theoretical reduction with the help of the symmetry genera­
tors given by Eq. (8), we find the same result. In this case the 
result coincides with the fact that the Thirring model can be 
solved with the 1ST. 

V. COVARIANT EXTERIOR DERIVATIVE AND LIE 
BACKLUND VECTOR FIELDS 

Now let us discuss the integrability of the nonlinear 
Dirac equation (4) and the massive Thirring model (6) from 
another point of view. As mentioned above the Thirring 
model can be solved with the help of 1ST, and a Backlund 
transformation and an infinite number of conservation laws 
have also been given. In the following we describe that the 
massive Thirring model can be written as covariant deriva­
tive of a Lie algebra valued differential form, and we also give 
a LB vector field. Motivated by this we discuss whether the 
nonlinear Dirac equation (4) can be written as covariant deri­
vative and whether LB vector fields exist. 

It is well known that the soliton equations like 
Korteweg-de Vries, sine-Gordon, modified Korteweg-de 
Vries, nonlinear Schrodinger, and Liouville can be written as 
covariant derivatives of Lie algebra valued differential 
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forms, where the underlying Lie algebra is given by sl(2, H). 
Notice that dim sl (2,H) = 3. Consequently, the Thirring 
model cannot be represented within this Lie algebra. In or­
der to represent the Thirring model we are forced to extend 
the Lie algebra sl(2,H) to sl(2, q, where dim sl(2, q = 6. A 
convenient choice of the basis of sl(2, q is given by 

X,=(~ ~J X2=(~ ~), X3= (~ ~). 
(19) 

Y,=(~ 0.). 
-[ 

Y2= (~ ~), y3=e ~). 
Consider the Lie algebra valued differential one-form 

3 

F= r (a; ®X; +f3; ® Y;), (20) 
;= 1 

where 

a; = a; (x ,,x4)dx , + A; (x "x4)dx4, 
(21) 

f3; = b;(X,,x4)dx, + f3;(x,,x4)dx4· 

The covariant derivative of F with respect to F is given by 
DrF = dF +! [F,F]. From the condition thatDrF = Owe 
find the system ofpde's 

aa, aA, A b b B ( - - + -- + a~3 - aY>-2 - 2B3 + 3 2 = 0, 22a) 
aX4 ax, 

aa2 aA2 ) b - - + -- +2(a,A2-a~, -2( ,B2-b2Bd=0, 
aX4 ax, 

(22b) 

aa3 aA 3 ( (b B - - + -- -2a,A3-a~d+2 , 3-b3Bd=0, 
aX4 ax, 

(22c) 

- ab, + aB, + a2B3 _ b~2 - a3B2 + b~3 = 0, (22d) 
aX4 ax, 

- ab2 + aB2 + 2(a,B2 - b~d - 2(a2B, - b,A2) = 0, 
aX4 ax, 

(22e) 

- ab3 + aB3 _ 2(a,B3 - b~d + 2(a3B, - b,A3) = 0. 
aX4 ax, 

(22f) 

By suitable choice of a,,. .. , B3 we obtain Eq. (6). We choose 

a,=A,=O, 

a2 = AU, + A -, U2, A2 = A. u, - A -, U2, 

b2 = AV, + A -'v2, B2 = AV, - A -'v2, 
(23) 

a3 = -A u, -A -'U2, A3 = -AU, +A -'U2, 

b3 = AV, + A -'v2, B3 = AV, - A -'v2, 

and 

b, =A 2 -A -2 - !(ui + vi - u~ - v~), 
(24) 

B, = A. 2 + A -2 - !(ui + vi + u~ + vn 

Equation (22a) is satisfied identically and Eqs. (22b), (22c), 
(22e), and (22f) describe the Thirring model (6). Equation 
(22d) is given by 
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aX4 

- 16(u,V2 + u2vd = 0. (25) 

This equation can be obtained from Eq. (6) as follows. We 
multiply Eq. (6a) by u, and Eq. (6b) by v, and subtract. It 
follows that 

From Eq. (6c) and Eq. (6d) we obtain 

a(u~ +v~) a(u~ +v~) 
-.....:...-=---::..:.. + + 8(U,V2 - v,u2) = 0. (27) 

aX4 ax, 
When we add Eq. (24) and Eq. (25) we obtain the conserva­
tion law given by Eq. (7). When we subtract Eq. (25) from Eq. 
(24), Eq. (23) results. 

From the above we are motivated to look for a possible 
choice of a" ... , B3 in order to satisfy the nonlinear Dirac 
equation (4). For example, inserting the ansatz 

a, = C"AU, + c,0 -'v, + C13AU4 + C'4A -'V4, 
A, = C2,AU, + c20 -'v, + C20U4 + C24A -'v4, (28) 

and 

A3 = C6 ,AU, + c60 -'v, + C60U4 + C64A -'v4, 
b2 = C71AU, + c70 -'v, + Cn AU4 + C74A -'v4, 

b, = k,A 2 + k0 -2 + k3(u'U4 + v,v4), 
B, = k4A 2 + k;' -2 + k6(ui + vi + u: + v:) 

(29) 

into Eq. (20) we find that the nonlinear Dirac equation can­
not be represented. The equations for the coefficients 
CW •• ·' k6 cannot be satisfied. 

Let us now discuss the existence of LB vector fields for 
the Thirring model (6) and the nonlinear Dirac equation (4). 
We adopt the jet bundle technique. 3

' Within this approach 
we consider the local coordinates (x,t,u" ... , v2,u",u'4' ... ') 
and instead ofEq. (6) the submanifolds 

F,= - u" + U 14 - 4V2 + (u~ + v~)v, = 0, 

F2-v" - V'4 - 4u2 + (u~ + v~)u, = 0, 

F3-U2 , + U24 - 4v, + (ui + vi )V2 = 0, 

F4= - v2 , - V24 - 4u, + (ui + vi)u2 = 0, 

(30) 

and all its differential consequences with respect to the space 
coordinate x. Let 

(31) 
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be a LB vector field. Due to the structure ofEq. (6) we can 
simplify without loss of generality the vector field V, namely 

/j(U 1, ... , V211 ) =/il (u ll , ••• 'V21 ) 

+ /i2(u~ull'ufvlUll' ... ,v~V21) 
+ /j3(U 1ll , ... , v211 ), 

where/it and/j3 are linear functions. The function/j2 is 
linear with respect to the arguments u~ U 11> uf U2U W ... , 
v~ V21 • From the requirement that Lv Fj ~ 0, where V is the 
extended vector field of V, Lv (') denotes the Lie derivative 
and ~ stands for the restriction to solutions ofEq. (6), we 
find the vector field where/j3 :;60 (for further details of this 
technique see, for example, Ref. 32). Thus the Thirring mod­
el a LB vector field exists. Furthermore, there is a hierarchy 
of LB vector fields. This coincides with the fact that the 
Thirring model can be solved within 1ST. 

Ifwe consider the vector field (31) and the nonlinear 
Dirac equation (4) (substitute u2 -+ U 4 , V 2 -+ v4 ), then we find 
that the Dirac equation does not admit a LB vector field of 
the form given by Eq. (31). 

VI. CONCLUSION 

The group theoretical reduction of the nonlinear Dirac 
equation does not give a decision whether or not Eq. (4) is 
integrable, since the resulting ode's are integrable. Also the 
group theoretical reduction of the Thirring model leads to 
integrable ode's. From further investigations (existence of 
LB vector fields and representation as a covariant exterior 
derivative) we conclude that the nonlinear Dirac equation is 
not integrable. Alvarez and Carreras21 studied Eq. (4) nu­
merically including a mass term. They observed different 
types of interactions and bound state formations and con­
clude that this system is not integrable. 

Recently, Weiss et al.33 have introduced what is called 
the Painleve property for pde's. Meanwhile various3

4-38 

authors have applied this approach. It would be interesting 
to study the pde's given above from this point of view. 
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Critical properties of pseudospin Hamiltonians 
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The thermodynamic critical properties of a simple class of pseudospin model Hamiltonians are 
discussed. This class of models includes the spin van der Waals model and the Meshkov-Glick­
Lipkin model as particular cases. Second-order thermodynamic phase transitions occur when the 
spin-spin interaction contributes negatively in a particular direction and the linear interaction 
term is orthogonal to the direction(s) of greatest energy gain through the spin-spin interaction. 

PACS numbers: 75.10. - b, 75.1O.Dg, 05.70.Jk 

I. INTRODUCTION 

The critical properties of the spin van der Waals model 
have recently been studied by Lee. I In that analysis the XY­
like regime and the Ising-like regime were studied separate­
ly. 

In the present work a generalization of the spin van der 
Waals model is studied. A simple algorithm is applied to this 
model to determine both the ground state critical properties 
and the thermodynamic critical properties. We also study 
the effects of perturbations on the persistence of the second­
order phase transition, if one is present before the perturba­
tion is applied. 

II. THE MODEL 

The spin van der Waals model is a mean-field model 
describing the interactions among a large number of identi­
cal particles. The ath particle is assumed to have (pseudo) 
spin S with components S ;ul(i = x, y, or z). The spin van der 
Waals model Hamiltonian can be expressed in terms of the 
total (pseudo) spin operators 

N 

Ji = ISla). (2.1) 
a=l 

A convenient generalization of the spin van der Waals model 
is defined by the Hamiltonian 

(2.2) 

where Q is a real symmetric 3 X 3 matrix. Specific choices of 
the matrix elements Qij lead to the Ising-like and theXY-like 
regimes of the previously studied model. 2--4 

III. GROUND STATE CRITICAL PROPERTIES 

The Hamiltonian (2.2) does not exhibit a phase transi­
tion for finite N I. We therefore consider the thermodynamic 
limit (N-oo) of (2.2). In this limit, the critical properties of 
JY are determined by a simple algorithm.5

,6 

(1) Convert the Hamiltonian to "intensive" form: 

~ = ?Qij(;)(;). 
I,j 

(2) Replace the intensive operators JJNby 

J/N_r sin e cos tjJ, 

J21 N-r sin e sin tjJ, O<r<~ 

J3IN-r cos e, 

(3) Minimize the resulting function (JY IN) = hover 
the state variables (r, e, tjJ ), 

To apply this algorithm to the Hamiltonian (2.2), we let 
ii be a unit vector in the (e, tjJ ) direction. Then according to 
the algorithm 

JYIN-h = r ii.Q.ii. (3.1) 

Let the eigenvalues Ai of the matrix Q obey 

,,1,1<,,1,2<,,1,3' (3.2) 
If A I > 0, the minimum value of h is attained for r = O. If 
A I < 0, the minimum value of h is obtained for r = i and n an 
eigenvector of Q to eigenvalue A I: 

min h = (!f AI' 
Ire¢> ) 

(3.3) 

The expectation values of the intensive operators J/N are 
given by 

(JIN)=rii, (3.4) 

where r = 0 irA I > 0 and r = ~ irA I < O. 

IV. THERMODYMANIC CRITICAL PROPERTIES 

The thermodynamic critical properties of (2.2) are also 
determined by a simple algorithm.5

,6 

(1) The free energy per particle is determined by sub-
tracting the entropy term from the energy term 

(F IN) = (JYIN) - kTs(r). 

(2) The entropy term is an SU(2) multiplicity factor7 

sIr) = - (i + r)ln(~ + r) - (! - r)ln(~ - r). 

(3) Minimize the resulting function, (F IN) = f, over 
the state variables (r,e, tjJ ). 

To apply this algorithm to the Hamiltonian (2.2), we 
again assume A I is the minimum eigenvalue of Q. Then 

(F IN) = rAI + kT[(! + r)ln(! + r) + (i - r)ln(! - r)). 

If A I > 0 the minimum value of (F IN) occurs for r = 0 at all 
temperatures. 

If A I < 0 a second-order thermodynamic phase transi­
tion will occur. The relationship between the state variable 
r(r = (J 2

) J/2IN) and the temperature Tis determined 
through the minimization condition 

The critical temperature Tc is determined by the vanishing 
of the second-degree Taylor series coefficient, as is usual for 
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a second-order Ginzburg-Landau phase transition: 

d2 (F) {(I )-' (1 )-'} dr- N =U, +kT 2+ r + 2 -r . 

(4.2) 

From (4.2) we determine 

- A,/2 = kTe • (4.3) 

This relation between the coupling strength (i.e., the ground 
state energy per particleA,) and the critical temperature can 
be used to write (4.1) in a simple scaled form 

T 4r 
t=-= , O<t<l, l>r>O 

Tc In[(1 + 2r)/(1 - 2r)] 2' 

(4.4) 

and r = ° for T> Tc. The relation between the reduced tem­
perature t and the rms expectation value of the (pseudo) an­
gular momentum r = (J 2

) '
/21N is shown in Fig. 1. At any 

temperature the expectation values of the angular momen­
tum operators are given by 

(JIN) = r(T)o, (4.5) 

where 0 is the unit eigenvector of Q to minimum eigenvalue. 

V. PERTURBATIONS 

If the model Hamiltonian (2.2) exhibits a second-order 
thermodynamic phase transition, then a perturbation may 
or may not destroy this phase transition. To determine the 
conditions under which the phase transition either persists 
or is unhinged, we consider perturbations which possess 
only linear and quadratic terms in the total (pseudo) angular 
momentum operators J. The perturbed Hamiltonian has the 
form 

Jf"'p = LoJ + (lIN)JoQ'oJ. (5.1) 

The structural stability of the phase transition is deter­
mined by a simple algorithm. 

(1) Choose as coordinate axes the eigenvectors 0" O2, 03 

of Q " with eigenvalues A, <A2 <A3. 
(2) Resolve the linear perturbation into components L" 

L 2, L3 along the three coordinate directions. 
(3) IfL has a component in the subspace spanned by 

eigenvectors with minimum eigenvalue (L, #0 if A, <A2; L, 

r = «J/N)'>."-
0.5+-____ _ 

0.4 

0.3 

0.2 

0.1 

0.2 0.4 0.8 0.8 1.0 1= T/Tc 

FIG. 1. The coupling constants and critical properties of the general spin 
van der Waals model are related by a simple scaled curve. 
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orL2#OifA, =A2<A3;L #OifA, =A2 =A3), the second­
order phase transition is unhinged; otherwise it will persist if 
A, <0. 

In the generic case6 that the phase transition is un­
hinged, the state variables (J IN) = rD are determined by 
minimizing the free energy expression 

(F IN) = r-ooQ'oo + moL - kTs(r). (5.2) 

The unit vector 0 is determined by introducing a Lagrange 
multiplier y through - r(ooo - 1 ). We find 

ni(r) = rL/2[r(r) - r-Ai ], (5.3) 

where r(r) is determined by the constraint 

(..!...-)2 ± L t = 1. 
2 i=' [r(r) - r-Ai]2 

(5.4) 

The smallest of the (up to) six values ofywhich satisfy (5.4) is 
used in (5.3). The state variable r is related to the temperature 
T through 

kT= - 2r(r)lrln[(1 + 2r)l(1 - 2r)]. 
The ranges of rand T are related by ° < r min <r<r max <! and 
oo>T>O. 

The critical properties can readily be determined in the 
nongeneric case in which the second-order phase transition 
is not destroyed. To illustrate, we consider the case in which 
the minimum eigenvalue of Q is nondegenerate (AI < A2<A3, 

AI < 0) and choose L = (0, L2, L3)' The alternative possibility 
(AI = A2 <A3 ) andL = (0,0, L 3) is treated similarly. An easy 
calculation shows that the components of the unit vector 0 
minimizing < Jf'" IN) obey 

nj = - L/2dj , .aj = Aj - AI' j = 2,3, (5.5) 

provided that n; + n~ < 1. Since the maximum valueofris!, 
we see that the second-order phase transition persists for L 
sufficiently small, 

(L2/.a 2)2 + (L3/.a 3f < 1, (5.6) 

but is destroyed by sufficiently strong linear "perturba­
tions": (L2/.a 2)2 + (L3/.a 3f > 1. 

For small linear perturbations the critical temperature 
Te is determined by 

2re( - At! = kTe In[(1 + 2re)/(1 - 2re)], (5.7) 

where 

(5.8) 

The condition defining the critical temperature (5.7) can be 
written in the more familiar gap-equation form 

2re = tanh ~e( -A))(2re). (5.9) 

For T < Tore <r<!, the values of(JIN) = r(T)oaredeter­
mined by (5.5), together with the relation 
n) = ± [1 - n~ - n~ ] 112 and the condition defining r: 

2rA) + kTln[(1 + 2r)l(1 - 2r)] = 0. (5.10) 

For r<rc ' T> To n) = 0, nj = a-1Ljl.aj , a = [(L21 
.a 2)2 + (L3/.a 3)2]1 12, and rand T are related by 

2ra-2 LAj -j - a-I L -j + kTln 1 + 2r = 0. 3 (L)2 3 (L 2) 
j=2.a j j=2 .aj 1 - 2r 

(5.11) 

The particular pseudospin model Hamiltonian for which Q 
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has eigenvalues ( - I V 1,0,0) and L = (0,0, E) corresponds to 
the Meshkov-Glick-Lipkin model Hamiltonian8 

~ = d z - (I VI/N)J; (5.12) 

widely studied in nuclear physics.6 For this Hamiltonian, 
many of the results derived above are well known. 

The ground state energy phase transition for this model 
is usually studied as a function of increasing value of the 
normalized quadrupole interaction strength,1 V liE (see Ref. 
9). There is a second-order ground state energy phase transi­
tionat I V liE = 1, by(5.6). For I V I <E, in the ground state (JI 
N) = !(O, 0, - 1) by (5.6). For I VI>E, we have (JIN) 

= ~(~1 - (EIIVW, 0, - dlVi) by (5.5). 
For I V liE> 1, this model exhibits a second-order ther­

modynamic phase transition 10 at 2re = €II V I by (5.8). The 
corresponding critical temperature is determined from the 
gap equation (I VI/E)tanh!l'eE = 1, which is a direct conse­
quence of (5.9). In the ordered state below the phase transi­
tion we have T < Te , r> re , rand T are related by 
kTln[(l + 2r)/(1 - 2r)] = 2rlVl, and (JIN) 

= r(~l - (d2rVf, 0, - d2rl VI) by (5.10). In the disor­
dered state above the phase transition, we have T> Te , 

r<re , r and Tare related by kTln [(1 + 2r)/(1 - 2r)] = E, 

and (JIN) = r(0,0, - 1) by (5.11). In addition, it is 
known5

•
11 that the second-order phase transition (ground 

state energy or thermodynamic) is destroyed by addition of 
either Jx or J; to the Hamiltonian (5.12). This result also 
follows directly from the algorithm presented in this section. 
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VI. SUMMARY 

Critical properties of pseudospin models which are gen­
eralizations of the spin van der Waals model and the Mesh­
kov-Glick-Lipkin models have been studied. These models 
are general superpositions of terms linear and quadratic in 
the pseudospin operators. The conditions for the occurrence 
of a second-order thermodynamic phase transition have 
been determined. The structural stability of these transitions 
has also been discussed. 
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The crystal field effect has been studied in the linear Ising model which can be solved exactly. For 
spins S = ~, 1, ~ it is easy to diagonalize the transfer matrix analytically, but for spins S >~, the 
transfer matrices are diagonalized numerically. The numerical results are accurate to seven 
decimal places and can be treated as exact for all practical purposes. Crystal field has no effect on 
spin-~ systems, its effect has been studied in systems with spins S > l' The ferromagnetic as well as 
the antiferromagnetic sysceptibilities have been computed for the systems with and without the 
crystal field. It has been found that, for small crystal fields, the susceptibility behavior is not much 
different from that in the absence of crystal field. But for large crystal fields, not only the 
antiferromagnetic susceptibilities but the ferromagnetic susceptibilities also start showing 
maxima which appear for integer spins only. 

PACS numbers: 75.1O.Hk, 75.30.Cr, 71.70.Ch 

I. INTRODUCTION 

The one-dimensional Ising model with spin! in the ab­
sence of crystal field was solved by Ising! as early as 1925 
using a combinatorial method. Later Kramers and Wannier2 
and Kub03 solved the same problem using a matrix method. 
The one-dimensional Ising model with general spin was 
solved by Suzuki, Tsujiyama, and Katsura4 in the year 1967. 
First, they developed a perturbation method and then dem­
onstrated an implicit differentiation method. They obtained 
exact solutions for S = ~ and S = 1 and numerical results for 
these two spin systems were compared with the S = 1 sys­
tem. Finally, they concluded that both the perturbation and 
differentiation methods could be applied for the problem of 
general spin. In their works there was no mention of the 
crystal field which is important in the case of solids. Nobody 
has solved the Ising model in the presence of the crystal field 
until very recently when Lines5 solved this problem for 
S = 1. Lines solved this problem exactly for the comparison 
of correlated effective field results with the exact results. 

In the present paper the Ising model with general spin 
and in presence of a crystal field has been solved exactly. The 
crystal field effect has been studied on the susceptibility only. 
In order to calculate the susceptibility, first the transfer ma­
trix is constructed and then diagonalized to obtain the eigen­
values and eigenfunctions of this matrix. Using these eigen­
values and eigenfunctions, correlation functions and 
susceptibilities (both ferromagnetic and antiferromagnetic) 
are calculated. The susceptibilities in the absence of crystal 
field are also calculated for comparison. The transfer matri­
ces for S = ~, 1, ~ can easily be diagonalized analytically and 
those for S > ~ cannot be diagonalized analytically very easi­
lyand, therefore, these are diagonalized numerically. The 
method of diagonalization is due to Jacobi. The exact sus­
ceptibility for any spin is calculated by writing a FORTRAN 

program where only the transfer matrix is supplied and the 
rest of the calculation is performed numerically. 

II. THEORY 

The Hamiltonian for the one-dimensional Ising prob­
lem for an N-spin ring in the presence of an axial crystal field 
is given by 

N 

JY'= L [D(S;)2-2JS;S;+ d· (1) 
n=l 

Since S; + I == S f, regrouping the terms in the form 

N 

JY'= L{~D[(S;)2+(S;+1)2] -2JS;S~+l}' (2) 
n=l 

one notes that the partition function Z can be expressed in S Z 

representation as 
N 

Z=Tr IT Tn =TrTN, (3) 
n = 1 

where all the transfer matrices Tn have an identical Hermi­
tian form. The transfer matrices are different for different 
spin systems. The first term in the Hamiltonian [Eq. (1)] in­
troduces an axial crystal field anisotropy in the system, and 
for S = ! this term is a constant and therefore has no effect. 
The axial crystal field starts showing its effect for S > ~. Since 
all the transfer matrices have an identical Hermitian form 

Tn = T = e - /3:¥', 

where /3 = 1/ kT and the matrix elements are given by 

(S I T IS ') = e 2/3.!Ss' - (/3D12)[(S)' + (S')'], 

where Sand S' are the projections of spin S. 

(4) 

(5) 

As an example, the transfer matrix for S = 1 is given by 

1 0 -1 

1 e -f3\D- 2J) e - /3D12 e -/3\D+ 2J) (6) 

T= 0 e- f3DI2 e - f3D12 

-1 e- f3 (D+2J) e -f3DI2 e -/3\D- 2J) 
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Similarly transfer matrices for any spin can be con­
structed, and these matrices can be diagonalized analytically 
for S =!, I,!. For S>!, diagonalization is performed nu­
merically. Once eigenvalues and eigenfunctions of the trans­
fer matrices are known, the susceptibility is calculated from 
the correlation function6 as follows: 

Nill~ + '" 
X =-- 2: (SKSK+')' 

kT 1=-00 

where 

(7) 

(SKSK + I) = 1.. i A ;A f -/(tfti ISltftj ) (th ISltftl)' (8) z l~j= 1 

(11) 

It is obvious that A I > Az. Again, n is the dimension of the transfer matrix. Ai>..1j and tfti> tftj are 
the eigenvalues and eigenfunctions of the transfer matrix. 
For S = 1, S has the form 

S~G ~-n (9) 

AI> ![2e - fJD cosh(2,BJ) + 1 + 2e -fJD cosh(2pJ) - 1] 

> 2e - fJD cosh(2,BJ) 

> 2e - fJD sinh(2,BJ) 

>A3' 
By solving the transfer matrix [Eq. (6)], eigenvalues and 

eigenfunctions are obtained as given below. 
Eigenvalues: 

Thus we seeA I is the largest eigenvalue. The partition func­
tion is given by 

AI = ~[2e-fJD cosh(2PJ) 
Z = Tr TN =Af +A~ +A f. (12) 

For large N, Z __ A f. + 1 + (!2e -fJD cosh(2,BJ) - 1 J 2 + 8e -fJD)I/2], 

A2 = 1 [2e - fJD cosh(2PJ) 
Let us find out the matrix elements ofthe spin operator 

+ 1 - (! 2e -fJD cosh(2,BJ) - 1 J 2 + 8e -fJD)I/2], 
(10) 

A3 =2e- fJD sinh(2PJ). 

Eigenvectors: 

i¢,) ~ (2 +~),,,(~) 

(SKSK+ I) = ~ ;.j~.2/ ~A f-'(tft; ISltftj ) (tftj ISltftl) 

S: 

(tftdSltftl) = (tft2ISltft2) = (tft3ISltft3) 

= (tftIISltft2) = (tft2ISltftl) = 0, 

(tft3ISltftl) = (tftIISltft3) = [2/(2 + a~)] 1/2, 

(tft3ISltft2) = (tft21Sltft3) = [2/(2 + a~l] 112. 

The correlation function is calculated as follows: 

= ~ [A:Af-
I
(2:ai )+A~Af-I(2+2a~ )+A;Af-

I
(2:af )+A;Af-{2:a~)) 

[21(2 + ai)](A ~A f- I +A ~A f-I) + [21(2 + a~)](A ~A f- I +A;A f-I) 
=~------~----------------~------~---------------

Af+Af+Af 
AsN __ 

oo 

2 A f - ~ ; 2 (A3 )1 
(SKSK+I) ~ =-- - . 

2 + ai A f 2 + a; A I 

(13) 

(14) 

(15) 

From this it follows that when 1-- 00, (S KS K + 1 )-0, which means there is no spontaneous magnetization. Using the 
correlation function evaluated as above, the susceptibility is calculated as 

_ Nill1 ~'" (S S ) _ Nill1 _2_ \--'" (A3)1 X ------ £.. K K+I - £.. < 

kT 1=_00 kT 2+aTI=-", Al 

= Nill~ _2_ [1 + 2 f(A3 )111] = NiIl1_2_ {I + U3/A I 
kT 2+a~ 1=1 Al kT 2+ai l-A3/AI 

(16) 

whereg = 2. AI' A3• and a l are obtained from Eqs. (10) and (11). 
Using the same procedure, susceptibilities for S = ! and S = ~ can be calculated. The analytical formula for the suscepti­

bility for S = ! is given by 
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(17) 

usingg = 2. 
Starting from the Hamiltonian [Eq. (2)], the transfer matrix for S = ~ is obtained in the same way as for S = 1 and is given 

by 

3 I -~ _J 
2 2 2 

3 e9K - 9a e3K - 5a e - 3K- 5a e - 9K - 9a 
2 

I e3K- 5a e K - a e- K - a e - 3K - 5a , (18) 

T= 
2 

-~ 
e- 3K - 5a e- K - a eK - a e3K - 5a 

_J e - 9K- 9a e - 3K - 5a e3K- 5a e- 9K - 9a 
2 

whereK = J /2kTanda = D /4kT. Diagonalizing this transfer matrix, eigenvalues and eigenvectors are obtained as follows: 
Eigenvalues: 

AI = e- 9a cosh 9K + e- a cosh K + [(e-
9a cosh 9K - e -a/cosh K)2 + 4e- lOa cosh2 3K J 1/2, 

AZ = e-
9a cosh 9K + e- a coshK - [(e-

9a cosh 9K - e-
a coshKf + 4e- IOa cosh2 3K )IIZ, 

,13 = e-
9a sinh 9K + e-

a sinhK + [(e-
9a sinh 9K - e- a sinhK)2 + 4e- lOa sinh2 3K J 1/2, 

,14 = e-
9a sinh 9K + e-

a sinh K - [(e-
9a sinh 9K - e-

a sinh Kf + 4e- lOa sinh2 3K J 112. 

It is evident that A I is the largest eigenvalue. 
Eivenvectors: 

1 (~2) ItP2) = [2(1 + x~W/2 72 ' 

(19) 

1 (~I) ItPl) = [2(1 +XiJf I2 71 ' where X 2 = (,12 - 2e - 9a cosh 9K )f(2e - Sa cosh 3K), 

where x I = (A I - 2e - 9a cosh 9K )f(2e - 5a cosh 3K ), 

2.5 r-r--;,----,---.---r-------------, 

2.0 

1.5 

~ 
1.0 

0.5 

0~---~~5~======~10~;;;;~~,5~~~~~~ 
Tc"K) 

FIG. I. Ferromagnetic susceptibilities in the absence of the crystal field. 
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1 (~3) ItP3) = [2(1 +x~W/2 =73 ' 

where X3 = (,13 - 2e - 9a sinh 9K )f(2e - 5a sinh 3K), 

2.0,------------------------------____ --. 

10 
T('K) 

0-0 J--Ik 

15 20 

FIG. 2. Antiferromagnetic susceptibilities in the absence of the crystal field. 
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2.sr--,--r--r--.,....------------, 

.. 
~ 

.~ .. .... 
" 

2.0 

I.S 

~ 1.0 

O.S 

0L----~S~---~10~---~IS~---~20 

T (oKl 

FIG. 3. Ferromagnetic susceptibilities in the presence of the small crystal 
field. 

where x4 = (,1,4 - 2e - 9a sinh 9K )/(2e - Sa sinh 3K). 
(20) 

Susceptibility is calculated in the same way as for S = 1 and 
is obtained as 

0.20,---------------------, 

r­.. ... 
'c 

O.IS 

: 0.10 ... 
~ 

O.OS 

S 10 
TCKl 

D'lk J'-Ik 

15 20 

FIG. 4. Antiferromagnetic susceptibilities in the presence of the small crys­
tal field. 
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O.lOr--------------------. 
DolOk J'lk 

0.08 

0.06 

X 0.04 

0.02 

0L-~~-~~---~10~---~15----~20 

T l"K) 

FIG. 5. Ferromagnetic susceptibilities for integral spins in the presence of 
the large crystal field. 

= N#1 {(XIX3+3f(AI+A3) 

X kT(1 +xi) 1 +x~ A I -A3 

+ (X IX 4 + 2W ( AI + ,1,4 )} (21) 
1 + X 4 AI - A4 

using g = 2. A 's and x's are obtained from Eqs. (19) and (20). 
For any spin S > ~, the calculation of susceptibility is 

performed numerically by writing a FORTRAN program 
which is very general. This program yields the same results 
for S<~ as obtained analytically. 

2.0.,..-------------------, 

.. 
~ 

1.5 

.~ 

.. 1.0 
ff' 

0.5 

o 5 

DolOk Jolk 
- 5=312 

• 5·512 

10 
T CKl 

15 20 

FIG. 6. Ferromagnetic susceptibilities for half-integral spins in the presence 
of the large crystal field. 
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o.o8.----------------------, 

~ .. 
~ 

'c 

0.06 

~O.04 

0.02 

o 

O· 10k 

10 
T('K) 

J--Ik 

5·1 

15 20 

FIG. 7. Antiferromagnetic susceptibilities for integral spins in the presence 
of the large crystal field. 

III. RESULTS AND DISCUSSION 

In order to study the crystal field effect in a linear Ising 
model, first the ferromagnetic as well as the antiferromag­
netic susceptibilities are calculated in absence of crystal field 
(D = 0) and the results are shown in Figs. 1 and 2, respective­
ly. The antiferromagnetic susceptibilities are calculated by 
reversing the sign of J in the susceptibility formula given in 
Sec. II. Suzuki et al.4 calculated these susceptibilities by us­
ing different procedures and claimed that the method could 
be applied for any spin, though they have shown only the 
results for S =~, 1, ~. In the present calculation the results 
are shown up to S = ~, though the method can be applied for 
general spin. The exact ferromagnetic susceptibilities (Fig. I) 
show the usual behavior. The exact antiferromagnetic sus­
ceptibilities (Fig. 2) show maxima at certain temperatures 
which are higher for larger spin values. The maxima become 
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FIG. 8. Antiferromagnetic susceptibilities for half-integral spins in the pres­
ence of the large crystallield. 
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FIG. 9. Ferromagnetic susceptibilities for the low negative crystal field. 

broader as we go to higher spin values. As the axial crystal 
field is switched on (D ¥:O) and its value is small (D = lk) the 
results do not differ much (from D = 0 case) as shown in 
Figs. 3 and 4. But when the crystal field is large (D = 10k), 
the ferromagnetic susceptibilities start showing broad maxi­
ma as indicated in Fig. 5. This happens in the case of integral 
spins only, and the temperatures at which these maxima oc­
cur are lower for higher spin values. This means there must 
be some critical value of D above which these maxima occur. 
To calculate this critical value, let us examine the behavior of 
susceptibility near T = O. 

For integral spins since we have the analytical formula 
of susceptibility for S = 1, let us see how the susceptibility 
for this system behaves at T = O. From Eqs. (10) and (11) we 
see in the limit of 

T~, 

A I~' A3~' and a c~efiD. 
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FIG. 10. Ferromagnetic susceptibilities for the high negative crystal field. 
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FIG. II. Antiferromagnetic susceptibilities for the low negative crystal 
field. 

This is true when D > 2J. Therefore, the susceptibility evalu­
ated from Eq. (16) becomes 

X=(Ng2f..t~/kT)e-2fJD near T=O. (22) 

This shows X~ at T = 0 for D> 2J. At high temperature 
also the susceptibility vanishes. The susceptibility maxima, 
therefore, appear for D > 2J. Since, for positive values of D, 
D> 2J always favors S; = 0 (minimum spin) state for inte­
gral spins, the critical value of D (D = 2J) is same for all inte­
gral spins. This has been checked numerically. 

On the other hand, half-integral spin susceptibilities 
show spin! behavior at T = 0 as in these cases S; = ! (mini­
mum spin) state is favored. The results are shown in Fig. 6. 
WhenD < 2J fromEqs. (lO)and(ll), we see A. 1---+2 cosh(2,8J), 
,,1.3---+2 sinh(2,8J), and a I~ in the limit of T~. Near T = 0 
the susceptibility from Eq. (16) becomes 

X = (Ng2p.1/kT)e4JlkT. (23) 

This is similar to behavior of spin! susceptibility given by 
Eq. (17) and J is replaced by 4J. 

When the crystal field is large (D = 10k), the antiferro­
magnetic susceptibilities, however, do not differ from the 
behavior shown in the presence of the small crystal field, but 
broader maxima appear for integral spins as shown in Fig. 7. 
These maxima are shifted towards the lower temperatures as 
one consider higher spins in contrast to the small crystal field 
effect. For half-integral spins the susceptibility maxima be­
come sharper compared to the case of small crystal field and 
these results are shown in Fig. 8. 

So far we have discussed the role of crystal field when 
D> O. When D < 0, as it corresponds to the case of D < 2J, 
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FIG. 12. Antiferromagnetic susceptibilities for the high negative crystal 
field. 

the conclusion regarding the ferromagnetic susceptibility is 
same as given by Eq. (23). This means this crystal field 
prefers an alignment S; = ± S (maximum spin) and as 
T ---+0, the susceptibility approaches that for a spin-! system 
with J---AJS 2. The results for low and high crystal fields are 
shown in Figs. 9 and 10. The antiferromagnetic susceptibili­
ties for these crystal fields are shown in Figs. 11 and 12. As 
evident from the figures, the ferromagnetic and the antifer­
romagnetic susceptibilities show the usual behavior of the 
Ising model in the absence of the crystal field or in the pres­
ence of the small crystal field. 

Therefore, from the study of magnetic susceptibilities in 
the presence of crystal fields of both postive and negative and 
also of high and low values, one can conclude that an axial 
crystal field plays an important role in the study of magnetic 
properties. Its effect can change the magnetic behavior dras­
tically, especially in the case offerromagnets with integer 
spins. 
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